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ABSTRACT

A powerful new idea in the computational representation of structures is that of the digital twin. The concept

of the digital twin emerged and developed over the last decade, and has been identified by many industries as a

highly-desired technology. The current situation is that individual companies often have their own definitions of a

digital twin, and no clear consensus has emerged. In particular, there is no current mathematical formulation of a

digital twin. A companion paper to the current one will attempt to present the essential components of the desired

formulation. One of those components is identified as a rigorous representation theory of models; most importantly,

governing how they are verified and validated, and how validation information can be transferred between models.

Unlike its companion, which does not attempt detailed specification of any twin components, the current paper

will attempt to outline a rigorous representation theory of models, based on the introduction of two new concepts:

mirrors and virtualisations. The paper is not intended as a passive wish-list; it is intended as a rallying call. The new

theory will require the active participation of researchers across a number of domains including: pure and applied

mathematics, physics, computer science and engineering. The paper outlines the main objects of the theory and gives

examples of the sort of theorems and hypotheses that might be proved in the new framework.
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1 Introduction

The digital twin has emerged in the last two decades as a highly sought-after generalisation of the computation models

routinely used by industry and academia in attempts to understand the behaviour of real structures, systems and processes and

to make predictions in previously unseen circumstances [1–3]. There is currently no real consensus on what the necessary

and sufficient ingredients of a digital twin are, although a sister paper to this one [4] will attempt to bring some order to the

subject. What is inarguable, is that because the digital twin extends the concept of a computational model, such a model must

be a core ingredient. Furthermore the model must be validated; it must be demonstrated to be in correspondence with reality,

at least in the context of immediate engineering importance. Because of the problems which a digital twin will be required to

address, it will also potentially need to extrapolate or generalise to predictions on different structures or the same structure

in different contexts. This paper will argue that, in order to ensure the correct operation of digital twins, a mathematical

framework is needed in order to quantify the likely fidelity of validated models when used to generalise or extrapolate. This

paper will propose that what is needed is a type of algebra of models, which can be used in order to extend current concepts

of verification and validation (V&V).

For the purposes of this paper, the fundamental problem of V&V will be regarded as the need to answer two questions:

1. What is the lowest-cost model that will allow predictions of the required accuracy for the structure of interest in the

context of interest?

2. What is the lowest-cost programme of experimental testing that will validate the model with prescribed confidence?

Note that in answering these questions, one does not need a model that represents the whole structure across its entire range

of possible behaviours; one only needs a model that matches in the context of interest1. In a machine learning context,

the question is essentially of generalisation; having learned from model data, can one say something meaningful about the

structure twinned with the model?

In order to establish an over-arching mathematical framework, one needs to be precise and meaningful in one’s terminology.

The use of the term ‘twin’ is inconsistent with this goal for two reasons; the first is that there is already widespread and

disparate use of the term in the engineering community; the second is that it doesn’t really make sense as an analogy anyway

(most twins are not identical). The view taken in this paper, will be that a more meaningful term is provided by the word mirror

(this terminology within a digital modelling context was similarly proposed by Tao et al in [5]). A mirror is an instrument that

faithfully reflects reality in terms of the aspects of an object that are mirror-facing; it provides no ‘information’ about aspects

that are not mirror-facing. The idea of ‘mirror-facing’ will be formalised in the following as a context. Finally, if the object

moves, the movement will be reflected perfectly, in the mirror – at least as far as those aspects that are mirror-facing. This

paper then, will attempt to motivate a mathematical basis for understanding mirrors2. As such, it will have the opportunity to

develop independently of current conceptions as to what a ‘digital twin’ is, but leaving the possibility for engineers to adopt

the technology in developing whatever their favoured definition of a digital twin actually is.

Everything here is motivated by the desire to construct meaningful validated models of structures and systems; if one were to

do nothing more than rearrange the terminology and dress the problem in pretty mathematical trappings, then that would be

ultimately empty. This paper is motivated by the belief that a general mathematical theory of models and their validation will

be of value; however, the current paper will not be able to go beyond development of the basic terminology and theory and

some attempts to convince the reader of the ultimate possibilities. One might argue that general frameworks have already

been proposed in terms of the formulation and evaluation of models, and that there is no need to propose another one until

the existing ones have been fairly evaluated. This is a fair point; however, the authors here would argue that the current

proposal is more sympathetic to the needs of the digital twin concept, because of the explicit attention given to context and

environment. There is no intention here to play down any previous works on general methodologies, the assumption is that

the tools already proposed will play important roles. One example of a general framework for V&V is provided in [6]. That

publication provides a methodology for estimating the uncertainty in system-level predictions, where system-level parameters

are estimated in terms of lower-level experiments. The paper is largely concerned with calibration and uncertainty propagation,

and introduces tools for estimating the reliability of models. Perhaps more importantly for the current discussion, the paper

introduces a concept of ‘relevance’ which quantifies the relationship between the system-level model and lower-level models,

and potentially allows a ‘confidence’ measure in terms of extrapolating from lower levels to the system level. The paper by

Nagel et al [7], proposes a Bayesian unified framework which provides a ‘... toolkit for statistical model building. It forms

1Some would argue that a true ‘digital twin’ has to match the structure of interest in all contexts. This viewpoint does not make complete sense, as the

physics of a given structure is unlikely to be known at all scales and in all contexts; this means that modelling would not be possible. Furthermore, a lot of

the motivation for digital twins comes from industry, and it is not conceivable that a profit-driven enterprise would require a model to function outside the

immediate context of interest if that extended functionality came at an increased cost.
2The term digital mirror is already in use to define an item of technology; the items being exactly what one might imagine them to be. One could use the

term with complete confidence that the two meanings are unlikely to be confused; however, for simplicity the objects of interest will just be referred to as

‘mirrors’, although different kinds of mirrors will be introduced.
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some kind of superstructure that embeds a variety of stochastic inverse problems as special cases’. (There are of course, many

other papers one could cite; however, there is no intention here to provide a survey.) Another fair criticism of the current paper

is that the new term ‘mirror’ is not needed either, it refers simply to a validated model; however, it is introduced here because

it refers to a specific class of models and because, as discussed above, there is a need to distinguish the idea from the more

overarching digital twin. The relationships and distinctions between ‘mirrors’ and ‘twins’ will be highlighted throughout the

paper.

The layout of the paper is as follows. The next section will make the main series of definitions of the important concepts in

the framework: contexts, mirrors etc. The section will also define the concepts of environments and virtualisations which are

central to the idea of a digital twin. Section Three will discuss a number of example problems in which the idea of a mirror

would be fruitful, assuming that the appropriate mathematical underpinnings of the theory can be provided. The paper finishes

with some discussion and conclusions.

2 Mirrors

2.1 Basic Definitions

To start with the simplest situation, the discussion will initially consider only physics-based models; data-based and hybrid

models3 will be brought in later.

One must begin with a structure (or system) S; this is the physical object of interest. It will be interpreted as having an objective

reality independent of its surroundings i.e. it is possible to think of it in a vacuum remote from any other matter. Temporal

changes in the confirmation and behaviour of the structure will be summarised in a state vector s(t) = {s1(t), . . .sNS
(t)},

which consists of a set of NS instantaneous measurements (at time t) which completely characterise its state.

Now, the environment of the structure could be considered as all physical reality exterior to it; however, that is too general.

Considering the fact that the environment could also be characterised by a state vector; the environment E of S will be defined

as the set of environmental variables that can actually affect S i.e. a change in variable will evoke a change in the state s(t).
With this in mind, one will have an environmental state vector e(t) = {e1(t), . . .eNE

(t)}.

Recognising that one will generally only wish to model some aspects of the behaviour of S, a context C for S will be defined

as a set of environmental state variables C = {eC
i ∈ E,sC

j ∈ s; i, j}. The subset {eC
i } will be referred to as the environmental

context, and the subset {sC
j } as the response or predictive context.

Now, a schedule WC for the context C will be a set of time series {eC
W (ti); i = 1, . . .Nt ; ti ∈ [0,T ]}. (In principle, the set {ti}

could be continuous or discrete.) The response rC
W (t), to a schedule WC is defined as the measurement sequence resulting from

testing the structure and imposing the schedule as inputs. As the process will generally be dynamic, it will be denoted by the

functional,

rC
W (t) = S[eC

W (t)≡WC] (1)

where the notation S is used again to indicate, that the functional is identified with the physical structure of interest.

One can now define the test TC
W associated with the schedule WC in the context C, as the set TC

W = {eC
W ,rC

W}. In general, tests

will be carried out for multiple purposes; for the moment, it will be observed that data are captured for training of models

and for testing of models. For this reason, it is useful to divide data accordingly. Supposing that tests have been carried out

multiple times, one can define the training schedule (resp. testing schedule) as the set of schedules associated with acquiring

data for training (resp. testing); the set being denoted by Dtr (resp. Dt). (Of course, these sets are specific to a context and a

schedule, but the notation will become too unwieldy if this is made explicit.)

Now, a model of S for a context C will be defined as a mathematical function MC which attempts to predict the behaviour of S

for any schedule specific to the context C. Depending on the environmental and predictive variables, this may be a multi-scale

and/or multi-physics model, and it will almost always be implemented in computer code in some appropriate language4. A

simulation for a context C under a schedule WC is then defined as,

3Hybrid models are also referred to in the literature as grey-box or data-augmented models. In the statistics literature, the addition of a data-based model

in order to correct a physics-based model is commonly called model bias correction or model discrepancy correction; the most influential framework is

probably that proposed in [8].
4In fact, it may be the case that different models are needed in order to completely cover the context of interest. For notational simplicity, it is assumed

here that MC represents the set of relevant models, returning the values required by the overall context C; there is no overall loss of generality at this point.
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mC
W (t) = MC[eC

W (t)≡WC] (2)

Now, it is clear that one can obtain the simulation mC
i (t) corresponding to a test TC

i = {eC
i ,r

C
i } (with i now a schedule label),

so that one can attempt to assess the fidelity of the model by comparing its predictions to reality.

A metric on a given context C will be defined here simply as a function dC(x,y) such that dC(x,y)≥ 0, with the zero only if

x = y. (This is only one of the conditions for a true mathematical metric, but it will do here for now.)

Finally, the main definitions of the paper are possible:

Definition 2.1. (ε-Mirror) A model MC
ε for a given context C is an ε-mirror if and only if,

dC(mC(t),rC(t))≤ ε (3)

for all scheduled tests in Dt .

Definition 2.2. (Fitness-for-purpose) A model MC
ε is fit-for-purpose in a given context C iff it is an ε-mirror for C and ε ≤ εT

where εT is a critical threshold based on engineering judgement and/or context requirements5.

2.2 Hybrid Models and Uncertainty

So far, only pure physics-based models have been considered; models sometimes termed white-box models. At the other end

of the modelling spectrum are black-box models which are formed by taking a model basis with a universal approximation

property, and tuning the parameters of the model to a set of observed data; examples of such models are artificial neural

networks or support vector machines [9, 10]. One can also make use of hybrid or grey-box models, which combine some

element specified by physics with an element of learning from data.

Suppose that it is desirable or necessary to form or update a model based on data. The model will be established using data

acquired from a training schedule Dtr and tested on data from a test schedule Dt
6. The resulting model MhC(Dtr) is then an

ε-mirror if it satisfies the conditions of Definition 2.1 on Dt . The model MhC(Dtr) is adapted to the measured data Dtr, and is

thus now a hybrid model as indicated by the symbol h; the context does not change.

There is no distinction here on how MhC(Dtr) is obtained. One might start with a white-box model and learn the parameters via

system identification, or one might adopt a grey-box structure where a physics-based model is augmented with a nonparametric

machine learner [11].

As the use of machine learning has been raised, it would seem to be an appropriate point to discuss uncertainty; this is

because many modern machine learning algorithms are probabilistic and accommodate uncertainty directly. For example,

Bayesian approaches to parameter estimation can characterise the entire density functions of parameters, rather than simply

producing point estimates [12, 13]. Furthermore, nonparametric learners like Gaussian process regression can produce a

natural confidence interval on predictions [14].

So, under the circumstances, one might allow the possibility that the model MhC(Dtr) is a function that returns a random

variable, i.e. the simulation responses are stochastic processes,

MC
t = MhC[eC

W (t)](Dtr) (4)

5The standard mathematical notation is adopted here, where ‘iff’ is taken to mean ‘if and only if’.
6Following best practice in machine learning, different data sets are potentially required in order to fit parameters and establish hyperparameters [9]. In

order to keep the notation simpler here and avoid confusion about the term ‘validation’, it is assumed that the modeller simply partitions Dtr appropriately.
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The simulation might provide the whole density function for MC
t , or just low-order moments. In the first case, suppose that

the model returns the predictive mean of the process mC(t) = E[MC
t ] (where E is an expectation), then, mC(t) can be used to

determine whether MhC(Dtr) is an ε-mirror in the mean.

Alternatively, suppose that the model returns enough information to determine confidence intervals on the prediction. In this

case, then if rC(t) ∈ [mC(t)−ασC
r (t),m

C(t)+ασC
r (t)] with probability determined by α, and for all schedules in Dt , then one

can define MhC(Dtr) as an α-mirror. Note that a given stochastic model can be both an ε-mirror and an α-mirror.

It would be possible to define various metrics for comparison in the uncertain case; the one based on low-order moments

described above is related to the reliability metric discussed in [6], or using the Mahalanobis distance as in [15], which is in

turn related to a formulation of validation as an outlier analysis problem, as discussed in [16]. If the comparison were made

on the whole predictive or parameter density functions, i.e. the scenario in which the predictive distribution is compared to

observational distribution (often via a finite sample set), one might define a statistical distance (or divergence) measure [15,17],

for example, a Hellinger distance, leading to the definition of an α−mirror as a Hellinger-mirror etc.

2.3 The Environment and Virtualisation

Raising the question of uncertainty means that one must reconsider the status of the environment.

Recall that the environment is comprised of all those variables which can have a causal influence on S, the structure of interest.

In general, this set will be composed of variables that can be controlled (e.g. forces applied to the structure) and variables

that can not (or can not be controlled with any precision). In an operational modal analysis context for example, even the

forces may not be controllable. It is therefore necessary to separate the variables (in context) accordingly into eC
u and eC

c

(uncontrolled and controlled, respectively). This distinction is very important if one wishes to use the model to make true

predictions i.e. to determine what the structure might do at some point in the future, under a given (controlled) forcing, but

when the eC
u are unknown.

In this situation, what is needed is a generative model MEC
u , that will make some best estimate of eC

u (t),

êC
u = MEC

u (t) (5)

This model itself will need to be validated appropriately, as far as possible. Given training data for the MEC
u , it might be

possible to establish a nonparametric black-box model that is an ε- or α-mirror, or one could substitute mean values for the

variables and treat variations as uncertainty that needs to be propagated. In any case, one can now make predictions (in the

given context),

pC(t) = M[eC
c (t), ê

C
u = MEC

u (t)] (6)

It is now possible to make another important definition: a virtualisation for a given context C is a pair,

VC = (MhC
ε1
,MEC

ε2
) (7)

where the two models concerned are ε-mirrors with the fidelities specified. The importance of the virtualisation is that it can

be used to examine what-if scenarios for the structure of interest in previously unseen circumstances. Of course, one can make

a similar definition with α-mirrors. Finally, it is important to note that a virtualisation is itself a model, and as such can also be

an ε- or α-mirror; this will prove to be of interest later, when the use of virtualisations for design is discussed.

The problem of the ‘environment’ is discussed in [7]; however, there it appears to have been condensed into the estima-

tion/calibration of a further parameter set.
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2.4 The Turing Mirror

One can also think of a semi-philosophical means of defining a mirror; this parallels the Turing test in the field of artificial

intelligence, which is a test of the ability of a machine to perform in a manner indistinguishable from a human [18].

The test will involve two protagonists: an interrogator and an oracle. The two people can only interact in a very limited

way, the interrogator is allowed to present questions to the oracle about the structure of interest via a remote interface. The

oracle is equipped with a model of the structure of interest, which is the candidate mirror, and also has facilities for carrying

out physical testing on the structure. The interrogator is allowed to present the oracle with a set of schedules eC
W from some

given context, and the oracle is required to return either the test responses of the structure rC
W , or simulations from the model

mC
W

7. If the interrogator is unable to decide which option the oracle has taken in any case, then the model in question is a

Turing-mirror or T-mirror.

While this may seem like nothing more than an amusing digression, there is the possibility that the work over the years in

terms of implementing the Turing test could be used in order to derive rigorous methods of testing mirrors 8.

2.5 Transfer Learning and Mirrors

The problem of generating mirrors lends itself to being formulated in terms of transfer learning problems. Although there are

various techniques that could provide solutions to the mathematical framework proposed here, transfer learning provides a

potential approach for addressing these challenges. Throughout the example sections in this paper, each problem will also be

formulated using transfer learning. For this reason, general definitions about transfer learning are provided [20–22].

Firstly, one must define two key quantities: a domain and a task.

Definition 2.3. A domain D, consists of a feature space X and a marginal probability distribution D = {X , p(X)} where

X = {xi}
N
i=1 ∈ X i.e. a finite sample set from X .

Definition 2.4. A task T , for a given domain, defines an output space9 Y and predictive function f (·) learnt from a training

data set {xi,yi}
N
i=1, where y ∈ Y , i.e. T = {Y , f (·)}.

With these definitions transfer learning can be defined as:

Definition 2.5. . . . the process of utilising knowledge about a source domain Ds and task Ts to improve the learning of a

target predictive function ft(·) for a given target domain Dt and corresponding task Tt , where Ds 6= Dt and Ts 6= Tt .

Transfer learning methodologies then attempt to solve problems where different information is available or not i.e. X , p(X),
Y or p(y |X) are consistent across the source and target [21].

To illustrate transfer learning concepts a descriptive example is provided (although further illustrations are presented throughout

the paper). Typically within model validation, a computer model M may be established as an ε-mirror for some context C1,

given some measured response rC1(t) from the physical structure S. Often an engineer wishes to repurpose the model for

some new context C2, which differs from the original context C1. In this scenario the model simulation mC1(t) and structural

response rC1(t) for context C1 form a source domain and task, as the predictive function from the model simulation mC1(t) to

the structural response rC1(t) has been established in calculating that it is an ε-mirror. The target domain and task are the

model simulation mC2(t) and structural response rC2(t) for context C2, where typically rC2(t) is not known (at least before

experimental testing has been performed). Transfer learning in this scenario seeks to leverage the knowledge from context C1

to estimate the expected response rC2(t) in context C2, therefore establishing a bound on ε for C2.

7Clearly, there are subtleties. For example, if the necessary test programme in a given case were to take 10 days, while running the model would only take

10 hours, the oracle would only return the results after the greater time.
8A very close variant of this Turing test is proposed in [19]; however, the ‘Grieves test’ as it is called there, fails to make precise the details of how

computer models are incorporated.
9An output space Y traditionally refers to a label space within the machine learning transfer learning literature [20–22]. In this context transfer learning is

used to aid classification tasks where the output space is the set of possible labels from the feature data. In this paper, an output space will typically refer to

output quantities from a model, e.g. the output space for a dynamical system could be a space of frequency response functions.
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ÿ2ÿ3ÿ4
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Figure 1: Output context change illustration using a cantilever beam, where the structure S is left and the FE model M right.

3 Examples

3.1 Examples Concerning Context Change

One of the simpler problems one can imagine in the context of mirrors, is how to analyse the performance of a given model,

when asked to make predictions outside its original context C. This problem is interesting because it can be made to include

the case of extrapolation, although that will not be discussed in great detail here. Extrapolation for a data-based or hybrid

model occurs, when the model MhC(Dtr) is used to make predictions outside the range of data encompassed by the training

set Dtr. Even if the model MhC(Dtr) is an ε-mirror on schedules in the training set, this may not hold if the model extrapolates.

Likewise, for a white-box model the inferred parameters in context C may not be optimal for a new context C′. One simple

way to make the problem of context change encompass the problem of extrapolation, would be to extend the definition of

context C, so that it not only specifies the variables under investigation, but also the ranges of those variables encountered in

training data.

This example will consider a different problem, where a model MC
ε is required to make predictions on different variables to its

context C. Suppose the model is modified in order to predict in a context C′, with the new model denoted M′C′
. Furthermore,

assume that there are no training or test data available for the context C′. The interesting question is:

Given that a model MC is an ε-mirror for the context C; following modification to M′C′
, is the new model an

ε′-mirror for C′ for any ε′, and if so, what is the minimum value of ε′ for which this holds? (Note that, with the

extended definition of context discussed above, this is the extrapolation problem if M = M′).

Consider a simple example. Suppose one has constructed a Finite Element (FE) model MC, of a cantilever beam (as in Figure

1). The model has been validated on test data measured as the acceleration responses ÿi(t) at points i = 1,4, so that the

predictive context is {ÿ1, ÿ4}. Suppose that MC has been established as an ε-mirror on the context C. Now, further suppose

that one wishes to make predictions of the response at points 2, 3, 5 and 6, so the predictive context for C′ is {ÿ2, ÿ3, ÿ5, ÿ6}. In

this situation, there are two simple ways to establish M′:

The trivial approach is to simply change the output deck of MC, so that the model outputs the required variables (if it

didn’t before).

One can add a numerical interpolation step to the process in order to estimate the variables in C′ from those in C.

In the first case, it should be a fairly straightforward matter to establish that the model is an ε′-mirror based on the existing

theory of error estimates for FE models [23, 24], and one would expect that ε′ ≈ ε. In the second case, one should be able

to use error estimates from the numerical analysis of interpolation, combined with some reasonable assumptions about the

continuity of the beam profile. One could also bound the errors based on much coarser assumptions e.g. one could estimate

how far ÿ3 could get from ÿ1 and ÿ4 before the induced stresses in the beam exceeded the yield stress. Although the latter

approach would likely work, it would probably yield an ε′ >> ε, so conservative that one would find the value impractical in

terms of model trust. In an exercise like this, the objective would be to find the lowest bound on ε′ possible.

Another viewpoint for solving this problem, in which one wishes to known the ε′ for M′C′
where the outputs are the local

stresses σ1 and σ4 instead of ÿ1 and ÿ4 from the validated ε-mirror, is to think of it in the context of transfer learning. Here the

objective would be to use knowledge about the ε-mirror MC, and the structure SC, to create a mapping to the unknown stress

outputs for S′C
′
. In a transfer learning setting the source domain would be the acceleration outputs from M and S, where the

known information in the target domain is the stress output data from M′, as shown in Figure 2. By learning the nonlinear

mapping to the stress outputs from S′ it would be possible to find a bound on ε′.

A more interesting problem arises in the case of the extended definition of context to account for input changes. Suppose C

covered points 1 and 4 at low levels of excitation, and C′ covered points 2, 3, 5 and 6 at a higher level of excitation; there

would be two different answers to this question, depending on whether MC was linear or nonlinear.
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Figure 2: Output context change illustration using cantilever beam. Example of transfer learning problem set up for predicting

acceleration outputs at different locations and stress outputs.

3.2 An Example Concerning Assembly

This example concerns a very important objective of any programme of ‘virtualisation’. Suppose one could validate a

model of a full-scale assembled structure using only test data acquired from substructure testing. The cost savings in the

design/production cycle would be potentially very high. It is important that the ‘algebra’ of models being developed covers

this situation, and this will entail an understanding of how to model joints and joining processes.

For the sake of simplicity, consider the case of two substructures (but note that this is not a real restriction, as the substructure

assembly can be considered recursively). The substructures, denoted S1 and S2, will be assumed to have individual contexts

C1 and C2 respectively. It will be assumed that the substructures will be joined using some technology, which can itself be

modelled; in the general case, one assumes that the joint may itself be a substructure SJ . With a small abuse of mathematical

notation, the assembled structure SA will be denoted by,

SA = S1
⊕
SJ

S2 (8)

For simplicity, it will be assumed that all the responses from the substructures can still be measured; in this case, one can

denote the new context by CA = C1 ⊕C2. (Here, the ⊕ is largely just a direct sum with some reordering of symbols and

deletion of copies of symbols that appear in the environment context twice.) In general, one would have to allow for the fact

that the joining process might eliminate a possible measurement point on the substructure, and thus change the context by

removing a variable.

It is assumed that each substructure Si has a model MC
i associated with it, and that the models have been validated using test

data from the individual structures, and it has been established that MC
i is an εi-mirror in each case. Furthermore, assume

that the joint/joining process has a model MJ , and that this model may or may not have been validated. The model of the

assembled structure is denoted,

MA = M1
⊕

MJ
M2 (9)

where the appropriate contexts CA, C1 and C2 have been omitted to improve clarity of the expression.

The key question is now:
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Given the assumptions stated, is it possible to show that there exists any εA such that MA is an εA-mirror for SA in

the context CA, in the absence of any test data for the assembly SA? If so, then what is the smallest εA for which this

is true?

Of course, one could also attempt to accommodate uncertainty, and frame the question in terms of α-mirrors (as discussed

in Section 2.2). This is the most difficult question so far, but it also offers the highest returns, if it can be answered. The

problem also depends on whether a validated model for MJ is available. For example, consider the case when the joint is a

weld, and that coupon tests have established some of the material properties of the weld material (perhaps with a high degree

of uncertainty). Even allowing for the fact that the issue is not just about material properties, one would expect εA to be a

monotonically-increasing function of the weld parameter uncertainties. One might also model the weld as a hybrid model,

given that the physics of the joint are not perfectly understood. From first principles, one might approach the problem from

the same viewpoint as before; one could make reasonable/trusted assumptions about the real joint and the model joint, and try

to determine how far they can diverge.

In a general theory, one would hope to prove theorems that were general, perhaps across particular classes of joint models;

consider for example the reasonable conjecture:

Suppose that given models M
Ci
i (i = 1,2) are εi-mirrors for structures Si in contexts Ci, then MA = MC1

1
⊕

MJ
MC2

2 is

an εA-mirror for the structure S1
⊕
SJ

S2 in the context C1 ⊕C2 with εA ≥ max(ε1,ε2) (where δ = εA −max(ε1,ε2)≥ 0

is defined as the joining deficit).

Finally, it is important to mention another use of the idea of joining models. One might simply wish to represent a complex

structure in terms of substructures, even if there is no physical joining process involved (a situation that arises in hybrid

testing [25]). A simple example will suffice. Suppose one wished to model a fixed-fixed beam, and to validate the model.

However, suppose that one had no validation data for the beam, but one did possess a validated model for a cantilever beam; in

fact the cantilever model had been established as an ε-mirror. Clearly, one can regard the fixed-fixed beam as two cantilevers

joined perfectly at their tips. One could now attempt to answer the question above, as to whether joining two copies of the

cantilever beam is an εA-mirror for the fixed-fixed beam. In this case, one might assume that the joint model MJ is perfect; in

practice a perfect joint when joining two FE models would be accomplished by seamlessly merging the meshes at the joint so

that material continuity is as good at the joint as anywhere else. Perfect or idealised joints of this nature will be denoted by the

symbol ⊕
P .

Even in the case of a perfect joint, one should be aware of a caveat, and this relates to context. Suppose that the cantilever

model was linear and had been validated on test data showing small or moderate deflections of the cantilever tip. When the

cantilevers are joined, and the cantilever tips become the mid-point of the beam, the response of the real beam will become

nonlinear for much smaller values of mid-point displacement than the values measured at the cantilever tip.

It is possible that this problem is achievable via transfer learning, where the scenario would become multi-source transfer

learning [26]. For the encastré beam example the sources would become the two M
Ci
i (i = 1,2) which are known to be

εi-mirrors and the perfect joint model. The challenge here is obtaining the information about the perfect joint model, and

knowing that it is some form of ε-mirror. This in turn could be inferred from multiple perfect joint models that may have

been validated for different geometry and boundary condition scenarios, the idea being that the mapping for a perfect joint

can be learnt from this set. If this is the case then the three models could be used as source data in order to obtain the target

deflections for the encastré beam.

Many of the ideas discussed here are covered by the multilevel framework discussed in [6], and it may be that the ideas of

reliability and relevance applied in that framework can be adopted in order to prove hypotheses like those pointed out in the

current paper.

3.3 An Example Concerning Structural Health Monitoring

One of the major problems with data-based Structural Health Monitoring (SHM) is that data from damaged structures is

scarce. Although damage detection is possible even if one only has data from the structure of interest, using unsupervised

learning [27]; higher-level diagnostics like locating damage or assessing its type or severity can only be accomplished if one

has data from all the damage states of interest. It is inconceivable that one might carry out a test programme that systematically

involved damaging numbers of high-value structures, so one has to turn towards modelling as a means of providing the

necessary data, as defined in forward model-driven (SHM) [28, 29] — where models (potentially inferred using inverse

methods) are utilised to perform forward simulations under various damage scenarios.

The context responses in an SHM problem are usually going to be features for machine learning. Given the importance of the

specific context, new notation will be introduced; the SHM context will be denoted F .
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Figure 3: Encastré beam as sum of two cantilevers and a perfect joint.

Assume two ingredients: the first is a validated model of the undamaged structure of interest Su, denoted by MuF . Further

assume a set of data {Du
Tr,D

u
T} which has been used to validate the data. Further assume that MuF is an εu-mirror, according

to some appropriate metric.

The second ingredient is a local damage model Md , which has been validated in a context Cl using data from coupon tests.

The model may have been updated on the basis of test data and may well be a hybrid (grey-box) model. Assume that under

the circumstances MdCl is an εd-mirror for the context Cl according to some appropriate metric. Finally, we assume that there

are no validation data for the damaged structure Sd .

The problem is essentially a joining problem; however, it is of a specific type and merits a little more new notation. An

insertion model MI is defined as an algorithm or prescription for embedding the model MdCL in MuF , in such a way that the

result is a model for Sd . This differs from the previous joint definitions in that there is no new physics associated with the

join. MI could be a very simple process i.e. if the two component models are FE models, insertion will only really mean

harmonising the two meshes along the boundary of the join, or using a super-element approach. One can think of the process

as a type of surgery10 i.e. one cuts out a healthy region of MuF and replaces in with MdCl , as in Figure 4, and then harmonises

the meshes at the boundary11. Clearly this means that there will need to be compatibility conditions which guarantee some

degree of smoothness/continuity across the boundary12.

There is another compatibility condition required here by the theory; the models Mu and Md must exchange information

in such a way that the dynamics evolves appropriately i.e. the response context of Cl must overlap with the environmental

context of F i.e. Cl ∩F 6= φ. In fact, in a general assembly model MC1 ⊕
MI

MC2 , it will usually be necessary that C1 ∩C2 6= φ
and C1 ∩C2 6= φ (where φ represents the empty set here).

As a fairly simple example, consider the problem of modelling a crack in a pressure vessel (Figure 4). The undamaged model

MuF represents the vessel; the damage model MdCl , represents a through crack in a section of plate. By joining the two

models, one can embed a crack of arbitrary location, length or orientation in the vessel (the process might require some care

near the boundaries). A subtlety here is that the crack model might have been validated for flat specimens, or for a range of

different plate assumptions (as seen in Figure 4), in which case a modification might be needed for compatibility with the

curved surface of the vessel. A more important issue is the following. The behaviour of the structure will usually be modelled

using macroscopic physics, while the detailed crack model will require microscopic physics; this means that the features have

to chosen very carefully so that the behaviour of the crack is communicated over the boundary effectively.

The mathematical question of interest is:

Given all of the above, is MC1 ⊕
MI

MC2 an ε-mirror for Sd , and if so, what is the smallest value of ε for which this

10Surgery is a mathematical technique for building complicated topological spaces from simpler ones [30]. It may be that the technique can be applied in

the context of joining models.
11This is similar to the situation in real-time hybrid testing where coordinate sets are defined in each domain, which need to be synchronised in order to

form the join. Errors in the synchronisation process then give a measure of how imperfect the joint is.
12Note that this is rather perverse version of surgery, where undamaged tissue is replaced by damaged.
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Figure 4: Structural health monitoring illustration using pressure vessel and crack models. An example of insertion of a local

damage model into an undamaged structure model.

is true?

This will usually be a probabilistic problem where the metrics are quantities like probability of misclassification or probability

of detection, in which case it will probably be more appropriate to frame the problem in terms of α-mirrors.

The insertion model MI could also be seen as the output from transfer learning; there the aim would be to transfer knowledge

from various validated coupon crack models that are α-mirrors (source) to learn the target predictive function which maps to

some damage feature space in the pressure vessel model. This would be suited to a multi-source transfer learning problem [26].

3.4 An Example Concerning Design

This is one of the potential applications of digital twin technology that would produce large cost savings for industry.

Suppose one has a existing structure S and a context C; further suppose that a virtualisation VC = (MhC
ε1
,MEC

ε2
) exists which

has been validated and shown to be an ε-mirror for SC.

Imagine now that one wished to design a new structure S′, and thus wanted to know how it would behave either in the old

context C, or in a new context C′ given small changes ∆M and ∆S, as depicted in Figure 5. In a situation where one wished to

avoid building a prototype for S′, there is no direct means of validating a new visualisation V ′C = (M′hC
,M′EC), even though

this would be ideal for conducting ‘what-if’ games for the new structure. The question of immediate interest is:

Given a virtualisation VC = (MhC
ε1
,MEC

ε2
), which is an ε-mirror for SC; is V ′C = (M′hC

ε′1
,M′EC

ε′2
) a mirror for S′C for

any values of ε′1 and ε′2, and if so, what are the smallest possible values for which this true?

As in the context change scenario, the transfer learning problems would use the information and mapping from the known

ε-mirror as the source domain, as shown in Figure 5. A mapping would then be inferred for the updated model design, again

providing an estimated bound on ε′.

3.5 An Example Concerning Multi-Fidelity Models: Refinement and Relaxation

This section considers the situation when one has multiple models of the same structure S, in a fixed context C. Suppose that

a model MC is an ε-mirror for S. A modified model M′C = Ref[MC] is a refinement of MC, if it is an ε′-mirror with ε′ < ε.

Similarly, A modified model M′C = Rel[MC] is a relaxation of MC, if it is an ε′-mirror with ε′ > ε. For finite element models,

these operations can be carried out by refining or coarsening the mesh. In this simplest of situations, one might estimate the

values of ε′ using analytical error estimates.

This idea is one that can be used in order to answer Question (1) in the introduction. In principle one starts with a model MC

which is probably fit-for-purpose and then relaxes the model until one arrives at M′C with ε′ = εT .

Now, it is possible to consider what sort of propositions one might wish to prove in the theory i.e. consider the hypothesis:

Assume a model MA = MC1

1
⊕

MJ
MC2

2 is an εA-twin for a joined structure S1 ⊕
SJ

S2. Further suppose that M
C1
1 is an

ε1-mirror. Now, if M′A = M′C
1

1
⊕

MJ
MC2

2 is obtained by refining the first submodel, then M′A is an ε′A-mirror, with
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Figure 5: A depiction of the validation problem in the context of design and the transfer learning problem setup.

ε′A < εA.

Another strategy for answering Question (1) would then be to relax submodels in an assembly until the result is marginally

fit-for-purpose.

4 Discussion and Conclusions

This paper proposes some ingredients for a mathematical theory which would allow a general framework for measuring

the fidelity of computational models and for understanding the consequences of combining validated models or using them

outside their original context. Such a theory would be invaluable in the design and construction of digital twins, because one

of the main uses of digital twins will be to make predictions in circumstances where their core models have not been explicitly

validated, and it will be critical to obtain estimates of how much models can be trusted when they are used to extrapolate or

generalise i.e. when they are used to make inferences about different structures or in different contexts.

As discussed in the introduction, there are already attempts to define a unifying framework for model calibration and validation.

In fact, these papers already go into greater detail on specific technical points than the current paper e.g. they go as far as to

propose a Bayesian framework and define appropriate priors, likelihoods etc [6, 7]. The techniques proposed can very much

form part of the armoury of the more general methodology proposed here. The current paper deliberately draws back from

some details because the authors believe that important discussions are still to be had. For example, it is not agreed within the

broader V&V and uncertainty quantification communities that probability theory is the correct way to approach model bias, or

epistemic uncertainty in general. For this reason, some of the definitions given here are independent of whatever uncertainty

theory ultimately dominates in a given context. As long as an uncertainty theory singles out some most highly indicated model

from the population of possible choices, one can base the analysis on the ε-mirror for that single model. For example, in a

Bayesian framework, one can apply the idea to the Maximum a Posteriori (MAP) model. Of course, any theorems in the

general theory will have to be proved independently for each uncertainty specification.

In some ways, the paper could still — despite the intention of the authors — be considered a wish list. In defence of this

accusation, the arguments are presented in the real belief that the wishes could come true. The paper presents only the

sketchiest arguments as to how the various ‘theorems’ might be proved, or how the relevant estimates could be made; this is

because the current authors do not have anything like the complete range of abilities/skills that will be needed in order to

assemble the theory. In many ways the paper is intended as a rallying call to the academic community; the skills needed will

come from a range of disciplines: pure and applied mathematics, physics, computer science (particularly machine learning)
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and engineering. The authors here believe that a framework can come together which is more than the sum of its parts and that

can be of lasting value in the pursuit of effective computer models, and particularly in the construction of digital twins.
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