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SPECTRAL ASYMPTOTICS ON STATIONARY SPACE-TIMES

ALEXANDER STROHMAIER AND STEVE ZELDITCH

Abstract. We review our recent relativistic generalization of the Gutzwiller-Duistermaat-
Guillemin trace formula and Weyl law on a globally hyperbolic stationary space-times with
compact Cauchy hypersurfaces. We also discuss anticipated generalizations to non-compact
Cauchy hypersurface cases.

Two of the cornerstone results of spectral asymptotics of the Laplace-Beltrami operator
∆h on a compact Riemannian manifold (Σ, h) are the Weyl counting law of eigenvalues and
the Gutzwiller-Duistermaat-Guillemin singularities trace formula [Gutz71, DG75]. These re-
sults are manifestly non-relativistic and have been generalized to non-relativistic Schrödinger
operators −~2∆h + V , both on compact and on non-compact Riemannian manifolds. Our
recent article [SZ18] gives a different type of generalization, namely to the setting of globally
hyperbolic stationary spacetimes with compact Cauchy hypersurface. The purpose of this
expository article is to review the main ideas of the relativistic generalization and to discuss
two types of generalizations: (i) to joint mass and normal mode asymptotics [SZ19]; and
(ii) to globally hyperbolic spacetimes with asymptotically Euclidean Cauchy hypersurfaces
[SZ19+].

1. The product or ultra-static case

Before getting to the relativistic setting, let us review the Weyl law and Gutzwiller-
Duistermaat-Guillemin trace formula on product (or ultra-static) spacetimes.

Let (Σ, h) be a connected compact Riemannian manifold of dimension d, and let ∆h be
the Laplace operator of (Σ, h). The wave group (resp. half-wave group) of (Σ, h) are the
unitary groups on L2(Σ),

U(t) :=





cos t
√
−∆ sin t

√
−∆√

−∆

−
√
−∆sin t

√
−∆ cos t

√
−∆



 ,

resp.

V (t) := exp(it
√
−∆).

Let 0 = λ0 < λ1 ≤ λ2 · · · be the eigenvalues of
√
−∆ repeated according to their multiplici-

ties.
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The ‘trace’ of the wave group is,

Tr U(t) = 2
∑

j

cosλjt = 2ℜ
∑

j

eitλj , resp. Tr V (t) =
∑

j

eitλj ,

It is a distribution on R with singularities at t = 0 and at times t ∈ Lsp(Σ, h), i.e. the set
of lengths Lγ of closed geodesics γ.

The singularity of V (t) at t = 0 has leading term idCdΓ(d + 1)Vol(Σ, h)(t + i0)−d, where
Cd = (2π)−dVol(B1) and B1 is the unit ball in Rd. If f ∈ S(R) is an even Schwartz function

its Fourier transform f̂ is also a Schwartz function and by spectral calculus f(
√
−∆) =

1
2π

∫

cos(t
√
−∆)f̂(t)dt. This is a trace-class operator and Tr (f(

√
−∆)) =

∑

j f(λj). There-
fore, in the sense of distributions, we have

∑

j

f(λj) =

∫

f(λ)dN(λ) =
1

2π

∫

f̂(t)TrU(t)dt =
1

2π

∫

f(t)T̂rU(t)dt,

where N(λ) := {j : λj ≤ λ} is the spectral counting function. To see the qualitative
behavior of N(λ) as λ → ∞ one chooses f suitably to approximate the indicator function
of the interval [−1, 1], so that fλ(x) = f(λ−1x) approximates the indicator function of the

interval [−λ, λ]. As λ → ∞ the distribution f̂λ concentrates near zero and it is therefore
the main singularity of TrU(t) at zero that determines the asymptotic behavior of N(λ) as
λ → ∞. A precise statement is provided by Hörmander’s Fourier Tauberian theorems. We
refer to [S01] for an overview and a quantitative statement with lower and upper bounds.
An application yields the Weyl law

N(λ) ≃ CdVol(Σ, h)λ
d +O(λd−1).

The other singularities of TrU(t) occur at times t ∈ Lsp(Σ, h). When the closed geodesics
are non-degenerate, TrV (t) admits a singularity expansion around 0 < t = L with leading
order given by

(1) TrV (t) =
∑

γ,Lγ=L

aγ,−1(t− Lγ + i0)−1 + ψ, with aγ,−1 =
1

2πi

e−
iπ
2
mγL#

γ

| det(id− Pγ)|
1

2

in case L ∈ Lsp(Σ, h), where ψ is a bounded function near t = L. Let us briefly explain the
notation. We think of γ as a periodic orbit of the geodesic flow Gt on the unit-cotangent
bundle T ∗

1Σ. Picking a point ξ ∈ γ the smallest positive time t for which Gt(ξ) = ξ is the
length L#

γ of the primitive closed geodesic through ξ. The length Lγ is then of course an

integer multiple of L#
γ . Given a small transversal V to ξ in T ∗

1Σ one can define the Poincaré

map as the return map GLγ : V → V . Its derivative at ξ is, by definition, the linear Poincaré
map Pγ(ξ). Note that det(id − Pγ(ξ)) does not depend on the chosen point ξ since other
choices lead to conjugate linear Poincaré maps. Finally, mγ is the Maslov index of the path
γ. In particular, mγ = 0 in case there are no conjugate points. The geodesic is called
non-degenerate if the linear Poincaré map does not have eigenvalue 1.
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Thus, one obtains geometric information about geodesics from the eigenvalues. This wave
trace formula is the basis of most inverse spectral results for the Laplacian. One may envision
similar applications of the generalized Gutzwiller trace formula of this article. For a boundary
inverse result in the setting of relativistic stationary spacetimes we refer to [FIO].

The Weyl law and Gutzwiller-(Duistermaat-Guillemin) trace formula are formulated in
the setting of the Riemannian geometry of (Σ, h). The underlying symplectic geometry of
the geodesic flow Gt is on the unit cosphere bundle S∗Σ of Σ. Hence, these results are
non-relativistic in the sense that space and time have been separated in a very specific way.
To see this it is instructive to look at these results in the setting of Lorentzian geometry by
passing to the product or ultra-static spacetime, i.e. a spacetime that of the form Σ × R

equipped with product-Lorentz metric −dt2 + h.

Eigenfunctions ϕj of ∆h give null solutions of ✷ = ∂2

∂t2
−∆h, namely,

u±j (x, t) = ϕj(x)e
±itλj .

The vector field is Z = ∂
∂t

is a Killing vector field and obviously

DZu
±
j := i−1Zu±j = ±λju±j .

Thus,

Tr etZ =
∑

j,±
e±itλj ,

if the trace is taken over the space of solutions of the wave equation.

2. Relativistic setting

We briefly recall some notions from general relativity and refer the reader to [ON] for
more details. A Lorentzian manifold (M, g) with metric g of signature (−1, 1, . . . 1) will be
called a spacetime if it is connected, oriented, and time-oriented. Recall that a non-zero
vector v ∈ TxM is called timelike (spacelike, causal, lightlike), if g(v, v) < 0 (g(v, v) >
0, g(v, v) ≤ 0, g(v, v) = 0). A C1-curve is called timelike of its tangent vector is timelike at
every point. In the same way one defines the notion of a spacelike, causal, and lightlike curve.
One of the principals of general relativity is that world-lines of particles need to be causal.
The time-orientation gives us a notion of future and past direction for causal curves. For a
subset K ⊂ M the causal future/past J±(K) is the set of points x that can be reached by
future/past directed causal curves emanating from K. We define a Cauchy surface Σ to be a
smooth spacelike hypersurface such that each maximal causal curve intersects Σ exactly once.
Spacetimes that admit a Cauchy surface are called globally hyperbolic. Globally hyperbolic
spacetimes can be smoothly foliated into Cauchy surfaces and are therefore, diffeomorphic to
R× Σ. Globally hyperbolic spacetimes are a good category of spacetimes for the treatment
of hyperbolic evolution equations. Indeed, the Cauchy problem for the d’Alembert operator
is well posed.

Our purpose is to give a relativistic Gutzwiller trace formula for an n-dimensional space-
time (M, g) satisfying:
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• (M, g) is globally hyperbolic, i.e. possesses a Cauchy hypersurface Σ;

• there exists a compact Cauchy surface Σ, i.e. M is spatially compact;

• (M, g) is stationary, i.e. has a complete timelike Killing vector field Z. This Killing
vector field then generates a one-parameter group of isometries etZ .

In place of the wave group U(t) above we use the translation operator by the flow etZ of
the Killing vector field Z acting on the nullspace ker✷g of a wave operator (d’Alembertian)
✷g.

In place of L2(Σ, dσh) we use ker✷g. We need to endow it with the topology of a Hilbert
space. One has [Z,✷g] = 0, so etZ acts by composition or time-translation on solutions of
✷gu = 0. The cotangent bundle T ∗Σ is replaced by the symplectic manifold N of null-
geodesics of (M, g), i.e. geodesics with lightlike tangent vectors γ̇ with g(γ̇, γ̇) = 0. Thus,
ker✷g is the ‘quantization’ of N , just as L2(Σ) is the quantization of T ∗Σ.
A spatially compact stationary globally hyperbolic spacetime can be put in the form,

(2) (M, g) ≃ (R× Σ, g), g = −N2dt2 + hij(dx
i + βidt)(dxj + βjdt).

where (Σ, h) is a Riemannian manifold, N : Σ → R+ is a positive smooth function, and β
a vector field on Σ. Then Z = ∂t is a Killing vector field. If the metric can be put in the
above form with β = 0, the spacetime is called static.

To avoid local coordinates, we consider the space K = M/R of Killing orbits. Thus,
π : M → K is a principal R bundle. The orthogonal distributions to the fibers determine
a connection 1-form θ for which θ(Z) = 1,LZθ = 0. The metric g on the horizontal spaces
ker θ induces a metric gK on K. Define u by u2 = −g(Z,Z). It is constant along the fibers
(Killing orbits), hence defines a function on K. The spacetime metric is then:

(3) g = −u2θ ⊗ θ + π∗gK, u2 = −g(Z,Z).
The next issue is to find analogues for the geodesic flow, periodic orbits and the symplectic

geometry of the Poincaré map. The geodesic flow on Σ is replaced by the null-bicharacteristic
flow Gt, i.e. the Hamiltonian flow with Hamiltonian,

1

2
σ✷g

(x, ξ) =
1

2
|ξ|2g,

on T ∗M , where |ξ|2g is the Lorentzian ‘norm’ squared.

Let

Char(✷g) = {(x, ξ) ∈ T ∗M \ 0 : σ✷g
(x, ξ) = 0}.

We denote the restriction of Gt to Char(✷g) by G
t
0. Char(✷g) is a (co-isotropic) hypersurface

whose null-foliation consists of orbits of Gt
0, i.e. of scaled null-geodesics. The space N , of

future-directed scaled null-geodesics, is naturally a symplectic cone (invariant under multi-
plication by positive reals in the ξ variables). The quotient by its R+-action is the space Np

of unparametrized null-geodesics.
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The flow etZ of the Killing vector field commutes with the null-bicharacteristic flow and
defines a quotient (reduced) symplectic flow on N . We denote the quotient flow by Ψt

N .

Lemma 1. Ψt
N is a Hamiltonian flow on N with Hamiltonian

H(ζ) = ξ(Z), where ζ = {Gt(x, ξ), t ∈ R}.
The value ξ(Z) is independent of the lift of ζ to (x, ξ).

Since Z is timelike, the Hamiltonian is positive and homogeneous. Hence, for any E > 0
the contact manifold Np can be identified with the energy surface NE := {ζ : H(ζ) = E}.
As with any Hamiltonian flow, Ψt

N preserves level sets of H and therefore also acts on
NE := {ζ : H(ζ) = E}. The induced flow on the quotient space Np will be denoted by Ψt

Np
.

We then define the periods and periodic points of Ψt
Np

by

(4) P := {T 6= 0 : ∃ζ ∈ Np : Ψ
T
Np
(ζ) = ζ}, PT = {ζ ∈ Np : Ψ

T
Np
(ζ) = ζ}.

Proposition 2. Let (M, g) be a globally hyperbolic, stationary spacetime with a compact

Cauchy hypersurface. Then Tr eitDZ |ker✷g
is a distribution on R, and its singular support is

a subset of P.

The Poincaré map is defined precisely as in the product case. Orbits are classified as
non-degenerate, elliptic, hyperbolic and so on as for any Hamiltonian flow.

We now consider the quantum mechanics. The d’Alembertian ✷g is the hyperbolic ana-
logue of ∆h. In local coordinates (x, t),

✷g = − 1
√

|g|
∂i

(

√

|g|gik∂k
)

,

where we have used Einstein’s sum convention. More generally we consider the massive
Klein-Gordon operator ✷g +m2. 1

Since [DZ ,✷g +m2] = 0,

(5) U(t) := eitDZ : ker(✷g +m2) → ker(✷g +m2).

The Killing flow etZ acts on functions u by pull-back eitDZu = u ◦ etZ . The eigenfunctions of
DZ in ker(✷g +m2) are joint eigenfunctions,







(✷g +m2)u = 0,

DZu = λu.

For each m ∈ R, the spectrum of DZ in ker(✷g + m2) is a discrete set {λj(m)}j∈Z. In
[SZ18] we consider the asymptotic properties of the eigenvalues for fixed m. In [SZ19] we

consider the ‘ladder’ asymptotics as m→ ∞, λj(m) → ∞ with
λj(m)

m
→ ν for some ν ∈ R.

We will define the ‘trace’ below. First, let us state the main result:

1In [SZ18] we also consider ✷g + V where V ∈ C∞(M) with DZV = 0. Important examples include
✷ = ✷g +m2 + κR where κ,m ∈ R and R denotes the scalar curvature.
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Theorem 3. For general spatially compact stationary globally hyperbolic spacetimes we have

that

Tr eitDZ |ker✷g
= e0(t) + ψ(t)

where ψ is a distribution that is smooth near 0, and e0(t) is a Lagrangian distribution with

singularity at t = 0 of the form

e0(t) ∼ 2(2π)−n+1(n− 1)Vol(NH≤1)µn−1(t) + c1µn−2(t) + . . . ,

where the homogeneous distribution µk(t) is defined by the oscillatory integral

µk(t) =
1

2

∫ ∞

−∞
e−itτ |τ |k−1dτ,

Theorem 4. Let T ∈ P and assume that the fixed point sets PT of Ψs
Np

on Np are non-

degenerate. Then,

Tr eitDZ |Char(✷) = 2
∑

γ:Tγ=T

ℜ(eγ(t)) + ψT ,

where ψT is a distribution smooth near t = T and eγ(t) are Lagrangian distributions with

singularities at t = Tγ. If γ is non-degenerate, we have

eγ(t) ∼
1

2πi

e−iπ
2
mγT#

γ

| det(I − Pγ)|
1

2

(t− Tγ + i0)−1 + . . . ,

where mγ is the Conley-Zehnder index of the periodic orbit γ. The sum is over all periodic

orbits of period T . The expansion above is a singularity expansion around t = Tγ.

The factor e−iπ
2
mγ is the Maslov factor.

2.1. Weyl law. By a standard Fourier Tauberian argument, we may derive a Weyl law for
the growth of the spectrum of DZ in ker(✷g).

Corollary 5. For general spatially compact stationary globally hyperbolic spacetimes the

spectrum of DZ in ker(✷g) is discrete. Moreover the Weyl eigenvalue counting function

NZ(λ) := #{j : 0 ≤ λj ≤ λ},
has the asymptotics,

NZ(λ) =
1

(2π)n−1
Vol(NH≤1)λ

n−1 +O(λn−2),

as λ→ ∞.

As in the product case, we conjecture that the remainder term is o(λn−2) when the set of
periodic orbits has Liouville measure zero.
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2.2. How to define the trace. We still need to define the trace of the Killing flow on
ker✷g or more generally on ker(✷g +m2). This requires an inner product on ker(✷g +m2)
(actually, just a Hilbert space topology).

The resulting distributional trace is then defined:

(6) Tr U(t) = Tr eitDZ |ker(✷+m2)

There are several related energy inner product topologies, each of them induced by the
topology of Hs(Σ)⊕Hs−1(Σ) on the space of Cauchy data on the Cauchy surface Σ for some
s ∈ R. Of course the inner products depend on the choice of Cauchy surface and the choice
of inner product for the Sobolev spaces. Naturally defined inner products are

(1) the energy inner product defined below by the stress energy tensor; this inner product
induces the topology of H1(Σ)⊕ L2(Σ) on the Cauchy data space.

(2) the Hadamard state inner product; this inner product can be constructed whenm > 0

and corresponds to the topology of H
1

2 (Σ)⊕H− 1

2 (Σ) on the Cauchy data space.

All of these give the same resulting distributional trace for U(t) .

2.3. Inner product on ker(✷g +m2). If (M, g) is a spatially compact stationary globally
hyperbolic spacetime and m > 0 then one can define an inner product on ker(✷g+m

2) using
the stress energy tensor,

T (u) := du⊗ du− 1

2
|du|2g − 1

2
g m2u2

If Z is Killing, and (✷g +m2)u = 0 then T (u)(Z) is a divergence free covector field.

Definition: The energy (quadratic) form of an element in ker(✷g + m2) ∩ C∞(M,R) is
defined by

Q(u) =

∫

Σ

〈T (u)(Z), ν〉dS

=
1

2

∫

Σ

1

N

(

|∂tu|2 + (N2hij − βiβj)(∂iu)(∂ju) +m2|u|2
)

dVolh.

where ν is the unit normal to Σ.

The space of smooth solutions of (✷g + m2)u = 0 is naturally a symplectic space, with
symplectic form defined by

(7) σ(u, v) =

∫

Σ

(νxu)(x)v(x)− v(x)(νxu)dVolΣ,

where νx denotes the future directed unit-normal derivative to Σ at x ∈ Σ. We then have

• Q(eitDZu, eitDZu) = Q(u, u) for all u ∈ ker(✷g +m2).

• Suppose u, v ∈ ker(✷+m2). Then Q(u, v) = i
2
σ(ū, DZv) =

1
2
σ(ū,LZv).
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To define “TrU(t)” we need an explicit formula for the solution of the Cauchy problem of
the wave equation in terms of Cauchy data on a Cauchy hypersurface:

{

(✷g +m2)u = 0,
u|Σ = f, ∂νu|Σ = g,

It is defined in terms of a homogeneous solution E ∈ D′(M ×M) defined by

E = Eret − Ead.

Here Ead, Eret are respectively the advanced/retarded Green’s functions (Supp (Eret/advf) ⊂
J±(Supp f)) of the Klein-Gordon operator ✷g + m2 and we identified the maps Eret :
C∞

0 (M) → C∞(M) and Ead : C∞
0 (M) → C∞(M) with their integral kernels in D′(M ×M).

The following theorems are well known (see for example [D80] for the first statement and
[DH] for the second).

Theorem 6. The map E extends by duality to a map E ′(M) → D′(M) and

u := E(f ⊗ δ′Σ + g ⊗ δΣ)

is the unique solution of the Cauchy problem

✷u = 0, (f, g) = (u|Σ, νΣu|Σ).
Theorem 7. The map E is a Fourier integral operator in I−

3

2 (M ×M,C ′), where C ′ is the
graph of the null bicharacteristic flow.

We refer to Appendix A for a review of the definition of Fourier integral operators and
Lagrangian distributions.

2.4. Distribution trace of the Killing group on ker✷g +m2.

Proposition 8. Let Et(x, y) = e−i(DZ)xtE(x, y). Then,

Tr (U(t)) =
∫

Σ
∗ (dxEt(x, y)− dyEt(x, y)) |y=x,

=
∫

Σ
∗ (dx(Et(x, y) + E−t(x, y))) |y=x.

where ∗ is the Hodge star operator on M .

The form ∗ (dxEt(x, y)− dyEt(x, y)) |y=x (with values in D′(R)) is closed, and its integral
over Σ is independent of the chosen Cauchy surface. The identity holds because E is skew-
symmetric and commutes with the flow, hence Et(x, y) = −E−t(y, x).

2.5. Traces as products of FIOs. The basic idea of [DG75] is to express TrU(t) as a
composition of FIOs. In generic cases, the composition is an FIO on R and at each singularity
t ∈ Lsp(M, g) it is a Lagrangian distribution. The leading order term is the principal symbol.
We follow the same procedure.
The trace in the energy inner product is given by,

(8) Tr(U(t)) = π∗RΣ ◦∆∗dx(Et(x, y) + E−t(y, x))
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where RΣ is restriction to Σ, ∆(x) = (x, x) is the diagonal empedding and π : Σ × R → R

is the natural projection.

To prove the trace formula we need to compose the canonical relations and symbols of
each factor.

2.6. Proof of trace formula. Let us denote ✷ = ✷g + m2. Fix a Cauchy surface Σ to
identify ker✷ with H1(Σ)⊕ L2(Σ). Denote by R the corresponding restriction map

R : ker✷ → H1(Σ)⊕ L2(Σ).

One can describe the induced map V (t) = R ◦ U(t) ◦ R−1 as a Fourier integral operator as
follows. The surface Σt = ΦtΣt is again a Cauchy surface and we therefore obtain a foliation
of a compact subset MT = ∪t∈[−T,T ]Σt of M . We can use this foliation to identify MT as a
smooth manifold with the product [−T, T ]×Σ. This gives a global time coordinate t on MT

and the vector field Z is given by ∂t. The unit-normal to Σ defines a vector field ν on MT .
The map V (t) is then identified with the Cauchy evolution map

(9) V (t) = Rt ◦R−1.

Let Et(x, y) = E(etZx, y).

Theorem 9. We have,

Et(x, y) ∈ I−
7

4 (R×M ×M, C),
where

C = {(t, τ, ζ1, ζ2) ∈ T ∗(R×M ×M) | τ + ζ1(Z) = 0, (etZ(ζ1), ζ2) ∈ C}.
The canonical relation is now parametrized by

Rt × C → C, (t, ζ1, ζ2) → (t, ζ1(Z), e
tZ(ζ1), ζ2).

The principal symbol under the parametrization is given by,

Lemma 10.

σEt
|C±

= ∓ i

2
(2π)

3

4 |dt| 12 ⊗ |dC |
1

2 .

One can also derive this by using the properties of the restriction map to codimension one
hypersurfaces as explained below.

The operator with kernel dxEt(x, y) has order −3
4
and its principal symbol is equal to

1
2
(2π)

3

4 (ξ∧)|dt| 12 ⊗ |dC |
1

2 on each component C+ and C−. Restriction to R × Σ × Σ gives

an operator of order −1
4
with principal symbol (2π)

1

4 |dt| 12 ⊗ |dVT ∗Σ|
1

2 , where we have used
the natural parametrisation of the canonical relation on R × Σ × Σ. Restriction to the
diagonal and integration over Σ gives an element in I(n−1)−3/4(R) with principal symbol
res(H−n+1)(2π)3/4−(n−1)|τ |n−2|dt|1/2 at T ∗

0R. Hence, the principal part of the distribution
TrU(t) is given by

2(n− 1)Vol(NH≤1)

∫

R

e−iτt|τ |n−2dτ.
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Residue means ‘symplectic residue’ of the fixed point set of the Hamilton flow. An application
of Fourier Tauberian theory then implies the Weyl law.

2.7. Joint mass-energy asymptotics. The results of the previous section are generalized

to ‘ladder asymptotics’ for λj(m) when m → ∞, λj(m) → ∞ with
λj(m)

m
→ ∞. The main

observation is that the mass plays the role of h−1 (the inverse Planck constant) in semi-
classical asymptotics for Schrödinger operators, i.e. we consider the eigenvalues of DZ in the
kernel of m−2

✷g + 1. This requires a generalization of the microlocal description of Et to a
semi-classical one. It is standard in the case of Minkowski space that the massive property
is given by a semi-classical parametrix; to our knowledge, the generalization to stationary
spacetimes is a novel observation in [SZ19]. Roughly speaking, instead of the flow of etZ on
the space of null-geodesics, one studies the Killing flow on the space of massive geodesics
instead of null-geodesics. Here we call a geodesic massive g(γ̇, γ̇) +m2 = 0, i.e. its tangent
vector is on the mass hyperboloid. Since such geodesics are timelike and not lightlike the
dynamics corresponds to that of massive particles moving in a curved background.

2.8. Non-compact Cauchy surfaces. For non-compact Cauchy surfaces the spectrum of
DZ on ker(✷g+m

2) may fail to be discrete and one expects the trace formula on the spectral
side to have contributions from the essential spectrum. A natural class of stationary space-
times to which scattering theory can be applied is the class of spacetimes that, as stationary
spacetimes, coincide with Minkowski space with Killing field ∂t, outside the Killing orbit
of a compact set. This is a natural Lorentzian generalization of non-compact Riemannian
manifolds that are Euclidean at infinity. In [SZ19+] we analyse these spacetimes and study
their scattering theory. This version of trace-formula has the same geometric side as the one
for compact Cauchy surfaces, but the spectral side involves an appropriately defined spectral
shift function.

3. Remarks on separation of variables

A natural question is to ask, how the results of this article and of [SZ18] appear if one
chooses a Cauchy hypersurface Σ and does both the classical and quantum analysis on it.
The classical analysis refers to the projection of null geodesics to Σ. We briefly respond to
this question by recording the equations for projections of null geodesics to Σ from [Ger07,
page 262]. That article gives a detailed analysis of these equations.
We employ a somewhat different notation from (2) in which the equations simplify. Let

z = (t, x) ∈ M = R× Σ and let ζ = (τ, ξ), ζ ′ = (τ ′, ξ′) ∈ TzM . Denote the Lorentzian inner
product by

〈ζ, ζ ′〉 = 〈ξ, ξ′〉+ 〈δ(x), ξ〉τ ′ + 〈δ(x), ξ′〉τ − α(x)ττ ′

Here, δi = hijβ
j, and α = N2 − hijβ

iβj.
We next endow Σ with a new Riemannian metric,

〈ξ, ξ′〉1 = 〈ξ, ξ′〉+ 1

α(x)
〈δ(x), ξ〉〈δ(x), ξ′〉,
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i.e. g1 = g + 1
α
δ ⊗ δ. Due to the Killing symmetry, there is a conserved quantity,

α(x(s))ṫ(s)− 〈δ(x(s)), ẋ(s)〉.

In the notation of [SZ18] it is the Clairaut integral 〈Z, ζ〉. A geodesic for g1 is a Lorentzian
geodesic for which the Clairaut integral vanishes.

We now write down the equations for geodesics in terms of the metric g1. Let

A(x) =
δ(x)

α(x) + 〈δ(x), δ(x)〉 , V = − 1

α
.

Let F̂ 1(X, Y ) = ∇× A = 〈∇1
XA, Y 〉 − 〈X,∇1

YA〉1 be the curl of A. Then, the projection of
a geodesic of M to Σ is a curve x(s) satisfying,

D1
s ẋ+

1

2
K2∇1V (x) = KF̂ 1(x)[ẋ],

where the superscript denotes covariant differentiation with respect to g1 and where K is
the Clairaurt constant of the geodesic. As explained below [Ger07, (1.9)], these are the

equations of motion of a particle on Σ moving in the potential K2

2
V and in the magnetic

field corresponding to KA.
From the viewpoint of analysing the dynamics of the Killing flow on the space of null

geodesics that arises in the Gutzwiller trace formula, it seems advantageous to use the
relativistically invariant description of the dynamics in [SZ18], rather than to attempt to
relate the wave group of an operator pencil on Σ to the separation-of-variable dynamics
above.

Appendix A. Lagrangian distributions and Fourier integral operators

For completeness and the convenience of the reader we briefly sketch the theory of La-
grangian distributions and their symbols. We refer to [HoI-IV, Section 25.1] for background.
For an open subset U ⊂ Rn and N ∈ N we consider distribution I ∈ D′(U) that are given
by oscillatory integrals of the form as

I(x) = (2π)−
n+2N−2e

4

∫

RN

eiϕ(x,θ)a(x, θ)dθ.(10)

Here ϕ is assumed to be a phase function, i.e. ϕ ∈ C∞(U × RN \ {0}), ϕ(x, θ) is positively
homogeneous of degree one in θ, and ϕ has no critical points in U ×RN \ {0}. Moreover, we
assume ϕ to be clean with excess e. This means that critical manifold

Cϕ = {(x, θ) | ∂θϕ(x, θ) = 0}

is a (n+ e)-dimensional submanifold of U ×RN \ {0} and the tangent space T(x,θ)Cϕ is given
by the kernel of d∂θϕ(x, θ). The function a ∈ C∞(U ×RN) is a polyhomogeneous symbol of
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order q = m+(n− 2N − 2e)/4. In other words a has, as a symbol, an asymptotic expansion
of the form

a(x, θ) ∼
∞
∑

k=0

aq−k(x, θ)χ(θ),

where ak(x, θ) is smooth and positively homogeneous of degree k in θ and χ is a cut-off
function vanishing near zero and with χ(θ) = 1 for |θ| > 1. The cutoff function removes
possible singularities at θ = 0 of the functions ak(x, θ). A clean phase function with excess
e defines an immersed homogeneous Lagrangian submanifold of T ∗U \ {0} by

Λϕ = {(x, ∂xϕ(x, θ) | ∂θϕ(x, θ) = 0}.
A distribution is said to be a Lagrangian distribution of order m if (modulo smooth func-
tions) it can be written in the above form with a clean phase function ϕ of excess e and a
polyhomogeneous symbol a of order q = m + (n − 2N − 2e)/4. We write I ∈ Im(U,Λϕ).
If M is a manifold and Λ ⊂ T ∗M a homogeneous Lagrangian submanifold, then we say
I ∈ Im(M,Λ) if it can be constructed by patching together distributions in Im(U,Λϕ) in
local coordinate charts in which Λϕ locally defines Λ.

If M is a smooth manifold a map C∞
0 (M) → C∞(M) is called a Fourier integral operator

of orderm ∈ R if its integral kernel is a Lagrangian distribution in Im(M×M,Λ′), where Λ ⊂
(T ∗M \0)×(T ∗M \0) is a homogeneous canonical relation and as usual Λ′ = {(x1, ξ1, x2, ξ2) |
(x1, ξ1, x2,−ξ2) ∈ Λ}.

In order to describe the principal symbol of a Lagrangian distribution we assume that we
are given a Lagrangian distribution in the form (10) with a non-degenerate phase function,
i.e. a clean phase function with excess e = 0. In this case the principal symbol is a half-
density taking values in the Maslov bundle. The Maslov bundle is a Z4-principal bundle
and it appears because of additional factors of the form iσ when changing phase functions.
In particular any choice of local phase function defines a local trivialisation of the Maslov
bundle and modulo this Maslov factor the principal symbol is the transport to the Lagrangian
Λϕ = ιϕ(Cϕ) of the half-density

a(λ)|dCϕ
| 12 :=

a(λ)|dλ| 12
|D(λ, ϕ′

θ)/D(x, y, θ)| 12
(11)

on Cϕ, where λ = (λ1, ..., λn) are local coordinates on the critical manifold

Cϕ = {(x, y, θ); dθϕ(x, y, θ) = 0},(12)

and where ιϕ : Cϕ → T ∗(X × Y ) \ {0} is the map (x, y, θ) → (x, dxϕ, y,−dyϕ).
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