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Abstract 

In this study, an experimental approach mimicking processes encountered in electric kettles has been 

designed to investigate the influence of heating and cooling rate, and water composition on the kinetics 

of inorganic salt precipitation taking place when water is heated from ambient temperature up to its 

boiling point. The kinetics of salt precipitation in the bulk solution have been monitored through 

turbidity measurements as well as tracking ion concentration throughout the heating/ cooling process 

and the experimental findings highlight the critical role of the cooling step on the overall amount of 

salts that precipitate. The presence of magnesium ions in the water was found to influence the 

precipitation of calcium carbonate which was found to be the dominant salt crystallising out of solution; 

calcium sulphate was not observed.  

Keywords: A1.Heat transfer; A2.Bulk crystallization; B1.Mineral precipitation; B1.Calcium carbonate; 

B1.Magnesium deposits. 

1. Introduction 

The precipitation of inorganic salts on surfaces is undoubtedly a serious heat transfer problem in water 

heating systems. Potable water used in domestic or industrial applications generally contains a variety 

of ions prone to precipitate over a range of concentrations depending on water quality and its geographic 

location. The formation of sparingly soluble inorganic deposits either in bulk solution or on heat transfer 

surfaces is a persistent and costly issue. It represents one of the major heat transfer and flow assurance 

problems in the oil sector, and water handling industry in general [1-6]. In households, scale formation 

has long been a concern in domestic appliances such as electric boilers, steam irons, washing machines, 

dishwashers, coffee makers and potable water distribution systems in general [7].  
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Scale build-up on the metallic surfaces of such appliances diminishes the heat transfer and increases the 

power needed to fulfil the desired performance. The deposition of inorganic salts can also result in 

reduced flow area which can lead to the failure of the domestic devices subjected to fouling. Moreover, 

the precipitation of salts in the bulk solution also affects the quality of the produced water such as taste 

and colour [8]. For instance, the suspended solids in the boiled water produced from coffee machines, 

kettles or instant water boilers may affect the taste of coffee, tea, etc. While the composition and quality 

of potable water vary based on geographic location [9], the heating of potable water is generally 

associated with the formation of various deposits with the most common being calcium carbonate 

(CaCO3), calcium sulphate (CaSO4), magnesium hydroxide (Mg(OH)2), and magnesium carbonate 

(MgCO3) [10-12] (see Equations 1-3) with the resulting fouling layer made up of a mix of the 

aforementioned inorganic salts. When the water temperature rises from room temperature up to its 

boiling point, the solubility of inverse solubility salts decreases. This drop in solubility along with an 

increase in salinity due to water loss through evaporation during the heating process contributes to an 

increase in the thermodynamic driving force for the crystallisation reactions prompting the precipitation 

of salts out of solution [13]. Fig. 1 describes the process of salt precipitation as a function of time and 

temperature while Fig. 2 shows how the solubility product of CaCO3 as calcite, MgCO3 and CaSO4 

changes with temperature, respectively as derived from experimental studies [14, 15]. 

 

 

 

 

 

Fig. 1. Schematic drawing of composite precipitates formation from potable water. 

𝐶𝑎(𝑎𝑞)2+ + 2𝐻𝐶𝑂3 (𝑎𝑞)− 5↔ 𝐶𝑎𝐶𝑂3 (𝑠) +  𝐶𝑂2 (𝑔) + 𝐻2𝑂(𝑙)                       (1) 𝐶𝑎(𝑎𝑞)2+ +  𝑆𝑂4 (𝑎𝑞)2−  1↔ 𝐶𝑎𝑆𝑂4 (𝑠)                                                            (2) 𝑀𝑔(𝑎𝑞)2+ + 2𝐻𝐶𝑂3 (𝑎𝑞)− 5↔ 𝑀𝑔𝐶𝑂3 (𝑠) + 𝐶𝑂2 (𝑔) + 𝐻2𝑂(𝑙)                    (3) 
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Fig. 2. Solubility of calcium carbonate forms and magnesium carbonate as a function of 

temperature. 

 

The formation of inorganic scale in bulk solution has received a lot of attention in the literature over 

the last decades. However, most studies have focused on a narrow range of experimental conditions, 

generally using artificially hardened solutions to investigate the precipitation of one salt, under constant 

volume and temperature [16-19]. In the work reported herein, simultaneous precipitation of calcium 

carbonate, calcium sulphate and magnesium carbonate has been investigated by subjecting potable 

water to heating and cooling processes from room temperature up to its boiling point. The effect of 

heating rate on the crystallisation process has been assessed by monitoring the concentration of Ca2+, 

SO2-
4, and Mg2+

 as a function of temperature and time.  

2. Experimental methods 

2.1.Test solution 
The main solution used (solution A) in the experiments is a commercially available bottled water. It has 

been chosen rather than tap water, for its hardness of 307 ppm of CaCO3 and pH of 7.2. Table 1 shows 

the composition of the solutions. The composition of solution A has been taken from the bottled label. 

However, the same batch has been analysed using the inductively coupled plasma atomic emission 

spectroscopy (ICP-OES). The analysis showed variation in some elements concentration such as 

calcium 94 mg/L, magnesium 30.8 mg/L and sulphate 10.4 mg/L.  

 Four other brines have been prepared to investigate the effect of water composition on the precipitation 

process. The concentrations of SO4
2- and Ca2+ in solution B and Mg2+ in solution E have been chosen 

based on the drinking water quality report of the World Health Organization (WHO) [9]. All these four 

solutions were filtered using 20-25 μm filter paper to exclude the effect of impurities, and then a sample 

from each solution is taken to measure the initial value of pH and ion content.  
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Solution B is prepared by mixing 1.09 g/L of CaCl2.6H2O (Purity: 97 to 100%) (Honeywell Fluka) and 

0.59 g/L of Na2SO4 (Purity: min. 99%) (VWR Chemicals) into deionized water. Solution C is made by 

mixing MgCl2.6H2O (Purity: 100%) (VWR Chemicals) and NaHCO3 (Purity: 99.5%) (ACROS 

Organics) into deionized water. Finally, the solutions D and E are prepared by adding MgCl2.6H2O to 

solution A to obtain the magnesium content to 88 and 150 mg/L, respectively. The Saturation Ratio (S) 

of CaCO3 and CaSO4 has been calculated for each solution based on the initial concentrations of scale 

species at a temperature of 25 ºC.  

 

Table 1. Solution compositions. 

Ions (mg/L) Solution A Solution B Solution C Solution D Solution E 

Ca2+ 80 200 - 80 80 

Mg2+ 26 - 26 88 150 

Na+ 6.5 183 130 6.5 6.5 

K+ 1 - - 1 1 

Si4+ 15 - - 15 15 

HCO3- 360 - 360 360 360 

SO4
2- 14 400 - 14 14 

Cl- 10 350 84 177 361 

NO3- 3.8 - - 3.8 3.8 

Dry residue at 180ºC 345 780 413 502 546 

Initial saturation ratio of 

CaCO3 

0.89 - - 0.89 0.89 

Initial saturation ratio of 
CaSO4 

0.007 0.52 - 0.007 0.007 

 

2.2.Experimental setup and procedure 
Experiments have been carried out in two different setups; namely, a lab-scale closed system and a 

commercially available electric kettle. The first setup consists of a 250 ml borosilicate vessel placed on 

a hot plate to provide the required heating. This simple setup is mimicking the heating process in some 

appliances such as kettles and uncomplicated coffee makers with a lower heating rate. To enhance the 

heating rate and to get to the boiling temperature in a shorter period, a silicone beaker heater with a 

power density of 0.008 W/mm2 (BriskHeat, USA) has been used. The second apparatus is a kitchen 

electric kettle that has a capacity of 1700 ml and power of 3000 W.  The heat is providing through a flat 

heating element in the bottom of the kettle.  
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The experimental procedure includes heating one of the solutions to its boiling temperature under 

atmospheric pressure. Once the heat source is switched on, solution sampling is regularly undertaken. 

By using a micropipette, 1 ml of the solution sample is mixed with 9 ml of a quenching solution made 

of 1 g of polyvinyl sulfonate (PVS) scale inhibitor and 5.71 g of KCl in 1000 ml of distilled water, then 

the pH was adjusted to a value between 8 – 8.5. The quenching was added for the purpose of preventing 

further crystallization in the solution. This 10 ml sample is used to assess the bulk concentration of 

cations (i.e., calcium, magnesium) by atomic absorption spectrophotometer (AAS) (Agilent 

Technologies, USA). 

Other portions of the sample are also used to determine the solution pH and turbidity. The measurements 

of pH and turbidity of the solution are done using a HI 8014 Hanna pH-meter and DR-890 Colorimeter 

(CAMLAB, UK), respectively. The content of sulphate SO4
2- in solution has been analysed using a 

spectrophotometer (DR3900, HACH, Lange, UK with sulphate cuvette test).  

The different heating rates (Table 2) were achieved using the original beaker for the slow heating, the 

wrapped beaker for the medium heating, and finally the electric kettle to get the rapid heating. The 

heating rates were determined by the linear progression of the initial rising period of temperature 

(approximately between room temperature and 90 ºC). Once attaining the boiling temperature, the heat 

source is switched off and the cooling rate investigations start. During the cooling stage, a solution 

sample is similarly taken at specific time steps. Table 3 shows the experimental configurations for the 

cooling rate experiments and temperature reduction rates. In the forced cooling experiment, the solution 

has been cooled in one litre jacketed vessel. Fresh tap water at room temperature is used as a coolant 

with no flow velocity. All tests of determining the effects of the heating and cooling rate are performed 

using solution A. 

 

Table 2. Experimental setup for each heating rate 

Experimental configuration Heating regime Time to reach 100 ºC 

 

Heating rate 

(ºC / min) 

Uncovered beaker 

Heating band-wrapped beaker 

Electrical kettle  

Slow  

Medium 

Rapid 

39 min 

16 min 

2.34 min 

3.19 

6.35 

30.6 

 

 

Table 3. Experimental setup for each cooling rate 

Experimental configuration Heating regime Cooling rate 

(ºC/ min) 

Natural cooling 

Forced cooling 

Slow  

Rapid 

-0.9 

-7.39 
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3. Results and Discussion 

3.1. Effect of heating rate 

The temperature measurements in Fig. 3a show the time required to achieve water boiling temperature 

(100 °C) under atmospheric pressure. The solution pH is simultaneously measured. At all heating rates, 

the pH increases as time and temperature increase. It gives an indication of bicarbonate conversion to 

carbonate as well as the release of carbon dioxide as the temperature increases. The release of carbon 

dioxide from the evaporating solution influences the equilibrium of HCO3
- and CO3

2- ions by shifting 

the pH to higher values (Eq. 4). Hence, the formation of alkaline scales such as CaCO3, MgCO3 and 

Mg(OH)2 is more likely to occur [20]. Moreover, the temperature increases the dissociation constant of 

bicarbonate at constant water salinity [21]. The salinity can be determined by chloride ion concentration. 

It may also enhance the bicarbonate dissociation constant, thus the formation of carbonate species [22]. 

The chloride (Cl-) ion content and the salinity increase with temperature and volume of evaporated 

water. 

 

 

 In the same period of heating, the calcium content in the solution has been reported in Fig. 3b. The 

findings show that the higher the heating rate the lower the amount of calcium consumed in the 

crystallisation reaction. The analysis of calcium ions concentration has been stopped when the bulk 

temperature reaches 100 °C. The solution contains 8.7, 52.4, and 66.1 mg/L of calcium in the slow, 

medium and rapid heating, respectively.  

      

Fig. 3. (a) Profile of bulk temperature and pH, (b) profile of calcium concentration. 

Fig. 4a displays the change of calcium concentration as a function of temperature in the heating process 

for different heating rates. Solution A was used as a test solution in the investigation of the effect of the 

heating rate. The highest concentration of Ca2+ at the boiling point is achieved by the rapid heating, 

while the lowest one is achieved by the slow heating. This implies more precipitation is formed when 

the solution is slowly heated. The solution turbidity has been determined with temperature increase as 

2𝐻𝐶𝑂3 − 1↔  𝐶𝑂2 + 𝐶𝑂32− + 𝐻2𝑂                        (4) 
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shown in Fig.4b. The solution becomes more turbid at the boiling point when water is slowly heated. 

This confirms that the calcium undergoes a crystallisation reaction with carbonate. The slow heating of 

tap water from room temperature to boiling temperature allows the solid deposits to form. In other 

words, the longer heating time leads to a higher amount of inorganic scale.      

         

Fig. 4. (a) Change of calcium concentration with temperature, (b) change of solution turbidity with 

time. 

 

The effect of heating rate on the rate of calcium ion consumption in the solution is summarized in Fig. 

5.  The rate of temperature change (is obtained by the linear fitting of the rising rate period in the 

(temperature-time) curve in Fig. 3a. Higher rate of temperature change leads to a faster reaction rate of 

calcium precipitation. However, in spite of the fact that the reaction rate is slower at the lower heating 

rate, the longer time is required to achieve the boiling point leading to a greater amount of precipitated 

salt. The temperature has an influence on the crystallisation reaction constant and rate of carbonate 

formation from bicarbonate, hence the overall reaction rate [23].  

 

 

Fig. 5. Change of calcium reaction rate with heating rate. 
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3.2.Effect of cooling rate 

The formation of inorganic deposits is not only expected in the heating period but also after cutting the 

heat source and leaving the solution to cool. The drop of temperature from 100 °C to about 45 °C due 

to heat loss to the surroundings is the second phase for the scale formation. The cooling rate affects the 

consumption rate of calcium and final content at 45 °C, as shown in Fig. 6a. Longer residence time at 

the temperature range where the crystallisation reaction is favourable results in a higher amount of 

precipitate. The mechanism of bulk precipitation during the cooling stage is different from that during 

the heating stage as it is affected by the solution temperature and the pre-existing scale crystals. The 

particles that formed in the heating stage can act as nucleation sites and promote heterogeneous 

nucleation [24].   

The results in Fig. 6b illustrate how the Ca2+ content at slow cooling is lower than that at quick cooling 

for the same solution temperature. The solution pH for both cooling rates rises as the temperature 

decreases with little dependence on the cooling rate. Fig. 7a and Fig. 7b distinguish between the decay 

rates of calcium during the rapid heating and natural cooling for the commercially available electric 

kettle. The data has been linearly fitted to determine the rate of calcium consumption as a function of 

temperature in the heating and cooling cycles, respectively.  It can be seen that the calcium ions are 

largely consumed in the cooling stage rather than that in the heating stage. In other words, the scale that 

forms when water is cooling is greater than heating as the time in the latter is much shorter. 

    

Fig. 6. (a) Change of temperature and calcium concentration with time, (b) change of pH and 

concentration with the temperature at different cooling rates. 
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Fig. 7. (a) Change of calcium content with temperature, (b) the reduction percentage of calcium 

during the heating and cooling cycles. 

 

The mass of calcium carbonate scale during heating and cooling cycles was theoretically estimated 

based on the precipitation rate model (Eq. 5) proposed by Morse [25]. Two assumptions were made in 

the calculations; concentrations of calcium and carbonate are kept constant during the process, and the 

precipitated crystals are calcite. The temperature profile used in the calculations is adopted from the 

heating and cooling experiments. The aim of these calculations is to estimate the scale amount if the 

scaling process is solely crystallisation reaction-controlled. In other words, the increase in the solution 

temperature enhances the solution saturation and hence the thermodynamic driving force of the scaling. 

Fig. 8a shows that the scale mass formed in the cooling cycle is greater than that in the heating cycle 

which supports the present findings. Both the time and supersaturation of solution in the cooling stage 

are higher than those in the heating stage. The ratios of CaCO3 precipitated in the cooling cycle to the 

heating cycle from the experiments and theoretical calculations were compared. It can be seen in Fig. 

8b that the theoretical ratio is greater than the experimental ratio because in the experiments the 

concentration of fouling species are consuming as a function of time. The consumption rate of calcium 

in the experimental cooling cycle is higher than that in the cooling cycle, as shown in Fig. 7a. 

                                    𝑮 = 𝑲 (𝑺 − 𝟏)𝒏                                    (5) 

Where G is the precipitation rate, S is the saturation ratio, K is a rate constant and n is the order of 

reaction (n=2), as proposed by Opdyke et al. [26].  
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Fig. 8. (a) The theoretical profile of scale formation during the heating and cooling cycles, (b) 

experimental and theoretical cooling to heating scale ratios.  

 

3.3.Effect of water composition 

The formation of composite scale from tap water is predictable due to the presence of different fouling 

species. The change of calcium and sulphate ions has been examined as shown in Fig. 9. As such, there 

is no reduction in the concentration of Ca2+ and SO4
2- occurring during the process of heating to 100 

°C, no formation of CaSO4 scale takes place. On the contrary, the content of the ions increases with 

time due to the water evaporation. As the solubility constant of calcium sulphate is higher than that of 

calcium carbonate, the reaction is not favourable at similar composition and temperature [27]. No 

precipitation has been noticed, despite the fact that the increase of temperature and concentrations of 

both ions which increases the saturation ratio from 0.3 to 7.9. This makes the formation of CaSO4 from 

similar system and conditions unlikely to occur.  

 

Fig. 9. Change of ion concentration in solution B during the heating process. 
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The presence of magnesium in water may contribute to the formation of different types of deposits such 

as magnesium oxide, magnesium hydroxide, and magnesium carbonate based on the operating 

conditions and composition [28, 29]. Fig. 10a shows how the content of magnesium changes in two 

different solutions. In solution C, no change in the magnesium content has been observed when the 

solution temperature is between about 25 and 60 ºC. Then, as the temperature exceeded 60 ºC, the 

content of magnesium starts to increase due to water evaporation. Upon reaching a critical saturation 

concentration, magnesium carbonate deposits form, the concentration of magnesium decreases due to 

the scaling reaction. For this water composition, the critical temperature for the magnesium scale to be 

formed is around 94 °C at a fixed heating rate.  It can be seen that the consumption rate of Mg2+ in 

solution A is slower than solution C. The consumption rates of Mg2+ and Ca2+ in drinking water have 

been compared in Fig. 10b.  The reduction in the concentration of Ca2+ is larger than Mg2+, which 

illustrates that the calcium reaction rate is faster even at lower temperatures due to the low solubility of 

CaCO3. 

                                 

Fig. 10. (a) Change of MgCO3 solubility with temperature, and magnesium content in different 

solutions, (b) the consumption rates of Mg2+ and Ca2+ in solution A, under the medium heating 

rate. 

 

Fig. 11a displays the effect of magnesium content on the calcium precipitation rate with temperature. 

The lower the content of magnesium in the potable water the steeper the decrease of calcium at the same 

range of temperature and bicarbonate content. The concentration of calcium in the commercially bottled 

water (solution A) is not exactly identical. When it was measured by AAS, the initial concertation of 

calcium in solution A was ranging between 78 and 80.6 mg/L. The magnesium competes with calcium 

to form MgCO3. This is confirmed by the ratio of magnesium to calcium concentrations, as displayed 

in Fig. 11b. The higher the initial concentration of magnesium the higher the consumption rate, and the 

lessen the carbonates to react with calcium.  
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Fig. 11. (a) Calcium concentration change, (b) magnesium concentration change, with 

temperature at the different magnesium contents. 

 

 

4. Conclusions 
This paper has presented the precipitation kinetics of various types of inorganic scales during the 

heating and cooling processes relevant to the water in the domestic appliances. A series of experiments 

has been carried out to simulate the heating of tap water to boiling temperature followed by the normal 

cooling to ambient temperature. The effect of composition of water has also been studied. 

The heating rate increases the rate of change of calcium reduction in a solution with time. However, 

the calcium concentration in solution when 100 ºC is attained at a rapid heating rate is higher than that 

at the same temperature at slow heating; a greater amount of scale formed when the solution is slowly 

heated. For the cooling stage, the faster the cooling rate the lower the rate of the calcium reduction in 

crystallisation reaction. Calcium carbonate formed in the cooling period was greater than in the 

heating period. 

To check the probability of formation of calcium sulphate deposits under identical conditions, a 

solution of calcium and sulphate has been tested. The results showed that the solution content of 

calcium and sulphate increases with time and temperature as a consequence of water evaporation. As 

no reduction in the content of both species occurs even after 25 minutes at the boiling temperature, 

the formation of CaSO4 is concluded to be unfavourable.  

The concentration profile of magnesium, under the medium heating regime, is different when 

compared to the calcium profile. No change in the magnesium content has been observed when the 

solution temperature is between 25 and 60 ºC. Then, as the temperature exceeded 60 ºC, the content 

of magnesium starts to increase due to water evaporation. Finally, it decreases as soon as saturation 

concentration is achieved and it is thermodynamically sufficient for magnesium precipitate to form. 

The depletion rate of calcium is found to be affected by the content of magnesium for the same amount 
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of carbonate. The concentration of calcium steeply decreases with initial magnesium concentration 

decrease.  
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