
This is a repository copy of Digital twins: State-of-the-art future directions for modelling 
and simulation in engineering dynamics applications.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/158771/

Version: Accepted Version

Article:

Wagg, D., Worden, K. orcid.org/0000-0002-1035-238X, Barthorpe, R. et al. (1 more 
author) (2020) Digital twins: State-of-the-art future directions for modelling and simulation 
in engineering dynamics applications. ASCE - ASME Journal of Risk and Uncertainty in 
Engineering Systems, Part B. Mechanical Engineering, 6 (3). 030901. ISSN 2332-9017 

https://doi.org/10.1115/1.4046739

© 2020 ASME. This is an author produced version of a paper subsequently published in 
ASCE - ASME Journal of Risk and Uncertainty in Engineering Systems, Part B. 
Mechanical Engineering. Uploaded in accordance with the publisher's self-archiving policy.
Article available under the terms of the CC-BY licence 
(https://creativecommons.org/licenses/by/4.0/).

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



 

American Society of 

Mechanical Engineers 

ASME Accepted Manuscript Repository 
 

Institutional Repository Cover Sheet 

 

 

                                          Paul                         Gardener  

 
First Last  

 

 

ASME Paper Title: 

Digital twins: State-of-the-art future directions for modelling and simulation in engineering dynam

applications 
 

 

  
 

 

Authors: Wagg, D., Worden, K., Barthorpe, R. & Gardner, P. 
 

 

ASME Journal Title: 

ASCE - ASME Journal of Risk and Uncertainty in Engineering Systems, Part B. Mechanical 

Engineering 
 

 

 

Volume/Issue    ____________________________              Date of Publication (VOR* Online)   26/03/2020________ 

 

ASME Digital Collection URL: 

https://asmedigitalcollection.asme.org/risk/article-abstract/doi/10.1115/1.4046739/1

Twins-State-of-The-Art-Future-Directions?redirectedFrom=fulltext 
 

 

 

DOI: 10.1115/1.4046739 
 

 

 

 

 

 

 

*VOR (version of record) 

 
 

 



Digital twins: State-of-the-art and future1

directions for modelling and simulation in2

engineering dynamics applications3

D. J. Wagg
Professor

Dynamics Research Group
Department of Mechanical Engineering

University of Sheffield

Sheffield S1 3JD, UK
david.wagg@sheffield.ac.uk

4

K. Worden

Professor

Dynamics Research Group
Department of Mechanical Engineering

University of Sheffield
Sheffield S1 3JD, UK

k.worden@sheffield.ac.uk

5

R. J. Barthorpe

Lecturer
Dynamics Research Group

Department of Mechanical Engineering

University of Sheffield
Sheffield S1 3JD, UK

r.j.barthorpe@sheffield.ac.uk

6

P. Gardner
Research Assistant

Dynamics Research Group

Department of Mechanical Engineering
University of Sheffield

Sheffield S1 3JD, UK

p.gardner@sheffield.ac.uk

7

1 Copyright c© by ASME



ABSTRACT8

This paper presents a review of the state-of-the-art for digital twins in the application domain of engineering9

dynamics. The focus on applications in dynamics, is because: (i) they offer some of the most challenging aspects10

of creating an effective digital twin, and (ii) they are relevant to important industrial applications such as energy11

generation and transport systems. The history of the digital twin is discussed first, along with a review of the12

associated literature; the process of synthesising a digital twin is then considered, including definition of the aims13

and objectives of the digital twin. An example of the asset management phase for a wind turbine is included in14

order to demonstrate how the synthesis process might be applied in practice. In order to illustrate modelling issues15

arising in the construction of a digital twin, a detailed case study is presented, based on a physical twin which16

is a small-scale three-storey structure. This case study shows the progression towards a digital twin highlighting17

key processes including: system identification, data-augmented modelling and verification and validation. Finally,18

a discussion of some open research problems and technological challenges is given, including: workflow, joints,19

uncertainty management and the quantification of trust. In a companion paper, as part of this special issue, a20

mathematical framework for digital twin applications is developed, and together the authors believe this represents21

a firm framework for developing digital twin applications in the area of engineering dynamics.22
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1 Introduction23

Society is experiencing an era of digital transformation. It is now common to hear concepts discussed in the technical24

literature and wider media relating to this transition. Concepts such as Industry 4.0, the Internet-of-Things [1], and Big25

Data [2], amongst others, have become increasingly widely used, particularly in relation to engineering applications. Often26

mentioned in this context, and promoted as a potentially transformative idea for engineers working in all areas, is the idea of27

a digital twin. In this paper, the focus will be on modelling and simulation, and in this context, a digital twin can be defined28

as a virtual duplicate of a system built from a fusion of models and data. This is made possible by combining models and29

data using state-of-the-art algorithms, expert knowledge and digital connectivity. The potential benefit of the digital twin is30

a significant improvement in predictive capability compared with current technologies.31

Like all areas of modern endeavour, the vast majority of engineering applications are becoming increasingly reliant on32

computing – for example, creating numerical simulations that are used to inform decisions about the design and management33

of key components, structures, and systems. In the last few decades, high-performance computing (HPC) has been employed34

extensively to build increasingly high-fidelity models in the belief that this would remove model form uncertainties associated35

with the engineering application being considered. Whilst this has given considerable benefit, there are still a large number36

of engineering problems with high levels of uncertainty even after the application of HPC [3], and this serves to dispel the37

idea that increasing levels of model fidelity is a panacea, although it is undoubtedly helpful in many situations. As a result,38

obtaining a useful virtual model is no longer a question of increasing model fidelity, but now rests in the more difficult39

problem of developing trust (or conversely dealing with the remaining uncertainties) in the model(s) through other means.40

An important technical example where this situation occurs is in the problem of modelling mechanical joints. The41

physics associated with mechanical joints is still the subject of considerable research, and as a result, physics-based models42

are subject to considerable epistemic uncertainty. One reason for this situation is that many of the physical processes happen43

at the tribological scale (microns), whereas the modelling of the whole joint, and the rest of the structural behaviour, is44

required at much larger (macro) scales. Common phenomena like friction and hysteresis are difficult to model for the same45

reason. In addition, systems operating in dynamic environments are often highly sensitive to very small disturbances to the46

structure (typically assumed to be aleatory uncertainties). In the case of joints for example, small differences in tolerances,47

and other joint properties, such as friction, are highly sensitive to temperature variations in the operating environment, which48

can all lead to large deviations in the dynamic behaviour of a jointed structure. From a modelling perspective, it is very49

difficult to bring together models of all these different physical processes, and their associated uncertainties, which happen50

at different length scales, into an accurate model of a complete structure, even when large amounts of computing power are51

available.52

In parallel, an organisational example of the problems faced in creating effective simulations of modern engineering53

applications occurs in the way problems are analysed, designed and simulated as subsystems. This is a natural approach54

because most modern engineering systems are highly complex, and as a result, it makes sense to have multiple teams of55

experts carrying out computations of the subsystems in parallel. However, once this type of division is made, there is a56

natural tendency for the teams to work in silos. This silo effect, combined with the fact that the subsystems are often defined57

based on the different physics or scales involved, means that the resulting subsystem models often cannot be unified into a58

model of the complete application. This mixing of technical objectives with inappropriate organisational culture can lead to59

undesirable outcomes such as analysis paralysis [4], amongst others.60

The main transformative aspect of the digital twin is to improve predictive capability by augmenting computational61

models using data; this again reflects the wider digital transformations happening in society. Analysis of data, particularly62

through internet and social media applications, has been a very important modern phenomenon. For example, techniques63

such as machine learning are now used in order to provide bespoke targeting of consumer behaviour, such as advertising64

and other related activities. In engineering, advancements in sensor technology mean that many systems now have the65

potential to gather and process very large amounts of data. Structures are increasingly being built with sensors embedded,66

and this combined with advances in structural health monitoring (SHM) and associated data-based techniques, means that67

the potential to exploit information obtained from data is rapidly increasing [5].68

For the purposes of the applications considered here, the main idea of the digital twin is to combine these model-based69

and data-based approaches to create a virtual prediction tool that can evolve over time. In doing so, the digital twin concept70

offers the potential to assist in engineering applications for both technical and organisational problems, such as the two71

examples mentioned above. In the technical example, the main idea would be to reduce the epistemic uncertainties from72

the limitations of the physics-based modelling, using data. These data would be obtained from the real structure, which is73

called the physical twin, or laboratory tests using components from the structure – in either case, it is important that the data74

gathered are specific to the structure being twinned, as the digital twin is entirely bespoke to this structure. To address the75

organisational example, the digital twin concept incorporates a hierarchical format, enabling multi-scale and multi-physics76

processes to be incorporated, but most importantly a highly connected organisational framework that should offer solutions to77

the problem of silos, and related cultural issues. The digital twin approach also seeks to break down unhelpful organisational78

barriers (i.e. improve connectivity) by providing a logical interface of outputs and inputs from different computational models79

(in different silos), ideally by using robust Verification & Validation (V&V) methods that build trust in the subsystems prior80
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to the assembly of these into a full system digital twin.81

In terms of maturity, the digital twin is a relatively new idea, one that has attracted significant attention in many areas of82

engineering and beyond; it offers a range of highly-attractive potential solutions to engineers who are tasked with designing83

and managing ever more complex engineering systems. However, there are substantial challenges to be overcome in order84

for digital twin technology to reach full maturity.85

The aims of this paper are twofold; firstly, it is to assess the current state-of-the-art of digital twins when applied86

to engineering systems with time-dependent (i.e. dynamic) behaviour; secondly, is to summarise the outstanding open87

research problems and technological challenges. The reason for focusing on applications in dynamics is that: (i) they88

offer some of the most challenging aspects of creating an effective digital twin, and (ii) they are relevant to important89

industrial applications such as energy generation and transport systems. In a companion paper, as part of this special issue,90

a mathematical framework for digital twin applications is developed, and together the authors believe this represents a firm91

framework for developing digital twin applications in the area of engineering dynamics.92

The paper is structured as follows. In Section 2 the background to, and history of, the digital twin will be discussed,93

including examples of the current state-of-the-art in engineering dynamics. In Section 3 the process of synthesising a digital94

twin is discussed in detail. Then, in Section 5, an example of a simulation digital twin for the asset management phase of95

a wind turbine structure is presented. In Section 6, a case study of a digital twin of a small-scale three-storey building is96

presented, in order to demonstrate how a selection of model and data-based algorithms can be unified into the digital twin.97

After that, open research problems and technological challenges are discussed in Section 7, before the conclusions are given98

in Section 8.99

2 History and background to the digital twin100

The origins of the twinning concept have been attributed by some authors [6], to the work of NASA during the Apollo101

programme. The term digital twin appears to have developed from work relating to product lifecycle management (see [7]102

and references therein), although other names were being used for similar concepts in other domains at around the same103

time, for example digital counterpart [8], virtual engine [9] or intelligent prognostics tool [10], amongst others [11]. The104

term digital twin captured the zeitgeist and as a result is now typically taken as a generic term to encompass all these105

related phrases, although, as previously stated above, the meaning relies heavily on the specific context involved. The idea106

has received considerable attention since then in the area of product design, with particular overlap with existing digital107

design tools such as computer-aided-design (CAD) [12,13], big data and data-driven design [14–17], knowledge graphs and108

relations to ontologies [18, 19], middleware [20, 21] and blockchain [22].109

The concept has also been considered extensively in the domain of manufacturing processes, including autonomous110

manufacturing [6, 11], real-time manufacturing [23], computer-aided design [24, 25], additive manufacturing [26, 27] and111

more general innovations in manufacturing processes including links to cyber-physical systems [28–40].112

In terms of asset management, digital twins have been considered for tasks such as damage detection and structural-113

health/condition monitoring [10, 28, 41] and uncertainty quantification [42]. In addition to the application areas already114

mentioned, digital twins have also been considered for application in the areas of offshore drilling [43], offshore wind115

turbines [44, 45], space structures [46] and nuclear fusion [47].116

An important consideration for the concept is, how the digital twin relates to the life-cycle of the product or process in117

question [48]. The majority of applications cited above are applied to manage the performance of an engineering application118

after its design and manufacture, but a digital twin would ideally be delivered with the product at the start of its operational119

life, and would also capture all aspects of the manufacturing process [3]. Therefore, whenever possible, the digital twin120

would need to be first implemented during the design phase, and persist throughout the entire operational life of the product121

(which is called the asset management phase) [49]. In both lifecycle phases, valuable information may be provided by122

data or models aggregated from similar structures, or even from the wider population. It is anticipated that for engineering123

applications, one of the most important high-level objectives that a digital twin can be used for is structural life prediction.124

Examples including the current state-of-the-art in engineering dynamics are considered next.125

2.1 Structural life prediction using a digital twin126

In 2011, Tuegel et al. proposed a new way of estimating the life of an aircraft [3]. The authors imagined a future127

scenario where every new aircraft was delivered with a digital twin. The digital twin would represent the real aircraft (the128

physical twin) so closely that it could, for example, include the effects of manufacturing anomalies, and details of the material129

micro-structure. As a result the digital twin could be used to give ultra-realistic predictions about the life of the aircraft.130

Of course, this vision of ultra-high fidelity modelling has been a long-held ambition in many industrial design sectors.131

The example put forward by Tuegel et al. was distinguished, not only because it proposed the digital twin as a solution, but132

also because it articulated some of the key challenges to achieving this vision.133

There are three important problems that Tuegel et al. [3] describe that are common for a wide range of engineering134
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applications. The first problem is that of multi-scale modelling – called by some the tyranny of scales [50]. This term refers135

to the problem of modelling the behaviour of physical phenomena that display radically different, dominant behaviours at136

different length scales. This issue is also closely linked to the problem of dealing with different types of physical modelling at137

different scales (or domains), and creating effective interfaces between them – often given the catch-all label of multi-physics138

modelling. The second problem Tuegel et al. identified is the gap between hardware capability and software performance,139

something recognised in the HPC research community, and a major factor in limiting the ability of engineers to harness the140

full benefit of increasing amounts of computing power. The third problem is that of historical processes during the design141

stage, with the result that the historical nature of the process is a restriction to progress.142

In particular, digital computing has been applied to design and analysis to make computations faster, more efficient, and143

of higher resolution than previously possible; but often the design process is still based on the pre-digital computer methods.144

Furthermore, rather than offering more freedom to designers of complex engineering systems, the rapid advancement of145

computational methods has meant that designers are increasingly locked into existing processes. This situation is often,146

in large part, because of the necessity to do many parts of the design in parallel. Typically large teams of engineers will147

work on just one part of the overall system. This practice often creates silos, that as the computational methods become148

increasingly sophisticated, become so deeply engrained, that any form of integration with other parts of the design process149

becomes extremely difficult.150

Furthermore, the pursuit of a digital twin will involve improving physics-based modelling techniques. A key area of151

improvement will be geometry adaptation and morphing throughout the life of the structure. This may be required in order152

to capture behaviours due to manufacturing anomalies as stated by Tuegel et al. [3]. The ability to have CAD representations153

that are a one-to-one mapping of the physical twin will be necessary for certain models. In addition, with multiple models154

integrated to generate a digital twin, links such as joint models will play a vital role. Joints pose a major challenge because155

a large portion of modelling difficulties will come from subsystem interactions. Solutions to these problems may not lie156

completely in physics-based modelling itself. Data augmentation may provide an additional avenue for correcting physics-157

based models, so that they more closely reflect the physical twin. This crucial ‘building block’ interacts with all others, and158

will be discussed further in the following sections.159

2.2 Verification and validation using digital twins160

For engineering dynamics there is a well-established set of techniques for Verification and Validation (V&V). More161

specifically, as most dynamics applications are assumed to have linear dynamics, modal analysis & testing has become the162

de facto method for validation against measured data – see for example [51] and references therein. This methodology makes163

a direct connection between the model(s) and the measured data using the concept of modes of vibration. In fact, the methods164

have been extended so that operational modal analysis can be applied using only response data recorded from the structure165

under normal operation conditions [52]. More generally the vibration modes can be interpreted in both a physics-based166

model context (typically a finite element model representing the geometric and material properties of the system) and as an167

identification technique (or data-based model).168

A more general framework for verification and validation processes encompasses the concepts of white, grey and black-169

box models [53, 54]. Starting from the assumption that a model can be built with physics-based reasoning, then the object170

of interest is called a ‘white-box model’. At the other end of the spectrum, ‘black-box’ models are derived entirely from171

measured data, with no assumed knowledge of the physics at all. In between these two extremes, grey-box models are a172

combination of both physics-based reasoning and data. This combination of models and data is exactly the format required173

for a digital twin. That said, it is natural to ask; what is the difference between the digital twin and a validated model? The174

answer will be context specific, but a digital twin will typically be time-evolving and make much more extensive use of175

data [3].176

In structural dynamics and other branches of computational mechanics, there have been many previous advancements177

in this area. For example, finite element updating methods adjust model parameters based on experimental observations,178

in order to match the model parameters to the measured experimental system [55]. This type of model updating will need179

to be a key functionality of the digital twin, with frequent updates, ultimately in near real-time, creating the time-evolving180

property required of the twin. This would provide a mechanism for performing structural health monitoring and would aid181

asset management decision making. In combination with updating, the digital twin can make use of a range of data-based182

algorithms; e.g. to carry out condition monitoring of the structure, based on an evolving history of measured data. Already,183

machine learning methods are proving to be some of the most productive algorithms used for this purpose [5, 56], and this184

will continue to develop as a key part of digital twin technology, see for example [57, 58].185

In recent years, a number of application-specific guidelines have been proposed for implementing the model validation186

process (verification is discussed in Section 5.3). For example, one of the first such frameworks to focus on physics-based187

engineering models was that produced in 1999 by the AIAA for computational fluid dynamics (CFD) problems [59]. These188

frontrunners have been followed more recently by a series of standards introduced by the American Society of Mechanical189

Engineers (ASME), currently comprising the ASME Guide for V&V in Computational Solid Mechanics in 2006 [60] and the190
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Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer in 2009 [61]. These documents191

provide a firm basis for the application of validation methods, and many aspects of these frameworks can be transferred to192

dynamic problems. However, validation of nonlinear dynamical models presents additional challenges that are yet to be193

fully addressed, and an issue of particular interest is how to account for potential bifurcations in the response of a nonlinear194

system.195

3 Synthesising a digital twin196

As discussed in the previous Section, validated models and process control are both natural starting point for synthe-197

sising a digital twin. Of course, the digital twin is much more than just a validated model or a control process. In this198

context, a digital twin needs to be a robustly-validated, time-evolving virtual duplicate of the physical twin that aids decision199

making. Ideally the digital twin would be synthesised during the design phase, and continue to evolve during manufacture,200

commissioning, operation and finally decommissioning.201

3.1 Process control and condition monitoring202

It is important to note that some aspects of the digital twin concept have evolved from condition monitoring of plant, or203

supervision of other processes (i.e. process control). At a most basic level, supervision is the first desirable aim; beyond this,204

many industrial plant and asset management systems have highly-developed operational capabilities. This type of interactive205

capability represents the second category, which will be called operational, meaning that the operational decisions are206

informed and supported by relevant information. Both supervision and operational capabilities are long established, and207

although some authors mention these as digital twins, here they are considered to be pre-digital twins, meaning a system208

that has the capability to be a digital twin but currently does not contain all the essential elements (where essential elements209

means those elements that give the required functionalities required of a digital twin, which in this paper are taken to be;210

simulation; learning and management).211

The next level of sophistication is that described by Tuegel et al. [3], and is categorised as a simulation digital twin. It is212

important to note that this typically incorporates both supervision and operation into its processes as well as simulation. In213

this sense, it builds on and enhances the pre-digital twin capabilities by adding the ability to simulate, based on models and214

data, the physical twin. This type of digital twin will also be able to allow the user to visualise a graphical interpretation of215

the physical twin, and carry out predictions to support design or operational decisions. As stated in the Introduction, here a216

key requirement of a simulation digital twin is that it should be able to provide the user with a quantitive assessment of the217

level of trust (via uncertainty quantification) for each simulation or prediction it produces.218

Building on the concept of a simulation digital twin (or simulation twin) are two more levels of sophistication, both of219

which are currently aspirations for the digital twin. The first advance is to add an increased degree of ‘intelligence’ to the220

digital twin, to give an intelligent digital twin. This object includes all the capabilities of the simulation twin, adds the ability221

to learn from data (via machine learning) and also adds increased levels of decision support and scenario planning.222

The final level of sophistication is the digital twin that allows the physical twin to be autonomous. As before, the223

digital twin would include all previous capabilities, and add the ability for the twin to carry out all decision making (within224

prescribed parameters) and manage the asset concerned with minimal human intervention. There is also the possibility225

of adding higher levels of learning and intelligence capabilities, via artificial intelligence techniques, although this is not226

discussed here.227

The hierarchy of possible capabilities is shown in Fig. 1.228

A key distinguishing feature of a digital twin (and hence the dividing line between Levels 2 and 3 in Fig. 1) is that it can229

be used as a predictive tool. A process control interpretation naturally relates to asset management tasks, but aims for the230

twin can also be defined in the design phase, as will be discussed later in Section 4.1.231

4 Context specific aim and objectives of a digital twin232

For nearly all applications, the primary aim of creating a digital twin is to enable the user to have as much information233

as possible about the current status and future behaviour of the physical twin, such that optimal decisions can be made. The234

precise objectives of the digital twin will depend on the context that is required, but a typical simulation twin for a dynamics235

application might allow the user to:236

1 quickly understand the outputs with fast (possibly real-time if required) visualisation of results;237

2 incorporate and update the geometry of the digital twin through integrated computer-aided-design (CAD);238

3 navigate through the CAD model to specific components or sub-assemblies of interest and perform isolated tasks;239

4 identify spurious behaviour, potential damage or the need for system maintenance;240

5 view a hierarchical representation of physical behaviour at different length scales;241

6 interrogate the current state of the structure, whether in real-time or historically, and perform data analysis (diagnosis);242
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Fig. 1: A capabilities hierarchy for digital twins, where each level incorporates all the previous capabilities of the levels

below

7 simulate future scenarios to make predictions (prognosis & decision support);243

8 design controllers, perform hardware-in-the-loop simulation and/or set control processes for the physical twin;244

9 quantify a level of confidence (trust) that can be given to simulation outputs.245

Note that the abilities to predict future outcomes, and quantify the level of confidence in these predictions are particularly246

important features. The synthesis of a simulation digital twin during first the design, and then the asset management phases,247

is now considered.248

4.1 Digital twins during the product design phase249

The design phase is considered first here, as envisaged, for example, by Tuegel et al. [3], where a new product (an250

aircraft in the case cited) is delivered to the customer with a digital twin that can then be used for asset management. Design251

processes are also context dependent, and for the broad context of dynamics applications a typical standpoint is to use the252

‘Design V’ model as shown in Fig. 2, that emphasises the role of verification and validation during the design manufacture253

and commissioning.254
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Fig. 2 (a) shows the traditional V model, where starting at the top left with customer requirements, the design is first255

developed going down the left-hand part of the V to manufacture. The product is then verified and validated as the process256

continues up the right-hand side of the V until commissioning is complete. In this context, verifying is checking that all the257

tasks in the process are carried out correctly (Fig. 3: Did we build the thing right?), and validation is checking to see that258

the final product delivers the required overall performance (Fig. 3: Did we we build the right thing?). Fig. 2 (b) shows how259

the V model can be modified to include a digital twin cycle. In this scenario, the verification and validation process is used260

to build a digital twin, starting with component-level testing data, and progressing to subsystem and finally full (or as full as261

possible), system tests. Note also, that a new step can be included for a first stage validation of the digital twin, shown in262

Fig. 2 (b) as the culmination of the digital twin cycle. This is a first stage validation, because the digital twin will need to be263

regularly re-validated through-out its life, in order to ensure that it can continue to deliver highly trusted outputs.264

As the digital twin is a combination of models and data, the first stage of the cycle shown in Fig. 2 (b) is the development265

of physics-based models through the detailed design phase. These models are then augmented with data collected from the266

product testing and commissioning phase to build a product-specific digital twin. A specific example of this type of data267

augmentation process will be given in Section 5.5.268
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Fig. 3: Schematic representation of the W model for product design. In this case a specific virtual prototyping stage is

included. The virtual prototype is then used as the basis for a digital twin in the second cycle

To be more specific, the initial design phase can be separated from the virtual modelling and commissioning phases,269

as shown schematically in Fig. 3, where the model now resembles a W. In this case, a specific virtual prototyping stage is270

included that precedes the testing and validation phase. The virtual prototypes then form the basis for synthesising the digital271

twin in the second part of the cycle. Note that the idea of a W model has been previously proposed in the context of software272

engineering [62–64]. The concept is somewhat different from the idea proposed here. For example in [62] the W model273

defines one V for the component development process, whilst the other V is for the system development process, and these274

two V’s are integrated into a single overall method.275

In this context, the primary aim of the digital twin is to reduce uncertainties by incorporating component/subsystem276

data, and where possible, shorten the testing and validation phase for the full system based on the assumed reduction in277

uncertainty. Another important consideration is how the digital twin will transfer into the asset management phase, and this278

is discussed next.279

4.2 Digital twins during the asset management phase280

Assuming the digital twin has already been synthesised during the design phase, it then needs to be extended into the281

asset management phase. To do this, the required digital twin capability level is first selected, typically levels 3,4 or 5, as282

shown in Fig. 1. Then, depending on the context and the required functionality, the essential elements are selected, based on283
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the required aim and objectives of the digital twin. For the selected essential elements, a matrix of building blocks can be284

created, and a representative example is shown in Fig. 4, that for the purposes of giving insight, includes all the capability285

levels from Fig. 1.286
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Fig. 4: Schematic representation of the building blocks required for the five levels of digital twin. Note that only a selection

of the possible process building blocks are shown in the workflow. Moving from left to right each block incorporates

the functionality of the previous block. Solid black arrows indicate new functionality, and white arrows indicate no new

functionality. P/T is physical twin, V & V is verification and validation

Here it can be seen that the pre-digital twins do not contain all the essential elements required for a digital twin; neither287

do they have the key distinguishing features of a digital twin, namely the ability to predict, learn and manage. Within the288

matrix, individual building blocks are shown, although it should be noted that these are indicative rather than prescriptive.289

The exact requirements will depend on the precise context. Note also that only a selection of the possible process building290

blocks are shown in the workflow.291

The capability levels in Fig. 4 increase from left to right. Furthermore, moving from left to right, each building block292

incorporates the functionality of the previous block. Solid black arrows indicate that a new functionality has been added,293

while white arrows indicate no new functionality. Again this arrangement should be regarded as indicative rather than294

prescriptive, as specific choices will be made by the digital twin designer. For example, moving from Level 3 to Level 4295

in the Numerical Models element adds model updating and grey-box modelling capability in Fig. 4, indicating an increase296

in sophistication of the new level. It should be noted however, that changes between levels will be dependent on the exact297

context of the digital twin.298

An important distinction is made between Level 3, and Levels 4 and 5, with regards to the user. In Level 3, it is assumed299

that the user is responsible for all the ‘cognitive’ tasks, such as deciding which workflow processes to run, making decisions,300

and the overall management of the physical twin. At Levels 4 and 5 some of these tasks are anticipated to be incorporated301

into the digital twin functionality. This matter is a key area of future development for digital twin technology. The discussion302

is now extended further by using the example of a simulation digital twin.303
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5 Example elements of simulation digital twin304

As an example, a simulation twin for the asset management phase of a wind turbine, is determined from the matrix in305

Fig. 4. A schematic representation of the simulation digital twin is shown in Fig. 5.306

Fig. 5: Schematic representation of a simulation digital twin during an asset management phase, showing the essential

elements for the simulation twin and their interrelations

Here, data sets are recorded from the physical twin, and control and scheduling commands fed back as required (enabling307

supervision and operation). The recorded data (potentially in real-time and from similar or legacy sources) are used for tasks308

in combination with the numerical model(s) and physical test bed(s) (which can include further online devices, systems or309

databases) to give the required simulation capability. The interaction of these different elements is coordinated by a workflow,310

which also provides the user with visualisation and quantitative feedback.311

The concept of workflow is well established in the domain of software engineering [65–69] and business process man-312

agement [70]. Several authors have considered the problem of verifying the soundness of workflows, for example [71–73].313

In the context of this current work, the role of the workflow is to deliver and coordinate all the required processes that314

the digital twin is expected to perform. There must also be a user interface enabling commands to be received by the digital315

twin and also to provide quantitative and visual feedback. Once the commands are received, the workflow will coordinate316

and sequence the required processes, based on the aims and objectives of the digital twin. The required processes themselves317

can be built from relevant algorithms coordinated within the workflow (these algorithms can be aligned to the building blocks318

shown in Fig. 5).319

The example considered here is of a simulation twin requiring uncertainty quantification (UQ), and so it shall be assumed320

that the required algorithms are:321

1 physics-based modelling;322

2 software integration and management;323

3 verification & validation;324

4 uncertainty quantification;325

5 data-augmented modelling;326

6 output visualisation.327

In addition to a workflow process related to each building block, it is possible that additional workflow processes can328

be created by combining and further augmenting these underlying building blocks. For the current example of a simulation329

twin, each of the separate building blocks listed above are now discussed briefly.330

5.1 Physics-based modelling331

Physics-based modelling is a well-established field within engineering. In essence, it is the process of using knowledge332

about physics, based on experimental observations, in order to construct mathematical representations of the system of333

interest. This takes many forms in engineering, from first-principles models, to approximation-based techniques such as334

finite element analysis (FEA), computational fluid dynamics (CFD) and multi-body physics models. Of course, a key starting335

point in the development of many digital twins will be the generation of physics-based models (which will be formed from336

expert elicitation).337

It is important to recognise that, despite the application of large amounts of computing power, the vast majority of338

engineering applications do not have a single ultra-high fidelity model that captures all possible physics; this is because339
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it is typically impossible to simultaneously replicate the behaviour of all the physical processes happening, at all scales340

for anything except the most simple applications. As a result, engineers typically use multiple models, capturing different341

physical processes, at different length scales, and with a range of fidelities, for the same system. The essence of the digital342

twin concept is that these models can be augmented with available data, and beyond that with each other (a process that343

overlaps with existing techniques of model verification [74]). The primary purpose of this data and model augmentation is344

to increase the confidence in the prediction being made with the physics-based model.345

Within the workflow, two other important processes are required of the physics-based models. The first deals with346

combining multiple models of the structure into the complete digital twin. Typically, companies will produce multiple347

models of the structure. This normally occurs due to the department divisions within an organisation, due to expertise or the348

design process. These models will capture different physics, be modelled at different fidelities, and be at different scales e.g.349

component, sub-assemblies. As a result, new opportunities for validating the complete digital twin occur; whereby these350

validated component or subsystem models are used to provide an understanding of the validity of the (full system) digital351

twin. By combining multiple models, the workflow provides significant gains on the current concepts of isolated validated352

models.353

The second scenario occurs when specific models for particular tasks are needed at a particular level of efficiency. For354

example, a high-fidelity FEA model may be constructed, but may be too computationally expensive to run for an online355

fatigue estimation task for a hotspot of interest (although with the increase in computational power this may become a less356

frequent problem). Instead a bespoke, more efficient, model may be generated from the FEA model for this task; this could357

be a reduced-order model, as commonly utilised in dynamics applications, or could be an efficient surrogate or emulator of358

a complex computer model [75, 76].359

5.2 Software integration and management360

The set of physics-based models utilised as part of a digital twin will need managing and integrating. The variety of361

solvers, software providers, and outputs will all require interactions with a main user interface (and potentially with each362

other) via workflows; the question is how might this be achieved? One possible solution is that the digital twin workflow will363

coordinate, and call as required, other software packages or bespoke pieces of code to perform required subtasks – this is364

called loose coupling by [3], as opposed to using a single solver for all the physical processes, which is called tight coupling.365

In this sense, the workflow would operate (at least in part) as a ‘wrapper’ with a user interface. Multiple existing subtasks can366

then be run in parallel, or cross-coupled to create new super-tasks, some of which may not have been previously achievable.367

However, linking pieces of proprietary software together is fraught with its own set of difficulties. In addition to this,368

writing bespoke pieces of code for each application could be considered inefficient in the long term. Several authors have369

suggested using the concept of blockchains for digital twins, based on open source code [22, 34]. It has been suggested that370

blockchains could be used to implement a range of different features, based on a clearly-defined software architecture, for371

example a ‘visual program’ interface, that enables users to connect ‘programming blocks’ together to obtain the required372

functionality. However, it seems that that the blockchain concept has evolved more toward secure transaction applications,373

which may not be so relevant in engineering, except where there is overlap with connected business processes. Whatever374

software architecture is used, the workflow will need to encode a series of logical steps in each process (for example [71]),375

in order to capture the sophisticated level of task coordination required.376

Key to any implementation, is effective representation of coupled physical processes, either through multi-physics mod-377

elling or coupling software/simulation codes to capture the required behaviour; this will often be made more challenging due378

to large differences in temporal and spatial scales.379

5.3 Verification & Validation380

Verification is defined by Oberkampf and Roy as ‘the process of determining that the numerical algorithms are correctly381

implemented in the computer code and of identifying errors in the software’ [74]. The subject is divided into subcategories382

of software quality assurance (SQA) and algorithm verification, where SQA relates to checking the interactions of code383

as part of a wider software, and algorithm verification is interested in the correctness of the implementation of particular384

mathematical formulae. These two categories must both be implemented and used for a digital twin to be realised, as in385

practice, fundamental verification will be expected as part of employing any commercial software. Here, the particular chal-386

lenges in verifying the software integration and management strategies described in Section 5.2 (part of SQA) are discussed.387

Moreover, an outline of the verification (algorithm verification) of machine learning and black-box approaches that may be388

incorporated as part of data-augmented modelling is given.389

A fundamental task of a digital twin is to perform predictions. To gain any confidence in these predictions, validation390

must be conducted. The process of validating a model requires: (i) quantitatively measuring the accuracy of the model output391

against experimental data, (ii) providing a measure of confidence in the predictions, both when interpolating or extrapolating,392

in the models intended context of use, (iii) determining whether the accuracy of the model is appropriate for the intended393

use [77]. In the context of a digital twin this becomes the process of validating several models, with different outputs, where394
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(as previously mentioned) the tyranny of scales applies. Consequently, validation must be considered at a system level in395

combination with the sub-model level. Moreover, it is argued that a digital twin cannot be fully realised without incorporating396

the quantification and propagation of uncertainties. As a result, validation processes and metrics will need to accommodate397

these uncertainties.398

In order to perform validation, data sets must be obtained. Obtaining data sets is a particular challenge for many full-399

system structures. It may be possible to obtain data for one time instance, but impossible to acquire data for all possible400

outcomes a user may wish to model or for multiple repeats. The validation process therefore needs to be conducted for parts401

of the digital twin where data are obtainable.402

5.4 Uncertainty quantification403

The aspiration of a digital twin is: a close one-to-one mapping between a physical and virtual system, which is only404

achievable through acknowledging uncertainties involved in both physical observations and computer models. A classifica-405

tion of these uncertainties, outlined by Kennedy and O’Hagan [75], follows:406

- Parameter uncertainties – computer models inevitably contain parameters which may be measurable (in which case407

there is parametric variability) but in most cases are not fully known or accessible.408

- Model discrepancy – following the famous quote by Box [78] that ‘All models are wrong but some are useful’, it is409

understood that even when the parameters are deterministic and ‘truly’ known (in an engineering context this will occur410

when the parameters have physical meaning), there will still be mismatches between the model output and the ‘true’411

physical process (without observational uncertainty).412

- Residual variability - given the same set of inputs the process may produce different outputs, due to a chaotic (due to413

not knowing the inputs to the required accuracy) or stochastic nature. This is often a problem with the inputs not being414

sufficiently detailed.415

- Parametric variability – the situation in which the model is utilised may vary because inputs cannot be fully controlled416

or specified. A model may however require a specification of a single deterministic value, which should be varied based417

on knowledge of the process.418

- Observational uncertainty – measuring any real world structure will result in a level of measurement error or noise.419

- Code uncertainty – most computer models are sufficiently complex that the output from a model is unknown until it is420

evaluated. An approach commonly utilised within surrogate modelling is therefore to treat it as uncertain at locations421

where the computer model has not yet been evaluated.422

The task of uncertainty quantification (UQ) in a general context is to provide a measure of these sources of uncertainty,423

often jointly, in order to reflect the overall level of uncertainty inherent in both the model predictions and the gathered data. It424

is common practice to subsequently propagate the identified uncertainties through the model in order to evaluate variability in425

the predicted quantities of interest. Comparison of these predictions with experimental data over some appropriately specified426

validation domain lies at the heart of model validation, discussed in Section 5.3. The core processes involved in uncertainty427

quantification are model selection and parameter estimation (in different contexts, referred to as system identification or428

model updating). The processes of quantifying uncertainty in parameters may be achieved via a variety of approaches.429

Linear and non-linear regression are widely used in a frequentist context, but make an assumption that parameters are fixed430

but unknown and offer a limited characterisation of parameter distributions. Bayesian methods [79] have proven hugely431

popular in recent years with application of Markov Chain Monte Carlo (MCMC) methods (e.g. the Metropolis Hastings432

algorithm [80]) being key to their practical application. Such techniques offer the possibility of building a detailed description433

of the distributions of uncertain model parameters at the cost of being computationally demanding; computational cost434

concerns for challenging distributions are addressed to some extent through developments of the basic MCMC algorithm435

(e.g. Transitional MCMC [81]). With regard to model selection, and the errors that will inevitably occur as a result of436

the computational model not being able to perfectly reflect the underlying physics of the modelled process, there are two437

principle schools of thought. The effect of model form error/discrepancy is typically handled through a choice to either438

subsume this error within the parameter estimates, potentially biasing them (something of particular concern in cases where439

the parameters have physical meaning); or to explicitly model the discrepancy as considered in Section 5.5. The tradeoff440

between these approaches is considered in more detail in [82].441

In a digital twin context, the uncertainty quantification process may involve application of techniques from the general442

toolbox of methods for UQ to multiple contributing models. The process is complicated by the fact that system-level443

predictions may be the result of result of multiple, interacting sub-models. If there is coupling between these models (for444

example the bidirectional coupling typically required in multi-physics or multi-scale model; or in multi-level models where445

parameters at one level form states at another level [83]), the complexity of the UQ task grows substantially. Further,446

decision making on the basis of multiple, uncertain model outputs is a substantially more complex task than for a single447

model. Ensemble forecasting, where weightings are applied in a principled fashion to the predictions of multiple generating448

models, offers a potential direction of travel in this area [84].449
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Finally, a key distinguishing feature of a digital twin is their evolution over time. The implication here is that any450

uncertainty quantification technique may need to operate in, or close to, real time – a major constraint on many current451

technologies. Achieving real-time (or near real-time) UQ for a digital twin may require the development of highly computa-452

tionally efficient estimation techniques [85]; the adoption of fast-running statistical surrogates that approximate the response453

of the underlying computational models within the digital twin [86, 87]; or periodic updating when differences between the454

physical and digital twin outputs are deemed to have occurred.455

5.5 Data-augmented modelling456

It is never possible to fully capture all possible physics affecting a structure within a computer model, regardless of457

the level of fidelity. Consequently, a digital twin cannot be formulated solely from the outputs of physics-based computer458

models if the aim is to achieve ultra-realistic predictions. As outlined in the uncertainty quantification section, this problem459

is captured by the model discrepancy term. Using the knowledge that computer modelling alone will provide inadequate460

solutions to generating a digital twin, models must be augmented using information available from data in order to improve461

predictive capabilities.462

One approach to data-augmented modelling assumes that a computer model can be embodied as [75],463

z(x) = y(x)+ e = η(x,θ)+ δ(x)+ e (1)

where z(x) are the observations of the system outputs y(x), which are subject to uncertainties represented by the error term464

e. The bias (or model discrepancy)-corrected computer model outputs y(x) are functions of the inputs x. Equation 1 states465

that y(x) is equal to the sum of the computer model η(x,θ) and the model discrepancy δ(x), where the θ are parameters of466

the computer model.467

Equation 1 provides a framework for utilising additive machine learning methods in order to infer the model discrepancy468

and noise process. Without acknowledgement that model discrepancy exists and parameters inferred during uncertainty469

quantification will be biased and/or overconfident, which will lead to inaccurate predictions [88]. More generally, grey-470

box modelling — the combination of a white box (a physics-based model) and a black box (from machine learning or a471

statistical process) — encompasses the range of approaches whereby machine learning methods are inserted into physical472

model structures such that unknown physics can be accounted for and inferred from data.473

5.6 Output visualisation474

Digital twins will organise a vast amount of information, most of which will be processed through well-established475

visualisation techniques. In addition, new methods of data visualisation will become possible. Notably, augmented/virtual476

reality or augmented/virtual inspection, as proposed by Moreu et al. [89] are expected to become more prevalent. By having477

a one-to-one mapping in the virtual domain, inspection tools can be combined in real time with the outputs of the digital478

twin, to guide and inform inspectors.479

6 Case study: Towards a digital twin of a small scale three-storey building480

In order to illustrate the philosophy of moving from pre-digital-twins to a digital-twin, specifically one incorporating481

elements of levels 3 and 4 of a digital twin, a three-storey structure is introduced as a case study. In this scenario, the482

experimental test structure is taken to be the physical twin with the asset management objective being to construct a digital483

twin that can predict and monitor the accelerations at each of the three storeys.484

In between the top two floors of the physical twin is a ‘bumper’ mechanism — two aluminium blocks, where one is485

attached to the top floor and the other to the middle floor. When specific excitation and initial conditions are met, the two486

blocks come into contact, introducing a harsh nonlinearity. This nonlinearity provides a demonstration of when traditional487

approaches to generating a validated model may fail. As a result, technologies are presented that move towards the aspiration488

of a digital twin.489

In this case study, a scenario is imagined in which the structure is designed to operate under a random excitation applied490

at the first floor at a consistent forcing level. In the design and construction phase of the physical twin it is assumed that491

the ‘bumper’ mechanism will not come into contact, and therefore the system is treated as linear in the initial modelling492

stage. This was decided as under initial testing there was no activation of the ‘bumper’ mechanism. This reflects common493

decisions made within industry, where often due to modelling difficulties, computational capacity and prior assumptions a494

simplified (often linear) computer model is generated, as long as it provides adequate predictive performance. Once in the495

operational phase and under the same band-limited white noise forcing level, the ‘bumper’ mechanism of the physical twin496

is shown to occasionally introduce the harsh nonlinearity. The case study therefore reflects common real world scenarios497

whereby unforeseen behaviour occurs from the physical twin, and the digital twin is expected to replicate or at least inform498
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the operators of these events. This case study therefore presents some of the challenges and technologies required in creating499

a digital twin.500

6.1 Experimental setup and data gathering501

The physical twin is illustrated in Fig. 6 and has three storeys. Each floor is constructed from an aluminium block with502

a mass of 5.2 kg and dimensions 350×255×5 mm (L×w×h). The floors are joined by vertical columns, with each column503

having a mass of 55 g and dimensions 555×25×1.5 mm. The blocks used to connect the columns to the floors have a mass504

of 18 g and dimensions 25×25×13 mm. For each of these connections, four Viraj A2-70 grade bolts were used with a mass505

of 10 g each.

Fig. 6: The three storey structure physical twin — a schematic diagram detailing the shaker attachment and accelerometer

positioning

506

The system is excited by a shaker attached at the first floor and a transducer is used to measure the force applied by the507

shaker. The experimental data were acquired using an LMS CADA system connected to a SCADAS-3 interface. Data were508

recorded at a sampling frequency of 51.2 Hz using piezoelectric accelerometers fixed to each storey as shown in Fig. 6. The509

structure was consistently excited with a 25.6 Hz band-limited white noise source at the same excitation level.510

Three data sets were collected. Each of the three data sets were 20-second observations of the structure under the511

random excitation source. In the first two data sets, used as a training and testing set in the following analyses, the ‘bumper’512

mechanism did not come into contact. The third data set is a scenario in which there was contact in the ‘bumper’ mechanism.513

6.2 Initial Modelling: System identification514

Although the physical twin is ultimately a nonlinear system, the initial data from the physical twin in operation did not515

include any contact in the ‘bumper’ mechanism. For this reason the initial modelling stage assumed a linear model with516

which to perform system identification. Frequency response functions (FRFs) for the system, shown in Fig. 7, indicate that a517

three-degree-of-freedom model of the physical twin should be sufficient to capture the main dynamics of the structure. The518

proposed model is given by,519

ÿ1 = (Fs − k1y1 − k2(y1 − y2)− c1ẏ1 − c2(ẏ1 − ẏ2))/m1

ÿ2 = (k2(y1 − y2)− k3(y2 − y3)+ c2(ẏ1 − ẏ2)− c3(ẏ2 − ẏ3))/m2

ÿ3 = (k3(y2 − y3)+ c3(ẏ2 − ẏ3))/m3 (2)
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where {mi}i=1:3 are the masses, {ci}i=1:3 are the damping coefficients and {ki}i=1:3 are the stiffness coefficients for each520

of the three floors (indexed by i). Additionally the force, displacement, velocity and acceleration terms are denoted as, Fs,521

{yi}i=1:3, {ẏi}i=1:3 and {ÿi}i=1:3 respectively. The physics-based model selected here is analytical, however the principles522

and techniques discussed are applicable to more complex model forms, such as finite element or multi-physics models.523
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Fig. 7: FRFs between the first floor and the accelerations from each of the three floors

s

Parameters for this model were identified using the Self Adaptive Differential Evolution (SADE) algorithm. For full524

details of this algorithm, the reader is referred to the original paper [90]; for details of how it is implemented as an identifi-525

cation method, see [91, 92]. Briefly, as in all evolutionary optimisation procedures, a population of possible solutions (here,526

the vector of parameter estimates), is iterated in such a way that succeeding generations of the population contain better527

solutions to the problem in accordance with the Darwinian principle of survival of the fittest. The problem is framed here528

as a minimisation problem with the cost function defined as a normalised mean-square error (NMSE) between the measured529

data and that predicted using a given parameter estimate,530

Ji(θ) =
100

Nσ2
ÿi

N

∑
i=1

(ÿi − ˆ̈yi(θ))
2 (3)

where σ2
ÿi

is the variance of the measured sequence of relative accelerations and the caret denotes a predicted quantity; N is531

the number of ‘training’ points used for identification, and θ is the parameter. The total cost function J was then taken as the532

average of the Ji. Previous experience has shown that a cost value of less than 5.0 represents a good set of model predictions533

(or parameter estimates). In order to generate the predictions ˆ̈yi ,the coupled equations (2) were integrated forward in time534

in Matlab using a fixed-step fourth-order Runge-Kutta scheme for initial value problems. The excitations for the predictions535

were established by using the measured forces. The SADE identification scheme is computationally expensive, with the536

main overhead associated with integrating trial equations forward in time. For this reason, the training set (or identification537

set) used here was composed of only N = 400 points. To avoid problems associated with transients, the cost function was538

only evaluated from the final 200 points of each predicted record. The first of the four data sets where the physical twin539

exhibited linear behaviour is used as the training data set.540

The SADE algorithm was initialised with a population of randomly-selected parameter vectors or individuals. The541

parameters were generated using uniform distributions on specified initial ranges. The initial ranges (estimated based on542

engineering judgement) were [4.5,7] for the masses, [0,6] for the damping and [0,2× 105] for the stiffness. A population of543

200 individuals was chosen for the SADE runs with a maximum number of generations of 100. In order to sample different544

random initial conditions for the DE algorithm, 10 independent runs were made. Each of the 10 runs of the DE algorithm545
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Table 1: Parameter estimates from 10 independent SADE runs

Parameter Best Maximum Minimum Mean Standard Coefficient

Deviation of Variation

m1 4.864 4.887 4.501 4.763 0.140 0.029

m2 5.353 6.884 5.353 5.976 0.443 0.074

m3 5.380 6.304 5.380 5.840 0.262 0.045

c1 4.541 6.000 3.242 4.913 1.010 0.206

c2 0.000 0.083 0.000 0.011 0.027 2.418

c3 0.000 1.172 0.000 0.349 0.461 1.323

k1 (×103) 4.100 4.425 2.887 4.012 0.505 0.126

k2 (×103) 4.146 4.768 4.058 4.303 0.212 0.049

k3 (×103) 4.906 6.134 4.906 5.467 0.347 0.064

J 1.620 2.457 1.620 2.042 0.307 0.150

converged to a good solution to the problem in the sense that cost function values of around 2% or below were obtained in all546

cases; the summary results are given in Table 1. The best solution gave a cost function value of 1.620. A visual comparison547

of the ‘true’ experimental responses for an unseen test data set (the second data set where the ’bumper’ mechanism did not548

make contact) and the predicted response given the best parameter set is given in Fig. 8.549
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Fig. 8: SADE model predictions on testing data (no ‘bumper’ contact)

These results show that the objective of the digital twin has been met. Based on the validation metric (NMSE) the550

digital twin is shown to have good performance on the test set. Traditionally this digital twin would then be expect to operate551

for the duration of the structure’s life. The process shown here compares to industry norms, in which a model may be552

deterministically calibrated and validated and expected to predict the structure performance. However, the calibrated model553

is then applied to the third data set, in which the ‘bumper’ mechanism comes into contact, introducing a harsh nonlinearity.554

Predictions of the digital twin in this region fail as presented in Fig. 9. The NMSE for these predictions are 20.644, 55.724555

and 34.421 for the acceleration at each floor. This is compared to, 0.317, 1.640 and 1.928 on the training data set and 0.417,556

2.877 and 3.778 on the test data set. The shows that the model has failed in its objective of predicting the accelerations at557
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each floor in the new context.558
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Fig. 9: SADE model predictions on validation data (‘bumper’ contact)

6.3 Uncertainty Quantification559

Moving towards level three of a digital twin means incorporating knowledge about the uncertainty in the system. Given560

the same physical model and training, testing and validation data sets, Bayesian calibration (or system identification) was561

performed. By incorporating uncertainty estimation within the workflow allows the extraction of more information about the562

performance of the digital twin.563

In this case study Markov Chain Monte Carlo (MCMC) — using the Metropolis Hastings algorithm — was used to564

perform Bayesian inference for the same linear analytical model (Equation 2). A joint Gaussian likelihood (the product of565

the Gaussian likelihood for each floor) was used, where the noise variance was fixed (σ2 = 3× 10−3) reflecting engineering566

judgement of the sensors. Gaussian priors were also formulated for the mass, stiffness and damping coefficients where the567

mean for each prior was the best fit from the SADE analysis (shown in Table 1), with variances of σ2 = 10 for the mass and568

damping coefficients and 1× 108 for the stiffness coefficients. Four MCMC chains were run in parallel with random start569

locations and the R̂ statistics measured to check convergence. As Bayesian parameter estimation is not the topic of this paper570

the reader is referred to [80, 82] for more details on MCMC for uncertainty quantification.571

Four independent MCMC chains were run all initialised at different random initial conditions. 10000 samples were572

obtained with a burn-in of period of 2500 samples. The R̂ statistics were checked for all the parameters. It was found that573

although the chains had satisfactorily converged, the likelihood was relatively insensitive to the damping coefficients. Every574

twentieth sample was taken from the first chain, this is performed in order to protect against any residual autocorrelation575

in the chains. The estimate parameter distributions from the MCMC analysis are shown in Fig. 10. It can be seen that the576

values estimated by SADE (Table 1) are all within the estimated distributions apart from the first damping term c1. This again577

shows the difficulty of estimating damping, due to the relative insensitivities in the acceleration in a lightly damped metallic578

structure — confirmed by the high coefficient of variation in the SADE estimates. This shows the information gained about579

the structure from uncertainty quantification.580

The output predictions for these samples are shown on the testing (no ‘bumper’ contact) and validation (‘bumper’581

contact) sets in Figs. 11 and 12. These figures illustrate good predictive performance for the test data set; however, as582

expected, they fail to predict the validation set. The histogram of the NMSEs for the outputs from the parameter samples are583

shown in Fig. 13, stating that the model performs well on the test data and fails on the validation data. The figure also shows584

that the SADE NMSE results are at the lower end of the histograms.585

6.4 Data augmented modelling586

An additional step in moving towards a digital twin is to augment the model with data. Here a Gaussian Process model587

is used to infer model discrepancies for the predicted output from the linear model. This is the equivalent of performing588
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Fig. 10: MCMC parameter distributions

Fig. 11: MCMC model predictions on testing data (no ‘bumper’ contact)

equation 1 in two stages, i.e. a parameter inference step to determine the parameters θ of the computer model η(~x,~θ) and589

then a discrepancy step to infer δ(x)+ e.590

The discrepancies are believed to contain dynamic information and for this reason the inputs to the Gaussian process591

(GP) model are lagged outputs of the linear model and the input forcing (where the forcing is expected to be known at time tn592

as it is measured) i.e. {. . . , ÿi(tn − 3), ÿi(tn − 2), ÿi(tn − 1), . . . , F̈(tn − 3), F̈(tn − 2), F̈(tn − 1), F̈(tn)}; where the outputs from593

the linear model are the averaged output prediction from the MCMC samples. This type of model is equivalent to δ(x, ÿ)+e.594

To determine the number of lags used within the data-augmented model the autocorrelation of the residual between the linear595

model predictions and training observations were calculated. This informed that there was correlation up to around ten lags,596
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Fig. 12: MCMC model predictions on validation data (‘bumper’ contact)

Fig. 13: NMSE for the MCMC acceleration predictions for each floor on the test (no ‘bumper’ contact )and validation

(‘bumper’ contact) data sets

leading to ten lags being used as inputs.597

Three GP models were generated (due to the single output nature of the GP). Each GP has a a zero mean and Matérn598

3/2 covariance function prior. The covariance function is formulated using the automatic relevance detection form, where599

a length scale is placed for each input, allowing lag selection to be performed within the covariance function. For more on600

Gaussian Process regression the reader is referred to [93].601

Each GP model was trained on sample points 200 to 400 of the training data set, such that the transients were removed602

and that the training data set did not being prohibitively large. Once trained the data-augmented model was used to predict603

on the test (where the ‘bumper’ mechanism is not in contact) and validation data (where ‘bumper’ mechanism is in contact)604

sets. The prediction for the test and validation cases are displayed in Figs. 14 and 15 respectively.605

The NMSEs for the training, testing and validation sets were: {0.901,0.386,0.163},{3.672,2.426,1.107},{30.084,39.837,21.054}.606

This demonstrates that the data augmented model improved predictions for floors two and three (over both the MCMC and607

SADE prediction). However, the NMSE for floor one are larger than those from the previous analyses. This is likely due to608

the lack of dynamic information contained within the floor one location due to the positioning of the force.609

Nonetheless, the data-augmented model provides additional benefits. The variance in the model reflects whether the GP610

has seen the combination of lagged inputs before. It would be expected that when the harsh nonlinearity was present the611
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variance (or standard deviation) of the model would increase, indicating that the model is predicting in an unseen region.612

This is confirmed by Figs. 14 and 15. In the test scenario the standard deviations are small and relatively stationary for each613

floor. Yet, in the validation data set the standard deviation for the first and second floor predictions increases at the point in614

the data where contact occurred. This is a useful property for a digital twin as it informs about the presence of epistemic615

uncertainty.616

Fig. 14: Data augmented model predictions on testing data (no ‘bumper’ contact) and predictive standard deviations

The data augmented model can be used in an online manner to indicate when model improvements should be made.617

In regions of high variance the workflow could choose to re-perform the calibration step, or is could decide to improve the618

model form. For this example this could lead to a bilinear stiffness model being introduced in order to capture the contact619

behaviour. This would be a more optimal ‘white-box’ model and would help improve predictions in the validation data set.620

Unfortunately, the introduction of a nonlinear model would introduce new challenges in validation. For example, neither621

NMSE or model properties would be good validation metrics as both would fail to inform whether the bifurcation point had622

been correctly inferred. More sophisticated would be required, otherwise the model may perform extremely badly around623

the bifurcation point.624

In addition, if the nonlinearity in the data set were a breathing crack the data-augmented model would have a method in625

triggering a warning that the structure was damaged. By performing outlier analysis on the predictive standard deviation, for626
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Fig. 15: Data augmented model predictions on validation data (‘bumper’ contact) and predictive standard deviations

example using a Mahalanobis distance, structural health monitoring decision can be made from the digital twin.627

In conclusion, this case studies demonstrates that by moving up the levels of a digital twin more information and628

improved decision making can be made. This will allow, not only better more realistic predictions, but improved decision629

capabilities as well.630

7 Open research problems and technological challenges631

7.1 Workflow, coordination and time evolution632

At its core, a digital twin needs to be able to coordinate multiple tasks simultaneously. It must respond to requests from633

the user, in addition to continuously coordinating background tasks such as gathering and processing data from the physical634

twin, and updating models and databases. For many applications, all other tasks except for this central coordination and635

management of workflows will be existing technology.636

From a research perspective, there has been much recent work on workflows and related areas such as business process637

models [65–67,70]. In the context of a digital twin, these are potentially most useful during the asset management phase. The638

types of open questions still to be answered include how workflows can be most efficiently implemented, ensuring that they639

are sound and robust [71,73,94]. For this purpose, formalisations of network theory appear to be the most relevant tool [95].640

Furthermore, there is the question of how the workflow might navigate through the different elements of the digital twin,641
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and for this purpose using the idea of a knowledge graph (possibly built from an initial ontology) appears to be one practical642

solution [96–98]. There is also the interesting question of how workflows can be adapted during the time evolution of the643

digital twin [72]. A key element of the digital twin functionality is decision support, and as well as other factors such as644

V&V, this also relates to the workflow processes [69, 99, 100].645

Supporting all workflow processes in the digital twin will be a series of databases; these could be standalone, or online.646

How these databases interface with the digital twin (beyond just providing raw data) is an area of research interest. In647

particular, the use of knowledge graphs and ontologies [68], and ontology-driven databases appears promising. There is also648

the interesting question of how much the digital twin makes use of processes such as data mining [101] via tools such as the649

semantic web [102]; this also relates to the digital twin as part of the Internet of Things. [34].650

7.2 Joints and joining651

In Section 1, mechanical joints were highlighted as a technical example of a model ingredient for a digital twin. Along-652

side that example, the issue of silos existing in organisations based on natural subdivisions in a particular application was653

also discussed. Within the context of a digital twin there are some parallels between these two examples. The commonality654

comes from the fact that subdivisions of many engineering systems are very natural – after all, complex systems are typically655

made from multiple components and smaller sub-assemblages, which can naturally be modelled as simpler systems than the656

full system. However, the sub-assemblages can often be considerably complex in their own right, and so once subdivided,657

its not surprising that more focus goes into modelling the sub-assemblage rather than how it interacts with or is joined to658

the rest of the system. Often, the associated models are incompatible in terms of jointing, and a bespoke interface model is659

needed to try and connect the software models.660

For the mechanical joints problem, there is already considerable research work that has been carried out — see for661

example [103–105] and references therein. Dealing with the multi-scale and multi-physics nature of this problem is at the662

heart of the newly developed research. The possibility of making predictions based on only a partly assembled structure, is663

an interesting area of future research, and relates to the verification and validation models discussed in Section 2.2.664

In terms of the working in silos and interfacing software based models, both problems can be thought of as problems665

relating to connectivity. Many practitioners and researchers have already recognised these issues, and attempted to address666

them using more integrated procedures, as described for example in [48] as part of the product lifecycle management (PLM)667

ethos. Ensuring that this factor is taken into account when developing a digital twin is largely a question of implementing668

current best practice [106,107], but there are always potential improvements that can be made, and this will form an ongoing669

research topic.670

7.3 Uncertainty management and the quantification of trust671

It has been highlighted throughout this paper that an important issue is how to deal with uncertainty within the digital672

twin. In Section 6 a detailed example was presented that included a data-augmented modelling approach to managing the673

uncertainties. This is just one approach amongst many available, as briefly discussed in Section 6.3. However, it should674

be acknowledged that the example presented is relatively simple compared to most real engineering structures. For more675

complex structures, an ongoing area of research will be determining how exactly uncertainties are propagated through a676

digital twin in order to assess the level of confidence that can be given to the subsequent predictions.677

In addition, enabling trust in digital twin predictions is essential to support engineering decision makers, see for example678

[108]. To achieve this objective, the trust that can be ascribed to predictions from the digital twin must be quantified, and679

for this it is essential to integrate techniques from uncertainty quantification and propagation [109–112] . This quantification680

has to be an integral part of the digital twin, (an early example is given by [42]). An area of future work to facilitate this will681

be to develop a risk based framework for the digital twin. Better assessment of potential risks, will help quantify trust, and682

support decisions.683

8 Conclusions684

In this paper the application of the digital twin concept to engineering dynamics problems has been considered in685

detail, with a particular emphasis on modelling and simulation. A description of the current state-of-the-art in this research686

area, including a detailed literature review was presented. This included the background and history of the digital twin,687

with particular emphasis on the topics of structural life prediction and verification & validation. Following this, a method688

for synthesising a digital twin was presented, considering both design and asset management phases of the physical twin.689

Five levels of sophistication for a digital twin were defined, along with essential elements and required processes using the690

example of a simulation digital twin for a wind turbine. Methods for incorporating a digital twin into a product design691

phase were discussed in the context of verification and validation procedures that can be carried out in parallel with design692

and manufacture. To illustrate the detail of how several required processes could be implemented, an example case study693

of a three-storey small-scale building was presented. This included a detailed description of data-augmented modelling to694
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manage uncertainty present in the structure. Finally, three of the open research problems and technological challenges were695

outlined.696

There are several key aspects that characterise the digital twins considered in this paper:697

1 A structured coordination of all the required processes via a bespoke workflow which provides both the interface with698

the user, and also the simultaneous integration of all other required processes (either bespoke or via software).699

2 Quantification, management and ultimately reduction of model form (and other) uncertainties by use of measured data700

from the physical twin.701

3 Time-evolution of the digital twin in order to reflect the ageing of the physical twin, including the use of measured data702

to update and evolve the physics-based models in the digital twin.703

4 Robust methods for dealing with joints between parts of the physical twin.704

In addition to this, methods from natural computing, (such as machine learning) are already being used for the data-based705

techniques in this area, and the development of learning capabilities more generally is another area for future development.706

This paper has focused on the largely philosophical aspects of the topic. It’s clear from the current interest in this topic that707

digital twin is set to have a disruptive influence on engineering applications. In a companion paper, as part of this special708

issue, a mathematical framework for digital twin applications is developed, and together the authors believe this represents a709

firm framework for developing digital twin applications in the area of engineering dynamics.710
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[32] Söderberg, R., Wärmefjord, K., Carlson, J. S., and Lindkvist, L., 2017. “Toward a digital twin for real-time geometry782

assurance in individualized production”. CIRP Annals, 66(1), pp. 137–140.783

[33] Uhlemann, T. H.-J., Lehmann, C., and Steinhilper, R., 2017. “The digital twin: Realizing the cyber-physical produc-784

tion system for industry 4.0”. Procedia Cirp, 61, pp. 335–340.785

[34] Datta, S. P. A., 2017. “Emergence of digital twins—is this the march of reason?”. Journal of Innovation Management,786

5(3), pp. 14–33.787

[35] Bottani, E., Cammardella, A., Murino, T., and Vespoli, S., 2017. “From the cyber-physical system to the digital twin:788

the process development for behaviour modelling of a cyber guided vehicle in m2m logic”. XXII Summer School789

Francesco Turco–Industrial Systems Engineering, pp. 1–7.790

[36] Alam, K. M., and El Saddik, A., 2017. “C2ps: A digital twin architecture reference model for the cloud-based791

cyber-physical systems”. IEEE Access, 5, pp. 2050–2062.792

[37] Qi, Q., and Tao, F., 2018. “Digital twin and big data towards smart manufacturing and industry 4.0: 360 degree793

comparison”. IEEE Access, 6, pp. 3585–3593.794

[38] Boschert, S., Heinrich, C., and Rosen, R., 2018. “Next generation digital twin”. In Proceedings of TMCE 2018.795

[39] Nikolakis, N., Alexopoulos, K., Xanthakis, E., and Chryssolouris, G., 2019. “The digital twin implementation for796

linking the virtual representation of human-based production tasks to their physical counterpart in the factory-floor”.797

International Journal of Computer Integrated Manufacturing, 32(1), pp. 1–12.798

[40] Tuegel, E., 2012. “The airframe digital twin: some challenges to realization”. In 53rd AIAA/ASME/ASCE/AHS/ASC799

Structures, Structural Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures Conference800

14th AIAA, p. 1812.801

[41] Seshadri, B. R., and Krishnamurthy, T., 2017. “Structural health management of damaged aircraft structures using802

digital twin concept”. In 25th AIAA/AHS Adaptive Structures Conference, p. 1675.803

[42] Li, C., Mahadevan, S., Ling, Y., Choze, S., and Wang, L., 2017. “Dynamic bayesian network for aircraft wing health804

monitoring digital twin”. AIAA Journal.805

24 Copyright c© by ASME



[43] Sharma, P., Hamedifar, H., Brown, A., Green, R., et al., 2017. “The dawn of the new age of the industrial internet806

and how it can radically transform the offshore oil and gas industry”. In Offshore Technology Conference, Offshore807

Technology Conference.808

[44] Sivalingam, K., Sepulveda, M., Spring, M., and Davies, P., 2018. “A review and methodology development for re-809

maining useful life prediction of offshore fixed and floating wind turbine power converter with digital twin technology810

perspective”. In 2018 2nd International Conference on Green Energy and Applications (ICGEA), IEEE, pp. 197–204.811

[45] Tygesen, U. T., Jepsen, M. S., Vestermark, J., Dollerup, N., and Pedersen, A., 2018. “The true digital twin concept for812

fatigue re-assessment of marine structures”. In ASME 2018 37th International Conference on Ocean, Offshore and813

Arctic Engineering, American Society of Mechanical Engineers, pp. V001T01A021–V001T01A021.814

[46] Glaessgen, E. H., and Stargel, D., 2012. “The digital twin paradigm for future nasa and us air force vehicles”. In 53rd815

Struct. Dyn. Mater. Conf. Special Session: Digital Twin, Honolulu, HI, US, pp. 1–14. AIAA, p. 1812.816

[47] Iglesias, D., Bunting, P., Esquembri, S., Hollocombe, J., Silburn, S., Vitton-Mea, L., Balboa, I., Huber, A., Matthews,817

G., Riccardo, V., et al., 2017. “Digital twin applications for the jet divertor”. Fusion Engineering and Design, 125,818

pp. 71–76.819

[48] Grieves, M., 2005. Product Lifecycle Management: Driving the next generation of lean thinking. McGraw-Hill820

Professional.821

[49] Hankel, M., and Rexroth, B., 2015. “The reference architectural model industrie 4.0 (RAMI 4.0)”. ZVEI, April.822

[50] Batterman, R., 2013. “The tyranny of scales”. In The Oxford handbook of philosophy of physics, R. Batterman, ed.,823

New York: Oxford University Press, p. 255286.824

[51] Ewins, D. J., 2000. Modal Testing. Research Studies Press.825

[52] Au, S.-K., 2017. Operational Modal Analysis: Modeling, Bayesian Inference, Uncertainty Laws. Springer. AIAA,826

p. 1812.827

[53] Worden, K., Wong C. X., Parlitz, U., Hornstein, A., Engster, D., Tjahjowidodo, T., Al-bender, F. Rizos, D. D. and828

Fassois, S. D. 2007. “Identification of pre-sliding and sliding friction dynamics: grey box and black box models”829

Mechanical Systems and Signal Processing, 21(1), 514–534.830

[54] Worden, K., Barthorpe, R. J., Cross, E. J., Dervilis, N., Holmes, G. R., Manson, G., and Rogers, T. J. 2018. “On evolu-831

tionary system identification with applications to nonlinear benchmarks.” Mechanical Systems and Signal Processing,832

112, 194–232.833

[55] Friswell, M., and Mottershead, J. E., 1995. Finite element model updating in structural dynamics, Vol. 38. Springer834

Science & Business Media.835

[56] Worden, K., and Green, P. L., 2014. “A machine learning approach to nonlinear modal analysis”. In Dynamics of836

Civil Structures, Volume 4. Springer, pp. 521–528.837

[57] Verner, I., Cuperman, D., Fang, A., Reitman, M., Romm, T., and Balikin, G., 2018. “Robot online learning through838

digital twin experiments: A weightlifting project”. In Online Engineering & Internet of Things. Springer, pp. 307–314.839

[58] Tygesen, U., Worden, K., Rogers, T., Manson, G., and Cross, E., 2019. “State-of-the-art and future directions for840

predictive modelling of offshore structure dynamics using machine learning”. In Dynamics of Civil Structures, Volume841

2. Springer, pp. 223–233.842

[59] Standards, A., 1998. AIAA guide for the verification and validation of computational fluid dynamics simulations843

(g-077-1998). Tech. rep., American Institute of Aeronautics and Astronautics.844

[60] Schwer, L., 2006. ASME V&V 10 guide for verification and validation in computational solid mechanics. Tech. rep.,845

American Society of Mechanical Engineers.846

[61] Schwer, L., 2009. ASME V&V 20 standard for verification and validation in computational fluid dynamics and heat847

transfer. Tech. rep., American Society of Mechanical Engineers.848

[62] Lau, K.-K., Taweel, F. M., and Tran, C. M., 2011. “The w model for component-based software development”. In849

2011 37th EUROMICRO Conference on Software Engineering and Advanced Applications, IEEE, pp. 47–50.850

[63] Khan, A. I., and Khan, U., 2012. “An improved model for component based software development”. Software851

Engineering, 2(4), pp. 138–146.852

[64] Tiwari, S., Bajpai, S., and Arshad, M., 2014. “Modified w model for handheld application development”. International853

Journal of Engineering and Technical Research (IJETR), ISSN, 2(12), pp. 2321–0869.854

[65] Faustmann, G., 1996. “Workflow management and causality trees”. In Proceedings of the Second International855

Conference on the Design of Cooperative Systems.856

[66] van Der Aalst, W. M., Ter Hofstede, A. H., Kiepuszewski, B., and Barros, A. P., 2003. “Workflow patterns”. Dis-857

tributed and parallel databases, 14(1), pp. 5–51.858

[67] Van Der Aalst, W., and Van Hee, K. M., 2004. Workflow management: models, methods, and systems. MIT press.859
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