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Abstract

We consider a linear uncertain system with an unknown bounded disturbance

under a passification-based adaptive controller with quantized measurements.

First, we derive conditions ensuring ultimate boundedness of the system. Then

we develop a switching procedure for an adaptive controller with a dynamic

quantizer that ensures convergence to a smaller set. The size of the limit set

is defined by the disturbance bound. Finally, we demonstrate applicability of

the proposed controller to polytopic-type uncertain systems and its efficiency

by the example of a yaw angle control of a flying vehicle.
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1. Introduction

Adaptive control plays an important role in the real world problems, where

exact system parameters are often unknown. One of the possible methods

for adaptive control synthesis is the passification method [2]. Starting from

the works [3, 4] this method proved to be very efficient and useful. Never-5

theless, while implementing passification-based adaptive control, several issues
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may arise. First of all, disturbances inherent in most systems can cause infinite

growth of the control gain. This issue may be overcome by introducing the

so-called “σ-modification” [5, 6]. Secondly, the measurements can experience

time-varying unknown delay. This problem has been recently studied in [7]. In10

this paper we consider passification-based adaptive control in the presence of

measurement quantization and propose a switching procedure for the controller

parameters that ensures the convergence of the system state to an ellipsoid

whose size depends on the upper bound of the disturbance.

Control with limited information has attracted growing interest in the con-15

trol research community lately [8, 9, 10, 11]. Due to limited sensing capabilities,

defects of sensors and limited communication channel capacities it is reasonable

to assume that only approximate value of the output is available to a controller.

These sensor and communication imposed constraints can be modeled by quan-

tization [12].20

Although adaptive control of uncertain systems received considerable inter-

est and has been widely investigated, there are few works devoted to adaptive

control with quantized measurements. In [13] the performance of an adaptive

observer-based chaotic synchronization system under information constrains has

been analyzed. A binary coder-decoder scheme has been proposed and stud-25

ied in [14] for synchronization of passifiable Lurie systems via limited-capacity

communication channel. In [15] a direct adaptive control framework for sys-

tems with input quantizers has been developed. In [16] a supervisory control

scheme for uncertain systems with quantized measurements has been proposed.

In supervisory control schemes usually a finite family of candidate controllers is30

employed together with an estimator-based switching logic to select the active

controller at every time.

Differently from these works, the control scheme proposed here does not

require any estimator or observer. Unlike [16] we consider adaptive tuning of

the controller gain, rather than switching between several known controllers. At35

the same time, to ensure convergence to a smaller set, our controller switches

parameters of the adaptation law.
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Notations. By ‖ · ‖ we denote Euclidean norm for vectors and spectral norm

for matrices. For P ∈ R
n×n notation P > 0 means that P is symmetric and

positive-definite, λmax(P ), λmin(P ) are the maximum and minimum eigenvalues,40

respectively, PT denotes transposed matrix P .

2. System description

Consider an uncertain linear system

ẋ(t) = Ax(t) +Bu(t) + w(t),

y(t) = Cx(t)
(1)

with state x ∈ R
n, control input u ∈ R, output y ∈ R

l, and constant uncertain

matrices A, B, C of appropriate dimensions. Unknown disturbance w(t) ∈ R
n

has a bounded norm:

‖w(t)‖ ≤ ∆w, t ≥ 0.

Following [2] we introduce the notion of hyper-minimum-phase (HMP) systems.

Definition 1. For a given g ∈ R
l the transfer function gTW (s) = gTC(sI −45

A)−1B is called hyper-minimum-phase (HMP) if gTW (s) det(sI −A) is a Hur-

witz polynomial with a positive leading coefficient gTCB > 0.

Assumption 1. There exists g ∈ R
l such that ‖g‖ = 1 and the transfer func-

tion gTW (s) = gTC(sI −A)−1B is HMP.

The condition ‖g‖ = 1 is imposed only to simplify calculations and is not50

restrictive since if gTW (s) is HMP then ‖g‖−1gTW (s) is also HMP.

Remark 1. The search of the vector g satisfying Assumption 1 in general is a

difficult problem. It is equivalent to the search of a Hurwitz polynomial in an

affine family of polynomials which is probably NP-hard (cannot be solved in a

polynomial time, see [17]). One approach based on Monte-Carlo method can be55

found in [18].
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2.1. Passification lemma

Our results are based on the following lemma [4, 19].

Lemma 1 (Passification lemma). The rational function gTW (s) = gTC(sI−
A)−1B is HMP if and only if there exist a matrix P , a vector θ∗ ∈ R

l, and a60

scalar ε > 0 such that

P > 0, P Ā+ ĀTP < −εP, PB = CT g, (2)

where Ā = A−BθT∗ C.

Remark 2. If gTW (s) = gTC(sI − A)−1B is HMP then there exists θ such

that the input u = −θT y + v makes the system

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t)

strictly passive with respect to a new input v, i.e. there exist functions V (x) =

xTPx, with P > 0, and ϕ(x) ≥ 0, where ϕ(x) > 0 for x 6= 0, such that

V (x(t)) ≤ V (x(0)) +

∫ t

0

[

yT (s)gv(s)− ϕ(x(s))
]

ds.

Remark 3. Passification lemma is also contained in [20] (implicitly) and in

[21] (explicitly). This lemma provides conditions for existence of an output

static feedback u = −θT y that renders the closed-loop system strictly positive65

real (SPR). If no such constant output feedback exists, then no dynamic output

feedback with a proper transfer matrix exists to make the closed-loop system

SPR [22]. More subtle results for the case of non-strict passivity can be found

in [23].

2.2. Quantizer model70

Further we will assume that the controller receives quantized measurements.

Following [8] we introduce a quantizer with a quantization range M and a quan-

tization error bound ∆e as a mapping q : y 7→ q(y) from R
l to a finite subset of

R
l such that

‖y‖ ≤ M ⇒ ‖q(y)− y‖ ≤ ∆e.
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We will refer to the quantity e = q(y)−y as the quantization error. The concrete

codomain of q is not important for our further analysis, therefore, can be chosen

arbitrary. The value of M is usually dictated by the effective range of a sensor.

By dynamic quantizer we will mean the mapping

qµ(y) = µq

(

y

µ

)

, (3)

where µ > 0. For each positive µ one obtains a quantizer with the quantization75

range µM and the quantization error bound µ∆e. We can think of µ as the

“zoom” variable: increasing µ corresponds to zooming out and essentially ob-

taining a new quantizer with larger quantization range and quantization error

bound, whereas decreasing µ corresponds to zooming in and obtaining a quan-

tizer with a smaller quantization range but also a smaller quantization error80

bound. A useful example to keep in mind is a camera with optical zooming

capability: one can zoom in and out while the number of photodiodes in the

image sensor is fixed. Another example is the system with digital communica-

tion channel that can transmit a finite number of bytes. In this case one needs

to encode all possible values of the output signal to transmit it through a com-85

munication channel. Obviously, in such case one can reduce the quantization

error by reducing the range.

3. Ultimate boundedness

Together with the system (1) that satisfies Assumption 1 with some g we

consider the adaptive controller90

u(t) = −θT (t)q(y(t)),

θ̇(t) = γq(y(t))qT (y(t))g − aθ(t),
(4)

where γ > 0 is a controller gain parameter and a > 0 is a regularizing parameter.

Since q(y(t)) is piece-wise continuous we consider right-hand side derivative. As

it has been previously shown [24] adaptive controllers similar to (4) without

quantization (q(y) = y) can ensure ultimate boundedness of the system (1).

Here we analyze this controller in the case of quantized measurements.95
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We will derive our results using the following Lyapunov function

V (x, θ) = xTPx+ γ−1‖θ − θ∗‖2, (5)

where P , θ∗ satisfy (2). For convenience define the following quantities:

ΛC = ‖C‖, λP = λmin(P ), ΛP = λmax(P ). (6)

Remark 4. Since chattering on the boundaries between the quantization regions

is possible, solutions to differential equation (1), (4) are to be interpreted in

the sense of Filippov. However, this issue will not play a significant role in100

the subsequent stability analysis. Indeed, all upper bounds on V̇ that we will

establish remain valid (almost everywhere) along Filippov’s solutions (cf. [? ]).

First we prove the following lemma.

Lemma 2. Under Assumption 1 consider the system (1), (4) with a quantiza-

tion range M > 0. Denote105

α = ε− ν − 2σ−1λ−1
P Λ2

C ,

a = α+ γ(σ + ‖θ∗‖−1)∆2
e,

β = ν−1ΛP∆
2
w + aγ−1‖θ∗‖2 + (σ‖θ∗‖2 + ‖θ∗‖)∆2

e,

(7)

where ε is from (2) and ν > 0, σ > 0 are such that α > 0. If ∆e and ∆w are

such that
β

α
<

M2λP

Λ2
C

(8)

and

V (x(t∗), θ(t∗)) <
M2λP

Λ2
C

(9)

then for t ≥ t∗

V (x(t), θ(t)) ≤
(

V (x(t∗), θ(t∗))−
β

α

)

e−α(t−t∗) +
β

α
, (10)

where t∗ ≥ 0 is arbitrary time instant.110

Proof. See Appendix A.

The following remark will be useful later.
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Remark 5. One can easily see that

β

α
= cγ + cw∆

2
w + ce∆

2
e,

where

cγ = γ−1‖θ∗‖2,

cw = α−1ν−1ΛP ,

ce = 2α−1(‖θ∗‖+ ‖θ∗‖2σ).

(11)

Remark 6. Lemma 2 asserts that the state of the system (1), (4) converges

from the ellipsoid V (x, θ) < M2λPΛ
−2
C to a smaller ellipsoid V (x, θ) ≤ cγ +115

cw∆
2
w + ce∆

2
e. The size of the initial ellipsoid is such that y(t∗) is in the quan-

tization range. The condition (8) guarantees that the values ∆w, ∆e are small

enough so that the limit ellipsoid is smaller than the initial one and, therefore,

y(t) is in the quantization range for t ≥ t∗.

The next theorem follows directly from Lemma 2, Remark 5, and the fact120

that cγ can be made arbitrary small by increasing the controller gain parame-

ter γ.

Theorem 1. Consider the system (1), (4) under Assumption 1 with a quanti-

zation range M and a controller parameter a given by (7). If ∆e and ∆w are

such that

cw∆
2
w + ce∆

2
e <

M2λP

Λ2
C

,

where cw, ce are given by (11) with positive ν, σ such that α > 0, then for γ > 0

such that cγ + cw∆
2
w + ce∆

2
e < M2λPΛ

−2
C , the trajectories of the system are

ultimately bounded for any initial conditions satisfying

ΛP ‖x(0)‖2 + γ−1‖θ(0)− θ∗‖2 <
M2λP

Λ2
C

.

Corollary 1. The system (1), (4) under Assumption 1 is ultimately bounded

for any controller parameters γ > 0 and a > 0 if the quantization error bound

∆e > 0 and ‖x(0)‖ are sufficiently small.125
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4. Switching control

Under conditions of Lemma 2 the state of the system (1), (4) converges from

the ellipsoid (9) to a smaller ellipsoid V (x, θ) ≤ cγ+cw∆
2
w+ce∆

2
e. Consequently,

the output converges to a smaller set and if the controller “zooms in” onto this

smaller set it will reduce the maximum quantization error ∆e. This, in turn,130

will decrease the value cγ + cw∆
2
w + ce∆

2
e and ensure convergence to an even

smaller set. By repeating this zooming procedure one will obtain a sequence of

converging ellipsoids. Below we give a mathematical description of this idea.

Consider the following controller

u(t) = −θT (t)qµ(t)(y(t)),

θ̇(t) = γqµ(t)(y(t))q
T
µ(t)(y(t))g − a(t)θ(t),

(12)

where qµ(t) is a dynamic quantizer, µ(t), a(t) are piecewise constant (switching)135

parameters to be determined later.

Suppose there is a known V0 such that

V (x(0), θ(0)) < V0.

Let us choose a zooming parameter µ0 > 0 such that

V0 ≤ µ2
0M

2λP

Λ2
C

.

This will ensure that ‖y(0)‖ < µ0M , that is y(0) is in the quantization range.

Assume that ∆w and ∆e are such that cw∆
2
w+ceµ

2
0∆

2
e < V0. From (11) one can

see that cγ can be made arbitrary small by choosing a large enough controller

gain parameter γ > 0. Let us fix some γ > 0, ǫ > 0 such that

cγ + cw∆
2
w + ceµ

2
0∆

2
e + ǫ < V0.

Following (7) we choose

a0 = α+ γµ2
0∆

2
e(σ + ‖θ∗‖−1).

Let us require the quantizer to change its zoom when V (x(t), θ(t)) < V1 =

cγ + cw∆
2
w + ceµ

2
0∆

2
e + ǫ. Then (10) suggests that the first switching instance
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should have the form

t1 = t0 +
1

α
ln

V0 − cγ − cw∆
2
w − ceµ

2
0∆

2
e

ǫ
,

where t0 = 0 and α is defined in (7). Inequality V (x(t1), θ(t1)) < V1 implies

‖y(t1)‖ < ΛC

√

V1λ
−1
P = µ1M,

where µ1 = µ0

√

V1V
−1
0 . Then one should recalculate the regularizing parameter

a1 = α+ γµ2
1∆

2
e(σ + ‖θ∗‖−1).

Since the maximum quantization error µ0∆e has changed to a smaller quantity

µ1∆e, the limit value for V (x(t), θ(t)) is now given by

cγ + cw∆
2
w + ceµ

2
1∆

2
e.

By repeating the procedure described above one obtains the following sequence

of parameters for i = 1, 2, . . .

Vi = cγ + cw∆
2
w + ceµ

2
i−1∆

2
e + ǫ,

µi = µ0

√

ViV
−1
0 ,

ai = α+ γµ2
i∆

2
e(σ + ‖θ∗‖−1),

ti = ti−1 +
1

α
ln

Vi−1 − cγ − cw∆
2
w − ceµ

2
i−1∆

2
e

ǫ
.

(13)

Note that the parameters of switching are predefined. To switch the zooming

variable µ one needs to guarantee that the output y doesn’t leave some compact140

set. This can be done in terms of the state x(t) using Lyapunov function (5).

Since x(t) is not known, the value of V cannot be calculated. Therefore, we

use known upper bounds Vi for V on [ti, ti+1) that can be calculated “a priori”.

The next lemma gives the limit value for Vi.

Lemma 3. For any positive scalars cγ , cw, ce, ∆w, ∆e, ǫ, V0, µ0 if

cγ + cw∆
2
w + ceµ

2
0∆

2
e + ǫ < V0

9



then the sequence

Vi+1 = cγ + cw∆
2
w + ce

Vi

V0
µ2
0∆

2
e + ǫ

monotonically decreases to the value

V∞ =
cγ + cw∆

2
w + ǫ

1− ceµ2
0∆

2
eV

−1
0

.

Proof. See Appendix B.145

Now we minimize the quantity V∞ by choosing appropriate σ, ν. The values

cγ and ǫ can be chosen arbitrary small. By minimizing the quantity cw/(1 −
ceµ

2
0∆

2
eV

−1
0 ) with respect to σ, ν one finds that

σ =
ΛC

µ0∆e‖θ∗‖

√

V0λ
−1
P ,

ν =
ε

2
− ‖θ∗‖µ2

0∆
2
eV

−1
0 − 2

µ0∆e‖θ∗‖ΛC√
λPV0

.

(14)

Then

V∞ =
cγ + ǫ

1− ceµ2
0∆

2
eV

−1
0

+
ΛP∆

2
w

ν2
. (15)

Remark 7. By substituting σ, ν given by (14) into (7) we obtain

α =
ε

2
+ ‖θ∗‖µ2

0∆
2
eV

−1
0 > 0.

Relation ceµ
2
0∆e < V0 is equivalent to (‖θ∗‖ + ‖θ∗‖2σ)µ2

0∆
2
eV

−1
0 < α/2, there-

fore,

ν =
ε

2
−σ−1λ−1

P Λ2
C − (‖θ∗‖+‖θ∗‖2σ)µ2

0∆
2
eV

−1
0 >

ε

2
−σ−1λ−1

P Λ2
C − α

2
=

ν

2
.

That is ν given in (14) is positive.150

Remark 8. In [1] for a linear system without disturbances it has been shown

that adaptive controller (12) can ensure convergence of V given by (5) to any

vicinity of the origin. The quantity ΛP∆
2
wν

−2 that appears in (15) is the one

that cannot be improved due to unknown disturbance inherent in the system.

One could note that according to (13) there may exist such finite t∞ that155

ti → t∞. That is the controller should be able to switch infinitely often. To avoid

this issue we choose some value ζ > 0 and stop switching when Vi < V∞ + ζ.

The next theorem summarizes the aforementioned ideas.
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Theorem 2. Under Assumption 1 consider the system (1), (12) with quantizer

range M . If ∆e, ∆w are such that160

cw∆
2
w + ceµ

2
0∆

2
e < V0, (16)

where cw, ce are given by (11) with σ, ν given by (14) and α given by (7), then

for any δ there exists a positive integer l such that adaptive controller (12) with

positive γ and ǫ satisfying

cγ + ǫ

1− ceµ2
0∆

2
eV

−1
0

< δλP , cγ + cw∆
2
w + ceµ

2
0∆

2
e + ǫ < V0

and switching parameters

a(t) =







ai, t ∈ [ti, ti+1), 0 ≤ i < l,

al, t ≥ tl,

µ(t) =







µi, t ∈ [ti, ti+1), 0 ≤ i < l,

µl, t ≥ tl,

where ai, µi, ti are given in (13), ensures that

‖x(t)‖2 <
ΛP∆

2
w

λP ν2
+ δ, t ≥ tl (17)

for initial conditions that satisfy

ΛP ‖x(0)‖2 + γ−1‖θ(0)− θ∗‖2 < V0 ≤ µ2
0M

2λP

Λ2
C

. (18)

Moreover, ‖θ(t)‖ is a bounded function.

Proof. See Appendix C.

Remark 9. To obtain convergence conditions for the system (1), (12) without165

quantization one can use Theorem 2 with ∆e → 0, M → ∞. Then (16), (18)

are always true, switching procedure (13) vanishes and (17) in view of (14)

transforms to

‖x(t)‖2 <
4ΛP

ε2λP

∆2
w + δ. (19)

This estimate coincides with [25, Theorem 2.13].

11



Remark 10. The value of ε from (2) is the stability level that can be achieved170

by using the control law u(t) = −θ∗y(t). Larger ε leads to smaller ce and,

therefore, (16) is satisfied with a larger maximum quantization error ∆e.

Remark 11. Our results are applicable to the system (1) with uncertain A that

resides in the polytope

A = Aξ =

N
∑

i=1

ξiAi, 0 ≤ ξi,

N
∑

i=1

ξi = 1. (20)

If gTWξ(s) = gTC(sI−Aξ)
−1B is HMP for all ξ from (20), then (2) are feasible175

for each ξ with some θξ and Pξ. To apply the results of this paper one should

take

ε = min
ξ∈Ξ

εξ, θ∗ = argmax
θξ,ξ∈Ξ

‖θξ‖,

λP = min
ξ∈Ξ

λmin(Pξ), ΛP = max
ξ∈Ξ

λmax(Pξ).
(21)

The existence of these quantities follows from Lemma 1, compactness of a set

of ξ, and continuity of the matrix Aξ in ξ.

The relations (2) are feasible for θξ = k∗g with large enough k∗ [2]. Since

(2) are affine in Aξ, to obtain the values from (21) one can solve linear matrix

inequalities

P > 0, P (Ai−Bk∗g
TC)+(Ai−Bk∗g

TC)TP < −εP, PB = CT g, i = 1, . . . , N,

with a decision variable P and tuning parameters ε, k∗. To find appropriate180

tuning parameters one should first set ε = 0 and find the minimum k∗ such that

LMIs are feasible. Then by increasing k∗ one will obtain larger allowable values

for ε.

5. Example: yaw angle control

We demonstrate applicability of our results by an example of a yaw angle

control. Under several simplifying assumptions [26] dynamics of the lateral

12



Figure 1: (a): norm of the state; (b): Lyapunov function (5).

motion of an aircraft can be described by (1) with

A =











a11 1 0

a21 a22 0

0 1 0











, B =











b1

b2

0











, C =





0 1 0

0 0 1



 ,

where x1 is a sideslip angle, x3 and x2 are the yaw angle and its rate, respectively,185

u(t) is the rudder angle. Following [26] we take a22 = 1.3, b1 = 19/15, b2 = 19

and suppose that a11, a21 are uncertain parameters:

a11 ∈ [0.1, 1.5], a21 ∈ [25, 40]. (22)

For g =
√
2
2 (1, 1)T the transfer function

gTW (s) =
b2s

2 + (b1a21 − b2a11 + b2)s+ b1a21 − b2a11

s
√
2(s2 − (a11 + a22)s+ a11a22 − a21)

is HMP for all a11, a21 from (22). Using Remark 11 we find that (2) are satisfied

with ε = 0.25, θ∗ = 5.3g,

P ≈











2.3 −0.15 −2

−0.15 0.05 0.17

−2 0.17 5.15











,

where P is given up to hundredth. We take

V0 = 103, µ0 = 1, ∆w = 0.1, ∆e = 0.01.

For these parameters (16) is satisfied and, therefore, Theorem 2 can be applied.

For δ = 2 it is sufficient to take γ = 103 and ǫ = 10−2.
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Table 1: Parameters of switching: ti — instants of switching, Vi — upper bound for

V (x(t), k(t)) on [ti, ti+1), µi — zooming parameter, ai — regularizing parameter.

i ti Vi µi ai

0 0 1000 1 311.67

1 90.85 144.66 0.38 45.19

2 165.98 24.89 0.158 7.88

3 225.38 8.12 0.09 2.66

4 269.08 5.78 0.076 1.92

5 297.27 5.45 0.074 1.82

The results of numerical simulations for a11 = 0.75, a21 = 33 are presented190

in Fig. 1. Initial conditions were chosen randomly such that θ(0) = (0, 0)T ,

V (x(0), θ(0)) ≤ V0. The values of all switching parameters are presented in

Table 1. The switching procedure stops after 5 switches. As one can see µi is

decreasing, this corresponds to “zooming in”.

6. Conclusions195

We considered hyper-minimum-phase uncertain linear system with bounded

disturbance. First we proved that if the disturbance and quantization error

bounds are small enough the standard passification-based adaptive controller

ensures ultimate boundedness of the closed-loop system. Then we showed that

by using a dynamic quantizer with switching “zoom” variable one can ensure200

convergence to a smaller ellipsoid. The size of this ellipsoid is defined by the

disturbance bound. Finally, we demonstrated applicability of the proposed con-

troller to polytopic-type uncertain systems and its efficiency by the example of

a yaw angle control of a flying vehicle.
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Appendix A. Proof of Lemma 2

Under Assumption 1 it follows from Lemma 1 that relations (2) are valid

for some matrix P and vector θ∗, therefore, Lyapunov function (5) can be con-

structed. Its derivative along the trajectories of the system (1), (4) has the

form

V̇ = 2xTP [Ax−BθT q(y)] + 2xTPw

+ 2(θ − θ∗)
T q(y)qT (y)g − 2aγ−1(θ − θ∗)

T θ

= 2xTP [Ax−BθT∗ Cx] + 2qT (y)g(θ∗ − θ)T q(y)

− 2eT (t)g(θ∗ − θ)T q(y)− 2yT gθT∗ e+ 2xTPw

+ 2(θ − θ∗)
T q(y)qT (y)g − 2aγ−1(θ − θ∗)

T θ.

Here we used the relation PB = CT g from (2) and notation e = q(y) − y.

Condition (9) implies ‖y(t∗)‖ < M . Since y(t) is continuous in t, ‖y(t)‖ < M

on [t∗, T ) for some T > t∗. Thus ‖e(t)‖ ≤ ∆e for t ∈ [t∗, T ). Since ‖g‖ = 1 and

2aT b ≤ aTQa+ bTQ−1b for any vectors a, b and a matrix Q > 0, for t ∈ [t∗, T )

we obtain

− 2eT (y)g(θ∗ − θ)T q(y) ≤ 2∆e|(θ∗ − θ)T q(y)|

≤ 2∆e|(θ∗ − θ)T y|+ 2∆e|(θ∗ − θ)T e|

≤ (σ + ‖θ∗‖−1)∆2
e‖θ∗ − θ‖2 + σ−1‖y‖2 + ‖θ∗‖∆2

e,

−2yT gθT∗ e ≤ σ−1xTCT ggTCx+ σ∆2
e‖θ∗‖2,

2xTPw ≤ νxTPx+ ν−1ΛP∆
2
w,

−2aγ−1(θ − θ∗)
T θ = −2aγ−1‖θ − θ∗‖2 − 2aγ−1(θ − θ∗)

T θ∗

≤ −aγ−1‖θ − θ∗‖2 + aγ−1‖θ∗‖2.

Then

V̇ + αV − β ≤ −(ε− ν − 2σ−1λ−1
P Λ2

C − α)xTPx

− (a− γσ∆2
e − γ‖θ∗‖−1∆2

e − α)γ−1‖θ∗ − θ‖2

+ ν−1ΛP∆
2
w + aγ−1‖θ∗‖2 + σ∆2

e‖θ∗‖2 + ‖θ∗‖∆2
e − β.
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By substituting values from (7) we find that V̇ ≤ −αV + β. It follows from the

comparison principle [27] that for t ∈ [t∗, T )

V (x(t), θ(t)) ≤
(

V (x(t∗), θ(t∗))−
β

α

)

e−α(t−t∗) +
β

α
.

The latter together with (8), (9) implies T = ∞.

Appendix B. Proof of Lemma 3

For i = 0 we have

V1 = cγ + cw∆
2
w + ceµ

2
0∆

2
e + ǫ < V0.

Suppose that i > 0 and for j < i it has been proved that Vj < Vj−1. Then

Vi = cγ + cw∆
2
w + ce

Vi−1

Vi−2

Vi−2

V0
µ2
0∆

2
e + ǫ

< cγ + cw∆
2
w + ce

Vi−2

V0
µ2
0∆

2
e + ǫ = Vi−1.

Therefore Vi is a monotonically decreasing sequence of positive numbers,

and, therefore, it has a limit value, which is a solution of the equation

V = cγ + cw∆
2
w + ce

V

V0
µ2
0∆

2
e + ǫ,

i.e. V = V∞.285

Appendix C. Proof of Theorem 2

Let us choose ζ > 0 such that

cγ + ǫ

1− ceµ2
0∆

2
eV

−1
0

+ ζ ≤ δλP .

Under conditions of Theorem 2, Lemma 2 implies (10) for t ∈ [t0, t1], t∗ = t0,

therefore,

V (x(t), θ(t)) < V0, ∀t ∈ [t0, t1].

Consider t ∈ [ti, ti+1] and assume that for j < i it has been proved that

V (x(t), θ(t)) < Vj , ∀t ∈ [tj , tj+1].
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By applying Lemma 2 on [ti−1, ti] with t∗ = ti−1 and substituting t = ti into

(10) one arrives at

V (x(ti), θ(ti)) < cγ + cw∆
2
w + ceµ

2
i−1∆

2
e + ǫ = Vi.

Moreover,

Vi = µ2
iV0 =

µ2
iM

2λP

Λ2
C

=
M2

i λP

Λ2
C

,

where Mi = µiM . Thus, (9) is satisfied with M = Mi, t∗ = ti. Relation (13)

implies

cγ + cw∆
2
w + ceµ

2
i∆

2
e < Vi =

M2
i λP

Λ2
C

.

That is (8) is true with β = ν−1ΛP∆
2
w + aiγ

−1‖θ∗‖2 + (σ‖θ∗‖2 + ‖θ∗‖)µ2
i∆

2
e,

M = Mi, t∗ = ti. Therefore, Lemma 2 can be applied on [ti, ti+1]. By induction

we conclude that

V (t) < Vi, ∀t ∈ [ti, ti+1).

Since Vi → V∞ there exists l such that

Vl ≤ V∞ + ζ ≤ ΛP∆
2
w

ν2
+ δλP .

Thus, if switching stops after tl, one obtains that for t ≥ tl

V (x(t), θ(t)) <
ΛP∆

2
w

ν2
+ δλP ,

therefore, for t ≥ tl

‖x(t)‖2 <
ΛP∆

2
w

λP ν2
+ δ.

Function ‖θ(t)‖ is bounded since V (x(t), θ(t)) is bounded.
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