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Abstract: An output synchronization problem for networks of dynamical agents is examined
based on passification method and recent results in graph theory. Static delayed output feedback
controllers of two types are investigated and an adaptive control is proposed. Sufficient conditions
for synchronization under incomplete measurements and incomplete control are established.
Example of the adaptive synchronization in a network of seven double integrators is presented.

1. INTRODUCTION

Controlled synchronization of networks has a broad area
of important applications: cooperative control of mobile
robots, control of power, biochemical, ecological networks,
etc. Olfati-Saber and Murray [2004], Boccaletti et al.
[2006], Bullo et al. [2009], Scardovi and Sepulchre [2009], Li
et al. [2010], Proskurnikov [2012]. However most existing
papers deal with control of networks of dynamical systems
(agents) with full state measurements and full control,
i. e. vectors of agent input, output and state have equal
dimensions. In the case of synchronization by output
feedback additional dynamical systems (observers) are
incorporated into network controllers.

In this paper the synchronization problem for networks of
agents with arbitrary numbers of outputs and states by
static delayed output neighbor-based feedback (consensus
protocol) is solved based on passification method Fradkov
et al. [1999], Fradkov [2003] and recent results in graph
theory. For the case of non delayed output control an
adaptive controller is proposed and investigated.

The proposed solution for output feedback synchronization
unlike those of Scardovi and Sepulchre [2009], Li et al.
[2010] does not use observers. Compared to static output
feedback result of Scardovi and Sepulchre [2009] (Theorem
4) the proposed synchronization conditions relax passivity
condition for agents to their passifiability that allows for
unstable agents. The task of delayed consensus control of
semi-passive systems was considered in Steur and Nijmei-
jer [2011]. Passifiability condition imposed in our work in
some cases is less restrictive than semi-passivity condition
and easy verifiable.

The presented results extend our previous results. In Frad-
kov and Junussov [2011], Dzhunusov and Fradkov [2011]
a static output consensus control was analyzed for net-

⋆ This work was supported by Russian Foundation for Basic Re-
search (projects 11-08-01218, 12-01-31354, 13-08-01014), Russian
Federal Program ”Cadres” (agreements 8846, 8855), and research
program OEMMPU-14 of Russian Academy of Sciences

works of hyper-minimum-phase systems. In Fradkov et al.
[2011] adaptive decentralized controller for interconnected
systems with disturbances and time delays was proposed
and analyzed.

2. PROBLEM STATEMENT

Consider a network of N agents dynamics of which are
governed by the following equations:

ẋi(t) = Axi(t) +Bui(t) + ϕ(t, xi(t)),

yi(t) = Cxi(t), i = 1, . . . , N,
(1)

where xi ∈ R
n is a state vector of the i-th node, ui ∈

R is a controlling input (control), yi ∈ R
l is a vector

of measurements (output), A, B and C are matrices of
appropriate dimensions and ϕ(t, xi(t)) is globally Lipschitz
continuous with Lipschitz constant Lϕ: ∀t ∈ [0,+∞)
∀x′, x′′ ∈ R

n

∥ϕ(t, x′)− ϕ(t, x′′)∥ 6 Lϕ∥x′ − x′′∥.

Let G = (V, E) be a digraph with a set of vertices V and a
set of edges E ⊆ V×V such that for i = 1, . . . , N the vertex
vi is associated with the i-th agent and the edge (vi, vj)
indicates that the output of the i-th node is available for
the controller of the j-th node. An important result was
obtained by R.P. Agaev and P.Yu. Chebotarev in 2000
(see Agaev and Chebotarev [2011], Chebotarev and Agaev
[2009]).

Theorem 1. (Agaev-Chebotarev). The rank of the Laplace
matrix of the graph G is equal toN−ν, where ν is the forest
dimension of the graph by converging trees. In particular,
rankL = N − 1, i. e. the zero eigenvalue of the matrix L
has the unit multiplicity if and only if the digraph G has
the converging spanning tree.

We consider the task of synchronization, that is a control
goal is:

lim
t→∞

(xi(t)− xj(t)) = 0, i, j = 1, . . . , N. (2)



3. PASSIFICATION LEMMA

Definition 1. A linear system ẋ(t) = Ax(t)+Bu(t), y(t) =
gTCx(t) with the transfer matrix W (λ) = gTC(λI −
A)−1B, where u ∈ R, g, y(t) ∈ R

l and λ ∈ C is
called hyper-minimum-phase if the polynomial ϕ(λ) =
W (λ) det(λI−A) is Hurwitz and gTCB = limλ→∞λW (λ)
is a positive number.

Main results are based on the passification lemma that can
be formulated in the following form Fradkov [2003].

Lemma 2. (Passification lemma). Let the matrices A ∈
R

n×n, B ∈ R
n×m, C ∈ R

l×n, g ∈ R
l×m be given and the

full-rank condition rank(B) = m holds. Then for existence
of a positive-definite n×n-matrix P = PT > 0 and l×m-
matrix θ∗ such that

PA∗ +AT
∗ P < 0, PB = CT g, A∗ = A−BθT∗ C

it is necessary and sufficient, that the system

ẋ(t) = Ax(t) +Bu(t), y(t) = gTCx(t) (3)

is hyper-minimum-phase.

In our particular casem = 1. It can be proved (see Fradkov
[2003]) that θ∗ can always be chosen as θ∗ = κg where
κ > 0 is sufficiently large. Therefore the following corollary
can be formulated.

Corollary 3. If (3) is hyper-minimum-phase then there
exist P > 0, κ > 0, ε > 0 such that

PA∗ +AT
∗ P < −εI, PB = CT g, A∗ = A− κBgTC. (4)

4. ROBUST STATIC CONTROL WITH DELAYS

In this section we investigate robustness of the consensus
control with respect to time-varying delay. Consider two
types of delayed control laws.

Type-I:

ui(t) = K
∑

j∈Ni

(yi(t− τ(t))− yj(t− τ(t))), (5)

Type-II:

ui(t) = K
∑

j∈Ni

(yi(t)− yj(t− τ(t))), (6)

where 0 ≤ τ(t) ≤ h is a bounded communication delay,
K ∈ R

1×l and Ni = {k = 1, . . . , N |(vi, vk) ∈ E} is the set
of neighbor vertices to vi.

The problem is to find K from (5) or (6) such that the
goal (2) holds.

The problem is analyzed under the following assumptions:

(A1) The interconnection digraph G has a converging
spanning tree.

(A2) There exists a vector g ∈ R
l such that the function

gTW (s) is hyper-minimum-phase, where W (s) = CT (sI−
A)−1B.

4.1 Consensus conditions for Type-I controller

The main result is as follows.

Theorem 4. Let assumptions A1 and A2 hold with some
g ∈ R

l and 2Lϕ < ελ−1
max(P ) where ε, P are from (4). If

k > 0 is sufficiently large and kh is sufficiently small then
the control law (5) with the feedback gain K = −kgT

ensures the goal (2) for the closed loop system (1), (5).

Proof. Let L be a Laplacian matrix of the interconnection
digraph G. Closed-loop system (1), (5) can be written as

ẋ(t) = (IN ⊗A)x(t)+(L⊗BKC)x(t−τ(t))+ ϕ̄(t, x), (7)

where x = col(x1, . . . , xN ), u = col(u1, . . . , uN ), ϕ̄(t, x) =
col(ϕ(t, x1), . . . , ϕ(t, xN )), and A⊗B stands for Kronecker
product of matrices A and B.

Consider (N ×N)-matrix of the form

M =













1 0 0 . . . 0
1 −1 0 . . . 0
1 0 −1 . . . 0
...

...
...

. . .
...

1 0 0 . . . −1













. (8)

As far as L is a Laplacian matrix,

MLM =

(

0 ∗
0 Λ

)

,

where Λ ∈ R
(N−1)×(N−1) and 0 = (0, . . . , 0)T .

Since (A1) is true one can apply Agaev-Chebotarev theo-
rem (Theorem 1) and find that

Λ + ΛT > 0.

Consider the following change of variable:

z̄(t) = (M ⊗ In)x(t).

As far as M−1 = M , (7) can be rewritten in the form

˙̄z(t) = (IN ⊗A)z̄(t) + (MLM ⊗BKC)z̄(t− τ(t))+

+(M ⊗ In)ϕ̄(t, x).

Since z̄i = x1 − xi (i = 2, . . . , N ), it is sufficient to
investigate the stability of z̄i ≡ 0 ∀i = 2, . . . , N . Denote

z(t) =







z̄2(t)
...

z̄N (t)






,Φ(t, z̄1, z) =







ϕ(t, z̄1)− ϕ(t, z̄1 − z2)
...

ϕ(t, z̄1)− ϕ(t, z̄1 − zN )






.

Then

ż = (IN−1⊗A)z+(Λ⊗BKC)z(t−τ(t))+Φ(t, z̄1, z). (9)

Assumption (A2) implies existence of P and κ such that
(4) are true. Consider the following function:

V (z) = z(t)T (IN−1 ⊗ P )z(t). (10)

Differentiation of (10) along (9) yields

V̇ = z(t)T (IN−1 ⊗ {ATP + PA})z(t) + 2z(t)T×
(Λ⊗ PBKC)z(t− τ(t)) + 2z(t)T (IN−1 ⊗ P )Φ(t, z̄1, z).

Using z(t− τ(t)) = z(t)−
∫ t

t−τ(t)
ż(s) ds we find that:

V̇ = z(t)T (IN−1 ⊗ {AT
∗ P + PA∗})z(t)+

z(t)T ({2κIN−1 − k[Λ + ΛT ]} ⊗ {CT ggTC})z(t)+

2kz(t)T (Λ⊗ CT ggTC)

∫ t

t−τ(t)

ż(s) ds+

2z(t)T (IN−1 ⊗ P )Φ(t, z̄1, z).

where K = −kgT , A∗ = A − κBgTC. The first term is
less than −ε∥z(t)∥2 since (4) is true. As far as Λ+ΛT > 0,



the second term can be made less than zero by choosing
k ≥ 2κ/λmin[Λ + ΛT ]. The forth term satisfies

2|z(t)T (IN−1 ⊗ P )Φ(t, z̄1, z)| 6 2λmax(P )Lϕ∥z∥2. (11)

If V (z(t+θ)) < pV (z(t)) ∀θ ∈ [−2h, 0] with p > 1, then for

any θ ∈ [−2h, 0], ∥z(t+θ)∥ < q∥z(t)∥ with q =
√

pλmax(P )
λmin(P ) .

Therefore,
∥

∥

∥

∥

∥

∫ t

t−τ(t)

ż(s) ds

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∫ t

t−τ(t)

(IN−1 ⊗A)z(s)+

(Λ⊗BKC)z(s− τ(s)) + Φ(s, z̄1, z) ds

∥

∥

∥

∥

∥

≤
∫ t

t−τ(t)

λA∥z(s)∥+ kλ1λBλC∥z(s− τ(s))∥+ Lϕ∥z(s)∥ ds,

where λA =
√

λmax(ATA), λ1 =
√

λmax(ΛTΛ), λB =√
BTB, λC =

√

λmax(CT ggTC). Since ∀θ ∈ [−2h, 0],
∥z(t+ θ)∥ < q∥z(t)∥,

∥

∥

∥

∥

∥

∫ t

t−τ(t)

ż(s) ds

∥

∥

∥

∥

∥

≤ qh∥z(t)∥(λA + kλ1λBλC + Lϕ).

Thereby,

V̇ (t) 6 (2λmax(P )Lϕ − ε)∥z(t)∥2+
zT (t)({2κI − k[Λ + ΛT ]} ⊗ {CT ggTC})z(t)+
2kλ1λ

2
Cqh(λA + kλ1λBλC + Lϕ)∥z(t)∥2.

Conditions of the theorem imply that 2λmax(P )Lϕ−ε < 0.
As one can see if

k >
2κ

λmin[Λ + ΛT ]
(12)

and

0 6 kh <
ε− 2λmax(P )Lϕ

2λ1λ2
Cq(λA + kλ1λBλC + Lϕ)

, (13)

then V̇ < 0. It follows from Lyapunov-Razumikhin theo-
rem (Razumikhin [1956]) that z(t) ≡ 0 is globally asymp-
totically stable, that is synchronous solution of (1), (5) is
globally asymptotically stable and the control goal (2) is
achieved. �

Remark 1. The proof of Theorem 4 gives a lower bound
for a control gain (12) and an upper bound for time-delay
magnitude (13).

The above result was extended to the case of non-identical
delays, i. e. controller of Type-Ia was considered:

ui(t) = K
∑

j∈Ni

[yi(t− τji(t))− yj(t− τij(t))] . (14)

In order to ensure the existence of the synchronous solution
for the closed loop system an additional assumption should
be imposed:

(A3) τij(t) = τji(t) ∀t ∀i, j = 1, . . . , N.

That is the delay matrix T = {τij(t)} should be symmet-
ric.

4.2 Consensus conditions for Type-II controller

Now consider the closed-loop system (1), (6). To ensure
the existence of a synchronous solution for this system we
assume the following.

(A4) card(Ni) = c ∀i = 1, . . . , N,

where card stands for cardinality and c is arbitrary con-
stant.

The main result is as follows.

Theorem 5. Let assumptions A1, A2 and A4 hold with
some g ∈ R

l and 2Lϕ < ελ−1
max(P ) where ε, P are from

(4). If k > 0 is sufficiently large and kh is sufficiently small
then the control law (6) with the feedback gain K = −kgT

ensures the goal (2) for the closed loop system (1), (6).

The proof is similar to the proof of Theorem 4 and,
therefore, is omitted here.

The results presented in 4.1 and 4.2 were extended to the
case of changing topology.

5. ADAPTIVE CONTROL

Now consider a network dynamics of which is described
by (1) with ϕ ≡ 0. Let the i-th agent be able to adjust its
control gain, i. e. each local controller is adaptive. Denote
yi =

∑

j∈Ni
(yi − yj) and consider the following adaptive

controller:
ui(t) = −ki(t)g

T yi(t),

k̇i(t) = yi(t)
T ggT yi(t),

(15)

where ki ∈ R and g ∈ R
l.

Further we will consider the case of undirected graphs,
that is the Laplacian matrix of an interconnected graph is
symmetric. Since now we deal with undirected graphs we
need to reformulate assumption (A1):

(A1′) The interconnection graph G has a spanning tree.

Adaptive synchronization conditions are formulated as
follows.

Theorem 6. Let assumptions A1′ and A2 hold with some
g ∈ R

l. Then adaptive controller (15) ensures achievement
of the goal (2) for the closed loop system (1), (15) with
ϕ ≡ 0.

Proof. Let L be a Laplacian matrix of the interconnection
graph G. Closed-loop system (1), (15) can be written as

ẋ(t) = (IN ⊗A)x(t)− (K(t)L⊗BgTC)x(t),

K̇(t) = xT (t)(L2 ⊗ CT ggTC)x(t),
(16)

where x = col(x1, . . . , xN ), u = col(u1, . . . , uN ), K =
diag(k1, . . . , kN ), and A⊗B stands for Kronecker product
of matrices A and B. It follows from A2 that there exist
P > 0, κ > 0, ε > 0 such that (4) is true. Consider the
following Lyapunov function candidate:

V (x, k) = xT (t)(L⊗ P )x(t) +
N
∑

i=1

(ki(t)− k∗)
2, (17)

where k∗ will be chosen later. Taking derivative of (17)
along (16) we find that

V̇ (x, k) = xT (t)(L⊗ {PA+ATP})x(t)−

2xT (t)(LK(t)L⊗ PBgTC)x(t) + 2

N
∑

i=1

(ki(t)− k∗)k̇i(t).

Note that PB = CT g and consider the third term:



2
N
∑

i=1

(ki(t)− k∗)k̇i(t) = 2xT (t)(LK(t)L⊗ PBgTC)x(t)−

2k∗x
T (t)(L2 ⊗ CT ggTC)x(t).

Laplacian matrix L is real and symmetric, therefore there
exists real orthogonal matrix Q such that QLQT is diag-
onal. Then there exists η > 0, η ∈ R such that ηL2 > L.
Let us choose k∗ ≥ ηκ, where κ > 0 is taken from (4).
Now we conclude that

V̇ (x, k) ≤ xT (t)(L⊗ {PA∗ +AT
∗ P})x(t),

where A∗ = A− κBgTC. Consider the change of variable

z̄(t) = (M ⊗ In)x(t)

with M given by (8). We recall that M−1 = M . The
derivative of V (x, k) transforms to

V̇ (z̄, k) ≤ z̄T (t)(MTLM ⊗ {PA∗ +AT
∗ P})z̄(t).

Since PA∗ +AT
∗ P < 0 and

MTLM =

(

0 0T

0 F

)

with F > 0, the following inequality holds

V̇ (z̄, k) ≤ −µ∥z(t)∥2,
where µ > 0 and z(t) = (z̄2(t), . . . , z̄N (t))T . The function
V (z̄(t), k(t)) is not negative, V (z̄(0), k(0)) is finite and

V (z̄(t), k(t)) = V (z̄(0), k(0)) +

∫ t

0

V̇ (z̄(s), k(s)) ds ≤

V (z̄(0), k(0))− µ

∫ t

0

∥z(s)∥2 ds,

therefore, there exists a finite limt→∞ V (z̄(t), k(t)). Fur-
thermore,

µ

∫ t

0

∥z(s)∥2 ds ≤ V (z̄(0), k(0))− V (z̄(t), k(t)),

thus
∫∞

0
∥z(s)∥2 ds < ∞. It follows from Barbalat’s lemma

(Khalil [2002]) that z(s) → 0 when t → ∞, i. e. the control
goal (2) is achieved. �

6. EXAMPLE. NETWORK OF DOUBLE
INTEGRATORS

6.1 System description

Consider network S, consisting of seven agents Si, i =
1, . . . , 7. Each agent Si, i = 1, . . . , 7 is modeled as follows:

ẋi = Axi +Bui, yi = CTxi,

where xi ∈ R
2 is a state vector, ui ∈ R is a control, yi ∈ R

is a vector of measurements and

A =

(

0 0
1 0

)

, B =

(

2
0

)

, C = (0.5 0.5) .

Let the interconnection graph G be undirected and such
as illustrated in Fig. 1.

Let us apply Theorem 6. Transfer function

W (λ) = gTC(λI −A)−1B = gT
λ+ 1

λ2
,

is hyper minimum phase when g = 1. Thus, according to
Theorem 6 the adaptive controller (15) ensures achieve-
ment of the control goal (2).

Fig. 1. Interconnection graph G.
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Fig. 2. Phase plane.

First component of a single agent’s state vector can be
interpreted as a velocity, second component can be inter-
preted as a position on a straight line. Achievement of the
control goal means convergence of seven points on straight
line and their motion with constant non-zero velocity.

6.2 Simulation results

Let the agents have following initial conditions

x1(0) = col(0.5, 2), x2(0) = col(−7, 3),

x3(0) = col(1, 0), x4(0) = col(10,−10),

x5(0) = col(5,−3), x6(0) = col(−10, 4),

x7(0) = col(2,−8).

Achievement of the control goal is illustrated by results of
30 second modeling. Trajectories of agents on the same
phase plane are shown in Fig. 2. Sum of error norms
∆ =

∑6
1 ∥xi − xi+1∥ is shown in Fig. 3.

7. CONCLUSION

The control algorithm for synchronization of networks
based on static delayed output feedback to each agent from
the neighbor agents is proposed. Since the number of in-
puts and outputs of the agents are less than the number of
agent state variables, synchronization of agents is achieved
under incomplete measurements and incomplete control.
Synchronization conditions include passifiability (hyper-
minimum-phase property) for each agent and some con-
nectivity conditions for interconnection graph: existence
of the converging spanning tree. Similar conditions are
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Fig. 3. Sum of error norms ∆.

obtained for adaptive passification-based control of net-
work. Example of adaptive synchronization in a network
consisting of seven double integrators is presented.
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