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Adaptive Control of Systems with Fast Varying Unknown Delay in

Measurements

Anton Selivanov, Emilia Fridman, and Alexander Fradkov

Abstract— An adaptive output feedback controller with a fast
varying unknown delay in the measurements is considered.
Sufficient conditions for the resulting closed-loop system to
be asymptotically stable with respect to state variables within
some domain of attraction are derived. It is shown that the
adaptive gain tends to a constant value. The proof is based on
Passification lemma and a Lyapunov-Krasovskii method. The
result is applicable to systems with polytopic-type uncertainties.
Advantages of the adaptive control over the static output
feedback are demonstrated on a pitch angle control of a flying
vehicle.

I. INTRODUCTION

An adaptive control of time delay systems has been known

as an important and challenging problem [1]. In one possible

formulation it is required to construct an adaptive controller

that stabilizes uncertain system with a state delay [2], [3],

[4], [5]. More difficult case (see Remark 4) arises when an

adaptive controller experiences output/input delay [6], [7],

[8]. One of the classical approaches to this problem is based

on a predictor method for known time delay and adaptive

predictor method for unknown time delay [1]. However,

these methods work only with slowly varying delay, i. e.

derivative of the time delay should be smaller than one.

Another way to resolve this issue is to assume that the

difference between current and delayed control signal is not

large [8], but this assumption is difficult to verify. Differently

from [1] our approach allows to control systems with fast-

varying unknown delay and differently from [8] we do not

impose any assumptions on the control signal.

As it was shown in [9], any hyper-minimum-phase linear

time-invariant system can be stabilized by a static output

feedback u(t) = −ky(t) if k is large enough (for more

established description of this approach see [10]). For the

case of uncertain systems an adaptive control law can be

derived via speed gradient method [11]. Meanwhile, it has

not been studied yet how this adaptive controller will operate

in the presence of unavoidable measurement delay that arises

due to the delays in signal transmission and processing.

The objective of this paper is to analyze an adaptive con-

troller in the presence of time-varying measurement delay.
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We derive an upper bound for time delay such that in some

domain of initial conditions the states of the closed-loop

system tend to zero, whereas an adaptive controller gain

tends to a constant value. The proof extends passification

based adaptive control to systems with time-varying un-

known delay.

For a given class of uncertain hyper-minimum-phase linear

systems, one can show that if the measurement time delay

is small enough then for a big enough controller gain the

static output feedback ensures global asymptotic stability of

all closed-loop systems from a given class of uncertainty

(to derive that Theorem 1 with µ = 0 may be applied).

An advantage of the adaptive controller over the static one

is that while stabilizing a particular system from a class of

uncertainties it yields a smaller control gain. Moreover, the

limiting value of an adaptive gain depends on the initial state

of the system, i. e. the closer to zero initial state is the smaller

limiting value will be achieved. More specifically these ideas

are demonstrated on an example of a pitch angle control of

a flying vehicle in Sec. IV.

The remainder of the paper is organized as follows. In

Sec. I-A we give an auxiliary result that is heavily used

throughout the paper. In Sec. II we introduce an adaptive

controller under consideration. In Sec. III we formulate main

results. In Sec. IV we demonstrate advantages of the adaptive

control over the static output feedback on a pitch angle

control of a flying vehicle. Some conclusions are drawn in

Sec. V.

A. Preliminaries: Passification lemma

Definition 1: A linear system ẋ(t) = Ax(t) + Bu(t),
y(t) = gTCx(t) with a transfer function W (λ) = gTC(λI−
A)−1B is called hyper-minimum-phase if the polynomial

ϕ(λ) = W (λ) det(λI − A) is Hurwitz and gTCB =
limλ→∞λW (λ) is a positive number.

The proof of the main results is based on Passification

lemma [12].

Lemma 1 (Passification lemma): Let the matrices A ∈
R

n×n, B ∈ R
n×1, C ∈ R

l×n, g ∈ R
l×1 be given. Then for

existence of a positive-definite n× n-matrix P and k∗ ∈ R

such that

PA∗ +AT
∗ P < 0, PB = CT g, A∗ = A+ k∗BgTC

it is necessary and sufficient that the system ẋ(t) = Ax(t)+
Bu(t), y(t) = gTCx(t) is hyper-minimum-phase.

Remark 1: If a transfer matrix W (λ) = gTC(λI−A)−1B

is hyper-minimum-phase then there exists k∗ such that a

control law u = k∗y + v, where v is a new control signal,



makes the system ẋ(t) = Ax(t) + Bu(t), y(t) = gTCx(t)
strictly passive with respect to a new input v, i. e. there exists

a nonnegative scalar function V (x) and a scalar function

µ(x), where µ(x) > 0 for x 6= 0, such that the following

holds

V (x) ≤ V (x0) +

∫ t

0

[

yT (t)v(t)− µ(x(t))
]

dt

for any solution satisfying x(0) = x0. Appropriate value for

k∗ is any negative number such that

k∗ < k0 = inf
ω∈R

Re
{

W (iω)−1
}

. (1)

II. PROBLEM FORMULATION

Consider the linear system

ẋ(t) = Ax(t) +Bu(t), x(0) = x0,

y(t) = Cx(t− r(t)),
(2)

where x ∈ R
n is the state, u ∈ R is the control input,

y ∈ R
l is the output (y(t) = 0 for t− r(t) < 0) and r(t) is

an unknown delay that satisfies 0 ≤ r(t) ≤ h.

Let g ∈ R
l be such that gTC(λI − A)−1B is hyper-

minimum-phase. Consider the adaptive controller:

u(t) = 0, t ∈ [0, h),

u(t) = k(t)gT y(t), k̇(t) = −γ−1
(

gT y(t)
)2

, t ≥ h
(3)

with k, γ ∈ R, γ > 0. In the next section we investigate the

stability of the closed-loop system (2), (3) with respect to

x(t).
Remark 2: Note that for t ≥ h the second line of (3) is

well defined, while for t ∈ [0, h) the value of y(t) can be

undefined. In fact one may assume that there exists a unique

t∗ such that t − r(t) < 0 for t < t∗ and t − r(t) ≥ 0 for

t ≥ t∗ and take u(t) = 0 for t < t∗ and u(t) from the second

line of (3) for t ≥ t∗. To derive a simple solution we take

t∗ = h. For more detailed discussion on this issue see [13].

Remark 3: Note that the system with a constant control

delay and a time-varying measurements delay can be trans-

formed into (2), notably the stability of the system

ẋ(t) = Ax(t) +Bu(t− r1),

y(t) = Cx(t− r2(t)),

with the control (3) is equivalent to the stability of the system

(2), (3) with r(t) = r1 + r2(t).

III. MAIN RESULT

The closed-loop system (2), (3) can be represented in the

form:

ẋ(t) = Ax(t), x(0) = x0, t ∈ [0, h),

ẋ(t) = Ax(t) + k∗BgTCx(t− r(t))+

+ (k(t)− k∗)BgTCx(t− r(t)),

k̇(t) = −γ−1(gTCx(t− r(t)))2, t ≥ h.

(4)

Denote xt(θ) = x(t+ θ), θ ∈ [−h, 0]. For t ∈ [0, h) we use

an estimate:

‖xh‖
2
C ≤ ‖x0‖

2 max
s∈[0,h]

λmax(e
sAT

esA) (5)

and for t ≥ h we will derive results by using the standard

Lyapunov-Krasovskii functional

V (xt, ẋt, k(t)) = V1(xt, k(t)) + V2(xt) + V3(ẋt), (6)

where

V1(xt, k(t)) = xT (t)Px(t) + γ(k(t)− k∗)
2,

V2(xt) =

∫ t

t−h

xT (s)Sx(s) ds,

V3(ẋt) = h

∫ 0

−h

∫ t

t+λ

ẋT (s)Rẋ(s) ds dλ.

Remark 4: Note that analysis of a state delay is more

simple than analysis of a measurement delay. Consider the

system

ẋ(t) = A0x(t) +A1x(t− r(t)) +Bu(t),

y(t) = Cx(t).
(7)

Here x, u, y, r have the same meaning as previously and

all matrices have appropriate dimensions. To investigate the

stability of the closed-loop system (7), (3) functional (6) can

be applied. Then

V̇1 = 2xT (t)P
[

A0x(t) +A1x(t− r(t)) + k∗BgTCx(t)
]

+

2(k(t)− k∗)x
T (t)PBgTCx(t)− 2(k(t)− k∗)(g

T y(t))2.

If PB = CT g then the last two terms can be canceled and

further analysis reduces to the problem of stability of (7)

with u(t) = k∗g
T y(t). This problem can be solved by the

standard methods, e. g. [17], [18]. In the case of an output

delay such cancelation is not possible since the controller

does not measure current value of the state. Therefore, we

prove that the difference k(t) − k∗ will stay bounded and

require LMIs (8), (9) to be feasible for all possible values of

k(t)− k∗.

Theorem 1: Let g ∈ R
l be such that gTC(λI−A)−1B is

hyper-minimum-phase. Given Mk, k∗ let there exist n× n-

matrices P > 0, S > 0, R > 0, and G such that PB = CT g

and the following LMIs hold

Φ|µ=Mk
< 0, Φ|µ=−Mk

< 0, (8)

[

R G

∗ R

]

≥ 0, (9)

where

Φ =













Φ1 0 0 hΦ2 hATR

∗ −R R hΦ3 hΦ4

∗ ∗ −(S +R) hG 0
∗ ∗ ∗ −h2R 0
∗ ∗ ∗ ∗ −R













,

Φ1 = P [A+ k∗BgTC] + [A+ k∗BgTC]TP + S,

Φ2 = −k∗PBgTC,

Φ3 = µCT gBTP −G,

Φ4 = µCT gBTR+ k∗C
T gBTR.



Then the closed-loop system (2), (3) is asymptotically stable

with respect to x(t) with a domain of stability given by

|k(h)− k∗| < Mk,

‖x(0)‖2 < γc
(

M2
k − (k(h)− k∗)

2
)

,
(10)

where

c =

[

λmax(P ) + hλmax(S) +
h3

2
λmax(A

TRA)

]−1

×

(

max
s∈[0,h]

λmax(e
sAT

esA)

)−1

,

and k(t) tends to a constant value.

Proof: Let t ≥ h. Denote η(t) = 1
h

∫ t

t−r(t)
ẋ(s) ds.

Differentiating V1 along (4) we derive

V̇1 = 2xT (t)P
[

Ax(t) + k(t)BgTCx(t− r(t))
]

−

2(k(t)− k∗)
(

gT y(t)
)2

= 2xT (t)P [A+ k∗BgTC]x(t)−

2hk∗x
T (t)PBgTCη(t) + 2h(k(t)− k∗)η

T (t)PBgTC×

x(t− r(t)) + 2(k(t)− k∗)x
T (t− r(t))PBgTCx(t− r(t))−

2(k(t)− k∗)x
T (t− r(t))CT ggTCx(t− r(t)).

(11)

Since PB = CT g the last two terms can be canceled. Further

V̇2 = xTSx− xT (t− h)Sx(t− h),

V̇3 = h2ẋTRẋ− h

∫ t

t−h

ẋT (s)Rẋ(s) ds.
(12)

Applying Jensen inequality [14] we find that

− h

∫ t−r(t)

t−h

ẋT (s)Rẋ(s) ds 6

−
h

h− r(t)

∫ t−r(t)

t−h

ẋT (s) dsR

∫ t−r(t)

t−h

ẋ(s) ds

− h

∫ t

t−r(t)

ẋT (s)Rẋ(s) ds 6 −
h

r(t)
h2ηT (t)Rη(t).

Denote α1 = h−r(t)
h

, α2 = r(t)
h

,

f1(t) =

∫ t−r(t)

t−h

ẋT (s) dsR

∫ t−r(t)

t−h

ẋ(s) ds,

f2(t) = h2ηT (t)Rη(t),

g(t) = h

∫ t−r(t)

t−h

ẋT (s) dsGη(t).

Since (9) is feasible, by applying Park’s lemma [15] we find

that

− h

∫ t

t−h

ẋT (s)Rẋ(s) ds 6 −

[

1

α1
f1(t) +

1

α2
f2(t)

]

6

− [f1(t) + f2(t) + 2g(t)] .
(13)

Summing up (11), (12) and using (13) we derive

V̇ ≤ ξTΞξ + h2ẋRẋ, (14)

where ξ(t) = (x(t), x(t− r), x(t− h), η(t))T ,

Ξ =









Φ1 0 0 hΦ2

∗ −R R hΦ′
3

∗ ∗ −(S +R) hG

∗ ∗ ∗ −h2R









.

Entries Φ1, Φ2 are given in the formulation of the theorem

and Φ′
3 is the matrix Φ3 with µ = k(t) − k∗. Substitut-

ing ẋ(t) = Ax(t) + k(t)BgTCx(t − r(t)) into (14) and

applying the Schur complements formula we find that if

Φ|µ=k(t)−k∗
< 0 then ∃ ε > 0 : V̇ (t) ≤ −ε‖ξ(t)‖2, where

V (t) = V (xt, ẋt, k(t)). If (8), (9) are feasible with the same

P , S, R then Φ < 0 for µ ∈ [−Mk,Mk].
Since (5) is valid, the domain (10) implies V (h) < γM2

k .

Moreover, the following implications hold:

V (t) ≤ γM2
k ⇒ |k(t)− k∗| ≤ Mk ⇒ V̇ (t) ≤ 0.

From the above it follows that V (t) < γM2
k for all t ∈

[h,∞). Indeed, let t∗ = min{t|V (t) = γM2
k}. Then ∀s ∈

[h, t∗] V̇ (s) ≤ 0. Since V (t∗) = V (h)+
∫ t∗

h
V̇ (s) ds we have

V (t∗) ≤ V (h) < γM2
k . The latter contradicts to V (t∗) =

γM2
k . As far as V (t) ≤ γM2

k inequality (14) is valid and,

therefore, ∃ ε > 0 : V̇ (t) ≤ −ε‖ξ(t)‖2. Further,

V (t) = V (h) +

∫ t

h

V̇ (s) ds ≤

V (h)− ε

∫ t

h

‖ξ(s)‖2 ds.

(15)

Since V (h) < ∞, (15) implies V (t) < ∞. But if k(t) → ∞
then V (t) → ∞, therefore, k(t) is bounded. Since V (h)
and V (t) are bounded,

∫ t

h
‖ξ(s)‖2 ds < ∞. It follows from

Barbalat’s lemma [16] that ξ(t) → 0 when t → ∞, that

is x(t) → 0 when t → ∞ and the system (2), (3) is

asymptotically stable with respect to x(t). Finally,

k(t) = k(h)− γ−1

∫ t

h

(

gT y(s)
)2

ds.

Since V (h) and V (t) are bounded,
∫∞

h
‖ξ(s)‖2 ds < ∞, thus

∫∞

h

(

gT y(s)
)2

ds < ∞. Hence, there exists limt→∞ k(t) =

k(h)− γ−1
∫∞

h

(

gT y(s)
)2

ds, i. e. k(t) tends to a constant

value.

Remark 5: Note that (3) contains γ > 0. As it can be

seen from (10) increase of γ leads to increase of the domain

of stability. At the same time the larger γ is the slower the

speed of convergence is. For γ−1 = 0 the system may be

unstable.

Remark 6: If h = 0, i. e. (2) does not contain time delay,

one can choose R = S = G = 0. Then the existence of

P > 0 such that Φ1 < 0 is guaranteed by Passification

lemma. As far as Φ1 does not contain µ, in the delay-free

case the system (2), (3) is globally asymptotically stable with

respect to x(t). Theorem 1 gives an upper bound for r(t)
such that (2), (3) remains asymptotically stable within the

domain of stability (10).

Remark 7: The smaller h is, the larger Mk can be taken

such that (8), (9) are feasible. That is smaller delay allows

for larger domain of stability (10).



Remark 8: LMIs of Theorem 1 are affine in A. Therefore,

if A resides in the uncertain polytope

A =

M
∑

j=1

µj(t)A
(j), 0 ≤ µj(t) ≤ 1,

M
∑

j=1

µj(t) = 1,

one have to solve these LMIs simultaneously for all the M

vertices A(j), applying the same decision matrices.

IV. EXAMPLE: FLYING VEHICLE PITCH

CONTROL

Let us illustrate the proposed adaptive control method by

example of a flying vehicle pitch control. Under several

simplifying assumptions, dynamics of the pitch angle can

be described [9] by (2) with

A =





0 0 0
1 0 a0
0 1 a1



 , B =





b0
b1
0



 , C =

[

0 0 1
0 1 c1

]

. (16)

In [9] for the system (2), (16) without delay the adaptive

algorithm (3) was synthesized and analyzed. Here we study

the system (2), (16), (3) in presence of unknown fast varying

time delay in the measurements.

Let the matrix A contain uncertain parameters: a0 ∈
[α0, β0], a1 ∈ [α1, β1]. For g = (1, 1)T the transfer function

W (λ) = gTC(λI−A)−1B =
(b1λ+ b0)(λ+ 1 + c1 − a1)

λ(λ2 − a1λ− a0)

is hyper-minimum-phase if

b0 > 0, b1 > 0, a1 < c1 + 1.

Since (8) is affine in A to ensure stability conditions one

have to solve (8), (9) simultaneously for four vertices given

by A(1) = A|a0=α0

a1=α1

, A(2) = A|a0=α0

a1=β1

, A(3) = A|a0=β0

a1=α1

,

A(4) = A|a0=β0

a1=β1

with the same R, tuning parameter k∗, and

P such that PB = CT g.

Fig. 1. ‖x(t)‖ for a0 = 13.15, a1 = 0.8, γ = 10, k(h) = 0, h = 0.001
and different initial conditions such that ‖x(0)‖ satisfies (10).

For simulations we take b0 = 19.76, b1 = 15.2, c1 = 0.8
and suppose that a0 ∈ [0.5, 20], a1 ∈ [0.1, 1.6]. Then (8),

(9) are feasible in vertices A(1), A(2), A(3), and A(4) for

Fig. 2. Tuning gains k(t), k∗, and the static gain k0. All parameters values
are same as in Fig. 1.

h = 0.001, Mk = 6.5, k∗ = −4. For k(h) = 0, γ = 10 the

domain of stability (10) is ‖x(0)‖ < 15.33.

In Fig. 1 one can see norms of five different solutions of

(2), (3) with k(h) = 0 and different randomly chosen initial

conditions ‖x(0)‖ < 15.33. Since (2), (3) is asymptotically

stable with respect to x(t) all norms tend to zero. In Fig. 2

the corresponding gains k(t) are depicted. As it was proved

all gains tend to constant values.

On basis of the proof for Theorem 1 one can easily

prove that if the conditions of Theorem 1 are satisfied,

the controller u(t) = k∗g
T y(t) insures global asymptotic

stability of the closed-loop system (2), (3). Note that the

limiting values of |k(t)| are much smaller than |k∗|. More-

over, in order to compare the adaptive output feedback (3)

and the static output feedback u(t) = k0g
T y(t) we found the

minimum value k0 = −2.8 such that (8), (9) with P such that

PB = CT g are feasible for µ = 0 in all vertices A(1), A(2),

A(3), and A(4). Obviously, |k0| should be not more than |k∗|
since k∗ insures feasibility of LMIs for all µ ∈ [−Mk,Mk].
The value of k0 is depicted with a dashed line. As one may

notice all |k(t)| tend to values that are smaller than |k0|. The

reason is that the static controller allows one to stabilize any

system with a0 ∈ [α0, β0], a1 ∈ [α1, β1]. On the other hand

the adaptive controller allows one to use a smaller controller

gain that depends on the system parameters and initial values

x(0).

V. CONCLUSIONS

We have analyzed an adaptive output feedback controller

for a linear (probably uncertain) systems in the presence

of time-varying measurements delay. Under the assumption

that the delay-free system is hyper-minimum-phase we have

derived LMIs for the local stability of the closed-loop system

with respect to its state, whereas the tuning gain tends to a

constant value. The domain of stability can be broadened

by increasing the value of γ from (3) but this leads to the

reduction of the speed of convergence. For h = 0 our results

recover results for a delay free case. Theorem 1 gives an

upper bound on the time-varying delay that preserves the



stability of the states of the closed-loop system. An applica-

tion of Theorem 1 to the case of polytopic-type uncertainties

and advantage of the adaptive output control over the static

output control are demonstrated on the example of a pitch

angle control of a flying vehicle. It is shown that an adaptive

gain tends to a constant value that is smaller than the static

gain that ensures the stability of the entire class of uncertain

systems. Moreover, smaller values of initial conditions yield

smaller limiting value of a controller gain.
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