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Abstract Translating between morphologically rich languages is still challenging for

actual machine translation systems. In this paper, we experiment with various Neural

Machine Translation (NMT) architectures to address the data sparsity problem caused

by data availability (quantity), domain shift and the languages involved (Arabic and

French). We showed that the Factored NMT (FNMT) model, which uses linguistically

motivated factors, is able to outperform standard NMT systems using subword units

by more than 1% BLEU point even when a large quantity of data is available. Our

work shows the benefits of applying linguistic factors in NMT when faced with low

and large resource conditions.

Keywords Neural Machine Translation · Factored models · Deep Learning

1 Introduction

Neural Machine Translation (NMT) [1–3] has been developed very quickly in the

recent years. In the last years NMT with attention mechanism [2] achieved better

results than existing phrase-based systems [4] for several language pairs. The model

consists of a sequence to sequence encoder-decoder which uses as context the full

input sentence. Despite the advantages in NMT systems, machine translation is a
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complex task and there is still a lot of work ahead to improve it. In this paper we

address the following hot topics in NMT:

Data sparsity:MT systems primarily rely on the bilingual training corpora which are

often available in limited quantity. Moreover, bilingual corpora might not be available

for some specific language pairs and domains. The translation of morphologically

rich languages requires even more data, and the training set rarely contains all the

inflected word forms. In actual systems, words are not linked with all their morpho-

logical variations and there is no explicit information about morphological features.

These issues can lead to data sparsity.

Limitation on the target vocabulary size:due to the computational complexity of the

output layer, the target vocabulary size should be limited. Therefore, it is not possible

to generate all the words seen in the training dataset. This can lead to the generation

of unknown tokens for the words that are not included in the target vocabulary.

Modelling morphological phenomena as inflections for morphologically rich

languages requires larger vocabulary size compared to other languages. Morpho-

logical variation and lexical productivity can cause word forms unseen in training.

Increasing the vocabularies partially mitigates these issues but we will face both pre-

viously mention issues: (1) data sparsity due to the difficulty of modelling rare seen or

unseen inflected forms and (2) a larger target vocabulary increases the computational

complexity of the output layer.

In this paper, we translate Arabic into French. Both are morphologically rich lan-

guages which do not share morphological roots nor the alphabet. This makes this

language pair more difficult to translate. We compare factored NMT models (using

linguistically motivated factors) to the state of the art BPE approach and the clas-

sic word-level NMT approach. In addition, we apply BPE method on the factored

NMT model. We experiment with low resource (LR) conditions and compare it to a

scenario with high resource (HR) conditions. Moreover, we translate test files of dif-

ferent sources in order to know which system behaves better in different conditions

(low/high resources and same/different data sources).

The rest of this paper is organized in four sections: Section 2 explains previous

related works, Section 3 describes the different modelling approaches employed in

this work. In Section 4, the experiments are presented and the obtained results are

shown. Section 5 presents an analysis of the data sparsity issue. Finally, Section 6

concludes the paper and open some perspectives.

2 Related work

In previous work, in order to avoid the softmax normalization over a large output

layer, the batches are organised so that only a subset K of the target vocabulary is

possibly generated at raining time [5]. However, the complexity remains the same at

test time. In [6], the generation of unknown words issue is addressed using the align-

ments produced by an unsupervised aligner . The unknown generated words are sub-

stituted in a post-process step by the translation of their corresponding aligned source
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word (using a bilingual dictionary) or by copying the source word if no translation

is found. Another possibility to reduce the vocabulary size is to consider subword

units. [7] propose the most successful approach using the Byte Pair Encoding (BPE)

method. The output layer can be set to a tractable size. All source and target tokens

are encoded with BPE units in order to possibly generate all target words. Some un-

known and rare words unseen at training time can be generated by combining several

BPE units. The vocabulary can be shared for both languages (joint or bilingual vocab-

ulary) helping to generate, for example, proper names that are already in the source

language and are invariable in the target language. As an extreme case of subwords

units, some works consider character as translation unit [8–11]. Hybrid systems using

mostly word-level and character-level for rare words are implemented [12,13] find-

ing a good balance of vocabulary between them. They never generate unknown tokens

and they are easier to train than fully character-level systems. However, they do not

benefit of common lexemes between words. The advantages of character-level NMT

is that all the vocabulary can be covered with a small output layer size. It can model

morphological variants of a word and avoid problems in preprocessing/tozenization.

Moreover, unseen words can be generated similarly to using BPE. The major draw-

back of character-level NMT is the increase of the sequence sizes which results in

longer range dependencies between units. Character-level decoders outperform sub-

words units using BPE method when processing unknown words [14]. By contrast,

character-level systems perform worse than BPE-based systems when extracting mor-

phosyntactic agreement and translating discontinuous units of meaning.

In order to tackle the data sparsity challenge, backtranslated data is incorporated

into NMT [15,16]. Monolingual data is automatic translated with a model trained

in the opposite language direction creating a synthetic parallel data. This allows the

system to manage a larger quantity of training data boosting the translation perfor-

mance. Other work uses the WordNet [17] id and POS-tags of the words to add lexical

and morphological information, respectively, with the purpose of reducing the data

sparsity in a phrased-based system [18].

NMT systems often do not incorporate any additional linguistic information,

they only rely on the raw text data. Linguistically motivated systems may help to

overcome data sparsity, generalize and disambiguate to improve translation when

facing the previously described NMT hot topics. When the dataset is small, the mor-

phological information can help the translation process [19].

In the recent years, factors are used as additional information in the source lan-

guage [20]. Factors refer to some linguistic annotations at word-level, e.g. the Part of

Speech (POS) tag, number, gender, etc. Factors are first introduced for NMT in the

target language where two symbols are simultaneously generated in [21]. This work

is improved increasing the number of factors in order to translate case sensitive data

[22]. The feedback of the model is changed to use tied embeddings [23] with the con-

catenation of the embeddings of the two output symbols. In other work, Czech and

Latvian translation is also performed with this model [24,25]. This approach which

uses factors at target side consists of representing the words using their lemmas and

additional factors of the words indicating how to inflect the lemmas. In morphology,

a lemma is the dictionary form or headword of a set of words. For example, “are”,

“were”, “was”, “being”, “is” are inflections of the same lemma, which is “be”. Two
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different sequences are generated synchronously: one for the lemma and the other

for the factors. In a second step, the surface form of each word is generated from

its predicted lemma and factors. The advantages of using factors as translation unit

are two-fold: reducing the output vocabulary size and allowing the model to generate

surface forms which are never seen in the training data. Factored system can support

larger vocabulary because it can generate words from the lemmas and factors vocab-

ularies, which is an advantage when data is sparse. In standard NMT, the tokens are

not linked with all their morphological variations and there is no explicit information

about morphological features. By contrast, the use of lemmas directly in the NMT

models allows the system to connect all the inflections of a word to the same lemmas

and capture lexical correspondence. In addition, factors may help the translation pro-

cess by providing grammatical information to enrich the output. Knowing the lemmas

and their factors, all their inflections can be generated without explicitly seeing them

in the training data. Moreover, having the part-of-speech tag can be useful to distin-

guish polysemic words (e.g. book: noun or verb). Unseen words can be also generated

using subword segments produced by the BPE method. However, since they are not

linguistically informed, they can produce erroneous surface forms by concatenating

several incompatible subword units. Recently, another factored NMT system work-

ing as well with lemmas and linguistic factors is proposed. The two symbols are

predicted interleaving them in a single output sequence with double length [26]. The

strategy is applied for translating English into Czech and English into German. They

argue that the presence of lemmas allows the system to model inflections and capture

lexical correspondence with the source. Unseen words can be generated as well but

the better results that they obtain are not mainly due to this reason. They find that the

benefit comes from the words decomposition.

This paper studies how factored NMT models behave in different resource con-

ditions and different use cases.

3 Models description

The architectures described in this paper are based on the sequence to sequence

encoder-decoder NMT architecture equipped with an attention mechanism [2].

The encoder is a bidirectional RNN (see box number 1 of Figure 1). Each input

sentence token xi (i ∈ 1 . . . N with N the source sequence length) is encoded into an

annotation ai by concatenating the hidden states of a forward and a backward RNN.

Each annotation in a = a1 . . . aN is a representation of the whole sentence with a

focus on the current token.

The decoder is made of a conditional gated recurrent unit (cGRU) [27] consist-

ing of two GRUs interspersed with the attention mechanism (see box number 3 of

Figure 1). The first GRU cell of the decoder (GRU1 in Figure 1) is fed by its previous

hidden state and the feedback (i.e. the embedding of the previous generated symbol).

The second GRU (GRU2 in Figure 1) is fed by the output of GRU1 and the context

vector cj . The output layer LO is connected to the network through a sum operation

inside of an hyperbolic tangent function in the hidden to output (h2o) layer which

takes as input the embedding of the previous generated token as well as the context
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Fig. 1 NMT system with attention mechanism.

vector and the output of the decoder from GRU2 (both adapted with a linear trans-

formation, respectively, LC and LR). Finally, the output probabilities for all tokens

in the target vocabulary are computed with a softmax function. The token with the

highest probability is proposed for translation at each timestep. The encoder and the

decoder are trained jointly to maximize the conditional probability of the reference

translation.

The attention mechanism (see box number 2 of the Figure 1) computes a source

context vector cj as a convex combination of the annotation vectors, where the weight

of each annotation is computed locally using a feed-forward network. These weights

can be interpreted as the alignment score between target and source tokens. For each

generated token at the target side, the model finds the relevant source context.

The incorporation of the attention mechanism allows the models to discard the

unnecessary information of the source sentence. Therefore, using the attention mech-

anism, long sentences can be translated without remembering the whole source sen-

tence.

We experimented as well with the Factored Neural Machine Translation (FNMT)

[21,24] approach. This approach uses the linguistic decomposition of the words only

(no surface form) and predicts simultaneous outputs at the target side of the network.

For simplicity reasons, only two symbols are simultaneously generated: the lemma

and the concatenation of the different factors that are considered. Indeed, each word is

represented by its lemma and its linguistic factors. We use six factors for French: POS

tag, tense, gender, number, person and the case information (lowercased, uppercased

or in capitals). By these means, all the derived forms of the verbs, nouns, adjectives,

etc. do not need to be kept in the target vocabulary. The word output vocabulary is

reduced into two vocabularies: one for lemmas and a very small vocabulary for the

factors (see Equation 1).

|Vwords| > |Vlemmas| ≫ |Vfactors| (1)

The low frequency words in the training set can benefit from sharing the same

lemma with other high frequency words, and also from sharing the factors with other
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words. The vocabulary of the target language contains only lemmas and factors but

the total number of surface words that can be generated (i.e. virtual vocabulary) is

larger (see Equation 2). This allows the system to correctly generate words which are

considered as unknown in word-level NMT system.

|Vwords| ≪ |Vlemmas| × |Vfactors| (2)

Two types of FNMT architectures are used. Both have a second output in contrast

to standard NMT system. The first one contains a single hidden to output layer (h2o)

which is then used by two separated softmax layers (see Figure 2). This model is

called FNMT1.

DECODER

Softmax hidden to 

output

Softmax

Lemma

Factors

+

Conditional

GRU

E
F
j−1

E
L
j−1

LOF

Feedback

ENCODER
Attention

Mechanism
Context 

vector

LOL

Fig. 2 Factored NMT system with a single h2o layer

The second system contains two separated h2o layers, each one specialized for a

particular output (see Figure 3). This model is called FNMT2

DECODER

Softmax
Lemma

h2o

Softmax

Lemma

Factors

+

Conditional

GRU

LOL

E
F
j−1

E
L
j−1

LOF

Feedback

ENCODER
Attention

Mechanism

Context 

vector

Factors

h2o

Fig. 3 Factored NMT system with separated h2o layers.

The encoder and attention mechanism are similar to standard NMT architecture

(see Figure 1) in both FNMT architectures. However, the decoder differs in order to

produce multiple outputs. The synchronicity of the two outputs generation is pos-

sible because the hidden states are shared between the two of them. The hidden to

output layer is a hyperbolic tangent function of the sum of three inputs: (1) hidden
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state, (2) source context provided by the encoder and the attention mechanism and (3)

feedback. Both FNMT systems are similar excepting that FNMT1 (single h2o layer)

uses the concatenation of the previously generated lemma and factors embeddings,

and FNMT2 (separated h2o) uses one h2o layer for each output receiving only the

embedding of the symbol that is generating. FNMT2 model have more specialized

weights for the lemma and factors outputs. The feedback to the hidden state consists

of the concatenation of the lemmas and factors embeddings. Finally, in the last part of

the model, the output is split into two specialized output layers LOL and LOF which

in turn feed a specialized softmax layer, one to calculate the lemmas and the other to

calculate the factors.

The decoder of the FNMT architecture may lead to sequences with different

length since lemmas and factors are simultaneously generated but in separated out-

puts. Indeed, each sequence of symbols ends when the end-of-sequence (<eos>)

symbol is generated and nothing prevents the lemma generator to output the <eos>

symbol before or after the factors generator. To avoid this scenario, the length of the

factors sequence is constricted to be equal to the length of the lemma sequence. This

implies to ignore the <eos> symbol for factors (to avoid shorter factors sequence)

and stop the generation of factors when the lemma sequence has ended (to avoid

longer factors sequence). This is motivated by the fact that the lemmas are closer to

the final objective (a sequence of words) and they are the symbols carrying most of

the meaning.

In order to extract the lemmas and factors, a linguistic tool is necessary. The

morphological and grammatical analysis is performed with the MACAON toolkit

[28]. MACAON POS-tagger outputs the lemma and factors for each word taking

into account its context. The Lefff dataset [29], a large-coverage morphological and

syntactic lexicon for French, is used by MACAON to build the models.

Once the factored representation outputs are obtained from the neural network,

the post-process to fall back to the surface form is performed. This step is not trivial.

For that purpose, a lookup table is built to match the lemmas and factors as keys with

the surface forms as values. This knowledge is also extracted from the MACAON

tool for French language, which given a lemma and some factors, provides the word

candidate.

For the sake of simplicity, the first proposition is taken for the very few cases

when there are several proposals of surface forms for the same pair of lemma and

factors. In French, in most of the cases when several words are proposed for the same

pair of lemma and factors, all the proposals are correct and their choice only depends

on the situation. For example, for written or spoken versions or formal or informal

situations. In other cases (e.g. name entities) where the surface form corresponding

to the lemma and factors is not found, the system outputs the lemma itself.

Table 1 presents the different model approaches used in this work describing the

outputs of each of them.

We interleaved the lemmas and factors in a single sequence, as done in [26], this

model is named IFNMT1. Additionally, we introduced a new representation called

IFNMT2 where the first output predicts lemmas and factors as IFNMT1 but we add

a new second output generating also factors at the same positions of the factors in

the first output. When lemmas are generated in the first output, the second output
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Model h2o output

layer 1st 2nd

NMT - word -

BPE - wo+ rd -

FNMT1 single lemma factors

FNMT2 sep. lemma factors

IFNMT1 single lemma factors -

IFNMT2 single lemma factors null factors

FBPE single lem+ ma factors factors

Table 1 Model approaches at target side.

generates null. IFNMT2 pretends to better model the factors having the advantages

of the two factorized architectures: (1) as FNMT model, the model learns specialized

embeddings only for factors in the second output and (2) as IFNMT1 model, factors

are also included jointly with the lemmas in the embeddings of the first output and

factors output receives as feedback its corresponding lemma generated in the previ-

ous timestep which can help the generation of factors. For FNMT systems, BPE is

applied on the lemma sequence and the corresponding factors are repeated when a

split occurs. We call this system Factored BPE (FBPE).

Standard NMT architecture generating only one output (see Figure 1) has been

used for the word-level NMT model, BPE model and IFNMT1 model. The FNMT

architecture containing a single h2o layer (see Figure 2) is used for FNMT1, IFNMT2

and FBPE models. Lastly, the FNMT architecture with separated h2o layers (see

Figure 3) is used for FNMT2 model.

4 Experiments

In the experimental framework, we use Arabic in order to translate from a morpho-

logically rich language. The target language is French which is a moderately inflected

language.

Training details

For the training of the models, we used NMTpy toolkit [30], a Python toolkit based

on Theano [31] and available as open-source software1. The feedback embeddings

(input to the decoder) and the output embeddings are tied [23] to enforce learning a

single target representation and decrease the number of total parameters. In order to

avoid exploding gradients, we clipped the norm of the gradient to be no more than 1

[32]. The optimizer used is Adadelta [33] with an initial learning rate of 1. We use

Xavier [34] weights initialization.

The WEB test set has been used as development set in order to apply early stop-

ping, validating from the 2nd epoch every 1k updates with a patience of 10. The

same vocabulary size has been used for Arabic at input side and French at output side

1 https://github.com/lium-lst/nmtpy



Addressing Data Sparsity for NMT Between Morphologically Rich Languages 9

for words and lemmas, which is 30k. All the factors vocabulary is covered by the

network.

For BPE method, we applied the formula 30k−#characters to obtain the num-

ber of BPE units comparable with the vocabulary of the rest of the systems. The

vocabulary size is equal to the size of the initial vocabulary (number of characters)

plus the number of merge operations (BPE units) as mentioned in work [7]. The joint

vocabulary sharing the BPE tokens for source and target language is not beneficial

when the languages use different alphabets. Therefore, we have not trained a joint

BPE model. Note that we could have been used a method to unify the alphabets us-

ing transliteration in order to avoid the problem. On the other hand, we think that

French and Arabic are languages that do not share the same roots and the benefit is

harder to glimpse. The same procedure is applied for FBPE model, source words and

target lemmas are segmented in subwords. Factors are repeated for each subword to

synchronize lemmas and factors sequences.

Test sets

We evaluate the models with three test files in order to compare different use cases.

These test sets are provided with multiple references to better evaluate with automatic

metrics such as BLEU [35]. Table 2 provides information about the different test sets

used to evaluate the models.

Test set #Sentences #Tokens (AR/FR) #Unique words (AR/FR) #References

WEB* 409 10k/∼18k 4.2k/3.7k 4

TEXT 352 10k/∼18k 4.1k/3.6k 2

BROADCAST (2h) 466 14k/∼23k 4.7k/4.1k 4

Table 2 Test sets for Arabic to French translation. Information about number of sentences and references

in second and last columns, respectively. Number of tokens and number of unique words for each language

are shown in the third and forth columns. *WEB test set has been used for development purposes. French

unique words and number of tokens are average numbers of the references.

4.1 Low resource conditions

The first experiment consists of translating under LR conditions using a small training

dataset. The hyperparameters chosen for this experiment have been adapted to the

small size of the dataset. Therefore, we used reduced dimensions for the layers: 512

for the recurrent layers and 300 for the embeddings.

Data and preprocessing

The datasets used for training are News Commentary version 9 and 80 hours of broad-

cast news. Arabic data has been tokenized in Arabic Tree Bank (ATB) scheme with
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the morphological analyser tool MADA [36,37] separating prefixes and suffixes from

stems. French data is tokenized with Moses and the morphological analysis is per-

formed by MACAON. After filtering sentences longer than 100 tokens, the training

dataset only contains 150k sentences. Table 3 shows the full vocabulary and number

of words for Arabic and French languages. The number of words is small, 4.6M for

Arabic and 4.7M for French. However, the full vocabulary is still large which is a

challenge in machine translation, all the unique words in the training vocabulary are

72k for Arabic ATB tokens separating stems and affixes in source side, 73k for French

words and 43k for French lemmas in target side. The vocabulary size of French fac-

tors is 282. The factored model can possible generates 148k words from the 30k size

lemma vocabulary and the factors vocabulary.

AR FR

#Unique words 72k 73k

#Tokens 4.6M 4.7M

Table 3 Number of unique words and tokens in the training dataset for Arabic to French translation under

LR conditions.

Results

The results for the Arabic to French translation under LR conditions are presented in

Table 4.

Model WEB* TEXT BROADCAST

NMT 13.52 10.15 19.05

BPE 14.49 9.40 18.27

FNMT1 16.99 12.27 25.93

FNMT2 14.60 11.06 24.07

IFNMT1 15.25 11.81 26.00

IFNMT2 15.89 12.90 24.06

FBPE 17.04 10.39 23.63

Table 4 Results for Arabic to French translation under LR conditions. Scores are measured in BLEU.

*WEB test file is used for development set.

We observe that factored models (last 5 models in Table 4) obtained the highest

values for all the test sets. This means that factored models are a good option for LR

conditions.

BPE compared to NMT and FBPE compared to FNMT perform well only with

the development test (WEB) but not translating the other test files (TEXT and BROAD-

CAST). The development set is used together with the training dataset to build the

BPE units dictionary, as a consequence, BPE models can easier translate it. More-

over, it seems that under LR conditions, BPE models do not have enough samples to
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well create the BPE dictionary. This means that models using BPE units (BPE and

FBPE) do not generalize well and FNMT is more robust under LR conditions.

The separated h2o layers for FNMT2 model seems not to help in LR conditions,

the higher number of parameters compared to FNMT1 is not necessary to learn a

small dataset.

We see that FNMT1 performs better than interleaved models (IFNMT1 and IFNMT2)

when translating WEB and similar to IFNMT1 with BROADCAST. This fact sug-

gests that FNMT architecture, where lemmas and factors are separated in two outputs,

can benefit in some use cases. IFNMT2 model obtained the best score for TEXT and

better score than IFNMT1 for WEB. The addition of the 2nd output modelling only

factors helps the translation in some use cases.

4.2 High resource conditions

In this set of experiments, we used the same language pair (Arabic→French) in-

creasing the training dataset in order to observe the behaviour of the systems when

resource conditions change. For the sake of simplicity, interleaved models (IFNMT1

and IFNMT2) are not included in this set of experiments. The training options are the

same except that the size of the recurrent layer is increased to 1024 dimensions and

the size of the embedding layer to 512 dimensions.

Data and preprocessing

The dataset added to the previous presented data (news-commentary and broadcast

news) is the United Nations (UN) corpus which is out-of-domain. Adding UN corpus,

the training dataset has a total of 14M of sentences, which is almost 100 times bigger

than the previous training dataset. The full vocabulary is large, all the unique words

in the training vocabulary are 881k for Arabic ATB tokenization separating stems and

affixes in source side, 674k for French words and 511k for French lemmas in target

side. Table 5 presents the full vocabulary size and number of words in the training

dataset.

AR FR

#Unique words 881k 674k

#Tokens 315M 350M

Table 5 Number of unique words and tokens in the training dataset for Arabic to French translation under

HR conditions.

The preprocessing of the data was performed similarly to previous experiment.

The vocabulary size remains 30k. Factors French vocabulary size is 388. From the

30k lemmas and the 388 factors, the total vocabulary that factored model can generate

is 137k. For BPE systems, we use 30k BPE units not using joint vocabularies. BPE

method is applied as well for FBPE systems.
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Results

Table 6 presents the results of adding UN corpus.

Model WEB* TEXT BROADCAST

NMT 29.33 20.86 35.77

BPE 28.32 20.15 32.47

FNMT1 28.99 18.36 34.26

FNMT2 27.00 18.74 33.70

FBPE 29.53 21.05 36.98

Table 6 Results for Arabic to French translation under HR conditions. Scores are measured in BLEU.

*WEB has been used for development file.

The results show that FBPE system obtains the best performance for all the test

sets: WEB, TEXT and BROADCAST.

BPE system does not perform well again probably because joint vocabularies

option is not used (the vocabularies are separated for source and target due to the

different scripts of the languages). On the other hand, FBPE is benefiting from the

BPE units to handle the increase of training data.

FNMT systems without BPE units obtain low scores confirming the hypothe-

sis that they perform better when they are applied in LR conditions. FNMT2 sys-

tem performs better than FNMT1 system when translating TEXT. This confirms that

FNMT2 model, which includes more parameters, can be better option when the train-

ing dataset is big. On the other hand, translations of WEB and BROADCAST test sets

still obtained better scores by FNMT1 system than FNMT2 system.

FNMT1 improves over BPE showing the benefits of using factors in some use

cases (WEB and BROADCAST).

5 Analysis of data sparsity

We computed the coverage of the models comparing word and factored level models.

Results for training dataset under LR and HR conditions are shown in Table 7. We

measured the expressivity of the model dividing the number of covered unique words

by the total number of unique words (vocabulary used). We also measured the number

of covered tokens by the total number of tokens in order to know the percentage

LR conditions HR conditions

Coverage FRword FRfactored FRword FRfactored

Unique words 40.89% 83.50% 4.45% 20.14%

Tokens 98.66% 99.74% 98.28% 99.31%

Table 7 Comparison of the training datasets in terms of unique words coverage (number of covered

unique words / total number of unique words) and tokens coverage (number of covered tokens / total

number of tokens).
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LR conditions HR conditions

Test set Coverage FRword FRfactored FRword FRfactored

WEB
Unique words 86.55% 95.01% 84.44% 94.56%

Tokens 96.13% 98.21% 95.43% 98.39%

TEXT
Unique words 90.07% 96.08% 87.09% 95.59%

Tokens 97.02% 98.60% 96.19% 98.68%

BROADCAST
Unique words 86.90% 93.98% 84.41% 93.02%

Tokens 96.63% 98.35% 95.85% 98.10%

Table 8 Comparison of the test sets in terms of unique words coverage and tokens coverage. This is the

average of multiple references.

of tokens that are covered by each model. Finally, the third measure is the average

frequency of a token where we divide the number of covered tokens by the total

number of unique words at word level or unique lemmas at factored level. With this

last measure, we know how well a token is represented in the corpus by counting its

average frequency.

Results in Table 7 show that factored model can cover more vocabulary in both

LR and HR conditions. We can see that for LR conditions, factored representation

can model twice the number of words (83.50%) than word representation model

(40.89%). But this 40% increase only represents 1.1% of the total number of tokens

(∼47k tokens). For HR conditions, factored representation can model four times more

words (20.14%) than word representation model (4.45%), still representing ∼1%

(3.5M tokens).

We measured in the same way the coverage in each test file (see Table 8). We

observe that the unique words coverage for LR conditions is greater than for HR

conditions. This is the case at the word and the factored level. This can be due to

the fact that the 30k tokens selected for LR conditions are extracted from in-domain

data, despite that the dataset is small. Training data in HR conditions contains the

UN dataset which is big but out-of-domain. Consequently, there is a decrease of the

tokens coverage at word level. But we can see that this is not the case for factored level

(except a very little drop for the BROADCAST test file). This tells us that factored

representation makes the model more robust to domain shift.

Figure 4 compares NMT, BPE, FNMT1 and FBPE systems in terms of BLEU for

LR and HR conditions.

We observe that in HR conditions, in spite of covering slightly less unique words,

the model better learns the token representations because of their higher frequency.

Consequently, the results in terms of BLEU are better in HR conditions than in LR

conditions.

Comparing the systems, we see better results for factored models (FNMT and

FBPE) than NMT and BPE under LR conditions due to the data sparsity. We showed

that factored models better behave under LR conditions facing data sparsity issues.

For HR conditions, FNMT obtains lower BLEU than NMT. An explanation is that on

the one hand, since the training dataset is huge, the NMT model has enough examples

to perform well. On the other hand, the more complex architecture of the FNMT

model does not benefit from that, resulting in lower scores. FBPE system using also
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Fig. 4 Comparison of LR and HR conditions in terms of BLEU by NMT, BPE, FNMT1 and FBPE

systems for all the use cases.

BPE units performs the best showing the advantages of combining factored and BPE

models.

To explain this, we computed the BLEU scores at factors level for FNMT and

FBPE systems (see Table 9). FBPE repeats the factors for each BPE unit, which

seems to help for better factors modelling. We can see that the behaviour changes

completely when faced with LR or HR conditions. Using BPE units leads to process

longer sequences, which makes it difficult to model the long-distance dependencies.

This is essentially true when the model is trained with a small amount of data, as we

can see in Table 9 (LR conditions).

Model WEB (dev.) TEXT BROADCAST
Cond. LR HR LR HR LR HR

FNMT1 27.80 34.80 25.04 28.72 31.24 36.94

FBPE 27.87 36.59 21.35 31.87 30.05 37.91

Table 9 Results for Arabic to French translation in terms of BLEU at factors level for LR and HR condi-

tions.

For HR conditions, repeating the factors multiple times result in a better mod-

elling, leading to performances similar or better than word level NMT.

6 Conclusion

In this paper, we have compared various NMT models at word-level, BPE-level and

factored-level including linguistics to decompose the target words. We compared sev-

eral ways of using linguistic factors in an NMT system (FNMT with single and sep-
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arated h2o layers, interleaved FNMT and Factored BPE). Arabic to French transla-

tion has been carried out in two different conditions, using a small or large training

dataset. The systems have been evaluated with different test sets of different domains

in order to compare the behaviour of the systems. The analysis of the vocabulary

coverage showed that factored-level NMT is more robust to domain shift than other

approaches.

We have demonstrated that factored NMT models applied in low resource con-

ditions obtain better results than the rest of the models. By combining factors and

subword units (BPE), the systems are able to achieve best performance when trained

with a large training corpus, surpassing the other NMT systems by more than 1.2%

BLEU.

For future work, instead of generating all the factors in the same sequence, the

architecture can be extended to produce each factor, independently, in different se-

quences. This would solve the current limitation that the systems would only model

factors combinations which are seen in the training set. If we build the factors vo-

cabulary with each factor separately, the generalization power of the model will be

increased. In addition, more types of factors can be included without being necessar-

ily linguistically motivated like the domain.

Finally, FNMT approach can be explored for other tasks where several related se-

quences are required. For example, PoS tagging jointly with spoken language under-

standing tasks. Additionally, multimodal or multilingual machine translation models

can be extended with the factored approach adding linguistic information to help the

generalization performance.
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