
This is a repository copy of Adaptive synchronization of nonlinear networks with delayed 
couplings under incomplete control and incomplete measurements.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/158754/

Version: Accepted Version

Proceedings Paper:
Selivanov, A.A. orcid.org/0000-0001-5075-7229, Fradkov, A.L. and Fridman, E. (2011) 
Adaptive synchronization of nonlinear networks with delayed couplings under incomplete 
control and incomplete measurements. In: IFAC Proceedings Volumes. 18th IFAC World 
Congress, 28 Aug - 02 Sep 2011, Milano, Italy. Elsevier , pp. 1249-1254. ISBN 
9783902661937 

https://doi.org/10.3182/20110828-6-it-1002.02510

Article available under the terms of the CC-BY-NC-ND licence 
(https://creativecommons.org/licenses/by-nc-nd/4.0/).

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long 
as you credit the authors, but you can’t change the article in any way or use it commercially. More 
information and the full terms of the licence here: https://creativecommons.org/licenses/ 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Adaptive synchronization of nonlinear

networks with delayed couplings under

incomplete control and incomplete

measurements ⋆

Anton A. Selivanov
∗
Alexander L. Fradkov

∗,∗∗,∗∗∗

Emilia Fridman
∗∗∗∗

∗ Department of Theoretical Cybernetics, St.Petersburg State
University, Universitetsky prospekt, 28, Peterhof, 198504, St.
Petersburg, Russia, (e-mail: antonselivanov@gmail.com).

∗∗ Institute for Problems of Mechanical Engineering, Russian Academy
of Sciences, 61 Bolshoy ave V.O., St. Petersburg, 199178, Russia, fax:

+7(812)321-4771, (e-mail: fradkov@mail.ru).
∗∗∗ National Research University of Information Technologies,

Mechanics and Optics, St. Petersburg, Russia
∗∗∗∗ Department of Electrical Engineering-Systems, Tel Aviv

University, Tel-Aviv 69978, Israel, (e-mail: emilia@eng.tau.ac.il).

Abstract: Passification based adaptive synchronization method for decentralized control of
dynamical networks proposed in (I. A. Dzhunusov and A. L. Fradkov. Adaptive Synchronization
of a Network of Interconnected Nonlinear Lur’e Systems. Automation and Remote Control,
2009, Vol. 70, No. 7, pp. 1190-1205) is extended to the networks with delayed couplings. In the
contrast to the existing papers the case of incomplete control and incomplete measurements
is examined (both number of inputs and the number of outputs are less than the number of
the state variables). Delay independent synchronization conditions are provided. The solution
is based on passification in combination with using Lyapunov-Krasovskii functional.

1. INTRODUCTION

Adaptive synchronization in the networks of dynamical
systems has attracted a growing interest during recent
years, see Lü et al. [2004], Lu and Chen [2005], Li and
Chen [2006], Yao et al. [2006], Zhou et al. [2006], Zhong
et al. [2007], Lellis et al. [2009], Das and Lewis [2010].
It is motivated by a broad area of potential applications:
formation control, cooperative control, control of power
networks, communication networks, production networks,
etc. Most of existing works, e.g. Lu and Chen [2005], Yao
et al. [2006], Zhou et al. [2006], Zhong et al. [2007] and
others are dealing with full state feedback and linear in-
terconnections. Such system models are restrictive for ap-
plications. In some papers observer-based synchronization
of networks is proposed, e.g. Yoshioka and Namerikawa
[2008]. However, using observers leads to doubling the
order of the overall system and therefore to increase of
its complexity. In addition, existing papers consider fully
controlled systems, where the number of controls is equal
to the number of the state variables and each control
variable enters the corresponding state equation, e.g. Das
and Lewis [2010].

More simple solutions could be provided by static output
feedback. An adaptive output feedback synchronization
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Research (RFBR project 11- 08-01218) and Russian Federal Program
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method for decentralized control of dynamical networks
was proposed in Dzhunusov and Fradkov [2009]. In this
paper the method is extended to the networks with delayed
couplings.

Networks described by models with delays were intensively
studied recently both in control and in physics literature
Wang and Cheng [2009], Lu et al. [2008], Hua et al. [2007],
Li et al. [2004], Mensour and Longtin [1998], Pyragas
[1998]. However, adaptive output feedback synchronization
algorithms for networks with delayed couplings are still to
be investigated. Our approach is based on combination of
passification method, see Andrievskii and Fradkov [2006]
with using Lyapunov-Krasovskii functional.

Problem statement and assumptions are formulated in
Section 2. In Section 3 the necessary preliminaries are
given. Main results are presented in Section 4. In Section
5 an example and simulation results are described.

2. PROBLEM STATEMENT

Consider a dynamical network consisting of N identical
nodes described by n-dimensional nonlinear dynamical
equations with delays:



ẋi(t) = Axi(t) + h(xi(t), t) + σ
N
∑

j=1

αij(xj(t)− xi(t))+

σ
N
∑

j=1

βij(xj(t− τ)− xi(t− τ)) + bui(t),

yi(t) = Cxi(t), i = 1, . . . , N,
(1)

where xi(t) = (xi1(t), xi2(t), . . . , xin(t))
T ∈ R

n is the state
vector of the node i, Axi(t) is the linear part of the
node dynamics with A ∈ R

n×n and h : Rn × R
+ → R

n

is a continuously differential nonlinear function, σ is the
coupling strength, τ > 0 is the coupled delay, α = (αij),
β = (βij) ∈ R

N×N are the coupling matrices. With no
extra restrictions it is assumed that

N
∑

j=1

αij = 0,

N
∑

j=1

βij = 0,

for all i = 1, . . . , N . The matrices α, β represent the
coupling strength and the underlying topology for non-
delayed and delayed configuration respectively, b ∈ R

n×1

is the control matrix, ui(t) ∈ R is the control action,
yi(t) ∈ R

l is the measurement vector, C ∈ R
l×n is the

observation matrix.

Let C([−τ, 0],Rn) be the Banach space of continuous
functions mapping the interval [−τ, 0] into R

n with the
norm ‖φ‖C = sup−τ≤z≤0 ‖φ(z)‖. For the functional dif-
ferential equation (1), its initial conditions are given by
xi(t) = ϕi(t) ∈ C([−τ, 0],Rn).

The problem is to design decentralized adaptive controllers
generating signals ui(t) based on measured signals yi(t)
to synchronize the network (1) to a given so called syn-
chronous solution x̄(t), i.e. to ensure the control goal

limt→∞‖xi(t)− x̄(t)‖ = 0, i = 1, 2, . . . , N. (2)

The vector-function x̄(t) is the solution of the leader
(drive) system

˙̄x(t) = Ax̄(t) + h(x̄(t), t) + bū(t)

ȳ(t) = Cx̄(t),
(3)

where ū(t) is the given input function.

3. AUXILIARY RESULTS

3.1 Decentralized speed gradient algorithms

Consider a system consisting of N interconnected subsys-
tems, dynamics of each being described by the following
equation:

ẋi = Fi(xi, θi, t) + fi(x, θ, t), i = 1, . . . , N, (4)

where xi ∈ R
ni – state vector, θi ∈ R

mi – vector of inputs
(tunable parameters) of subsystem, x = (x1, . . . , xN )T ∈
R

n, θ = (θ1, . . . , θN )T ∈ R
m – aggregate state and input

vectors of the system, n =
∑N

i=1
ni, m =

∑N

i=1
mi. Vector-

function Fi(·) describes local dynamics of a subsystem, and
vectors fi(·) describe interconnection between subsystems.

Let Qi(xi, t) ≥ 0, i = 1, . . . , N be local goal functions and
let the control goal be:

lim
t→∞

Qi(xi, t) = 0, i = 1, . . . , N. (5)

For all i = 1, . . . , N we assume existence of smooth vector
functions x∗

i (t) such that Qi(x
∗
i (t), t) ≡ 0, i.e. x∗

i =

argminxi
Qi(xi, t). Decentralized speed-gradient algorithm

is introduced as follows (see Fradkov [2007]):

θ̇i = −Γi∇θiωi(xi, θi, t), i = 1, . . . , N, (6)

where

ωi(xi, θi, t) =
∂Qi

∂t
+∇xi

Qi(xi, t)
TFi(xi, θi, t),

Γi = ΓT

i > 0 – mi ×mi - matrix.

3.2 Passification lemma

In order to formulate the passification lemma we need to
introduce several definitions.

Definition 1. A linear system ẋ(t) = Ax(t)+Bu(t), y(t) =
Cx(t) with the transfer matrix W (λ) = C(λI − A)−1B,
where u(t), y(t) ∈ R

l and λ ∈ C is called minimum-
phase if the polynomial ϕ(λ) = det(λI − A) detW (λ) is
Hurwitz. The system is called hyper-minimum-phase if it
is minimum-phase and the matrix CB = limλ→∞λW (λ)
is symmetric and positive definite.

We will need the passification lemma in the following form
(see Fradkov [1976], Fradkov [2003]).

Lemma 1. (Passification lemma). Let the matrices A ∈
R

n×n, B ∈ R
n×m, C ∈ R

l×n, g ∈ R
l×m be given and the

full-rank condition rank(B) = m holds. Then for existence
of a positive-definite n×n-matrix P = PT > 0 and l×m-
matrix θ∗ such that

PA∗ +AT

∗P < 0, PB = CTg,A∗ = A−BθT

∗C (7)

it is necessary and sufficient, that the system

ẋ(t) = Ax(t) +Bu(t)

y(t) = gTCx(t)
(8)

is hyper-minimum-phase.

Corollary 1. Suppose there exists g ∈ R
l×m such that

gTC(λI − A)−1B is hyper-minimum-phase. Then there
exist P > 0, θ∗, ε > 0 such that

PA∗ +AT

∗P < −εI, PB = CTg,A∗ = A−BθT

∗C. (9)

Remark 1. If the system (8) is hyper-minimum-phase then
there exists θ∗ such that a control law u = θT

∗ y+ v, where
v is a new control signal, makes the system (8) strictly
passive, i.e. there exist a nonnegative scalar function V (x)
and a scalar function µ(x), where µ(x) > 0 for x 6= 0, such
that

V (x) ≤ V (x0) +

∫ t

0

[v(t)Ty(t)− µ(x(t))] dt (10)

for any solution of the system (8) satisfying x(0) = x0.

3.3 Barbalat’s lemma

We will need the Barbalat’s lemma in the following form
(see Popov [1973]):

Lemma 2. If f(t) is a uniformly continuous function such
that f(t) ≥ 0 for all t ≥ 0 and

∫∞

0
f(t)dt < ∞ then

f(t) → 0 while t → ∞.

4. MAIN RESULTS

4.1 Adaptive controller structure

We will look for a control law in the following form:

ui(t) = −θi(t)
T(yi(t)− ȳ(t)) + ū(t), (11)



where θi(t) ∈ R
l is the vector of tunable parameters. Such

choice of a control law is motivated by the following idea.
If the difference between output of a subsystem and the
leader system is not zero, we take a control proportional
to this difference. The more difference value is the more
control action we should apply to make it closer to zero.
If the difference is zero, then we apply the same control
action to the subsystem as we apply to the leader system.

Denote ei(t) = xi(t) − x̄(t) and apply the speed gra-
dient algorithm with the local goal function Qi(ei, t) =
1

2
ei(t)

TPei(t), where P ∈ R
n×n is a positive definite

matrix that will be determined later. Using (1),(3) derive
an equation for ei(t):

ėi(t) = Aei(t) + h(xi(t), t)− h(x̄(t), t) + σ

N
∑

j=1

αijej(t)+

σ
N
∑

j=1

βijej(t− τ) + b (ui(t)− ū(t)) ,

yi(t)− ȳ(t) = Cei(t), i = 1, . . . , N.
(12)

Then ωi(ei, θi, t) = ei(t)
TP [Aei(t)+h(xi(t), t)−h(x̄(t), t)−

bθi(t)
T(yi(t)−ȳ(t))] and∇θiωi(ei, θi, t) = −ei(t)

TPb(yi(t)−
ȳ(t)). According to the speed gradient algorithm the adap-

tive law is chosen as θ̇i = −γi∇θiωi(ei, θi, t), but this
algorithm is not realizable because ei(t) in ωi(ei, θi, t)
is not available. Suppose there exists a vector g ∈ R

l

such that Pb = CTg. Then θ̇i = −γi∇θiωi(ei, θi, t) =
γiei(t)

TPb(yi(t)− ȳ) = γi(Cei(t))
Tg(yi(t)− ȳ) = γi(yi(t)−

ȳ)Tg(yi(t)− ȳ). We derive a realizable control law:

ui(t) =− θi(t)
T(yi(t)− ȳ(t)) + ū(t),

θ̇i =γi(yi(t)− ȳ)Tg(yi(t)− ȳ),
(13)

where γi ∈ R is an arbitrary chosen positive constant.

4.2 Synchronization conditions for Lipschitz nonlinearity

Theorem 1. Let h(xi(t), t) be Lipschitz continuous, i.e.
there exists a Lipschitz constant η satisfying ‖h(xi(t), t)−
h(x̄(t), t)‖ ≤ η‖ei(t)‖ for 1 ≤ i ≤ N . Suppose that

ε

2
I > P



ηI + σ

N
∑

j=1

|αij |+ |αji|+ |βij |+ |βji|

2





for i = 1, 2, . . . , N , where ε, P are from (9).

Then the adaptive controller (13) ensures achievement of
the goal (2) and boundedness of functions θi(t) on [0,∞)
for all solutions of the closed-loop system (1),(13) with
bounded initial conditions ‖ϕ̄(t)‖C < ζ, ‖ϕi(t)‖C < ζ and
any γi > 0.

Proof. Since ε
2
I > P

(

ηI + σ
∑N

j=1

|αij |+|αji|+|βij |+|βji|
2

)

,

there exists δ > 0 such that

(ε

2
− δ
)

I > P



ηI + σ

N
∑

j=1

|αij |+ |αji|+ |βij |+ |βji|

2



 .

Select a Lyapunov-Krasovskii functional

V (t) =
1

2

N
∑

i=1

ei(t)
TPei(t)+

1

2γi

N
∑

i=1

(θi(t)− θ∗)
T(θi(t)− θ∗)+

N
∑

i=1

∫ t

t−τ

ei(s)
THiei(s)ds, (14)

whereHi = δI+σP
∑N

j=1

|βji|
2

is a positive definite matrix.

Note that as soon as initial conditions are bounded V (0) is
bounded too. Differentiating the function V (t) we obtain

V̇ (t) =

N
∑

i=1

ei(t)
TP [Aei(t) + h(xi(t), t)− h(x̄(t), t)+

σ

N
∑

j=1

αijej(t) + σ

N
∑

j=1

βijej(t− τ)]−

N
∑

i=1

ei(t)
TPbθi(t)

TCei(t)+

N
∑

i=1

(θi(t)− θ∗)
Tei(t)

TCTgCei(t)+

N
∑

i=1

[ei(t)
THiei(t)− ei(t− τ)THiei(t− τ)] =

N
∑

i=1

ei(t)
TP (A− bθT

∗C)ei(t)+

N
∑

i=1

ei(t)
TP (h(xi(t), t)− h(x̄(t), t))+

N
∑

i=1

ei(t)
TPσ





N
∑

j=1

αijej(t) +

N
∑

j=1

βijej(t− τ)



+

N
∑

i=1

[ei(t)
THiei(t)− ei(t− τ)THiei(t− τ)].

(15)
Using the inequality 2xTy ≤ xTQx+ yTQ−1y it is easy to
show that

N
∑

i=1

N
∑

j=1

αijei(t)
TPej(t) ≤

N
∑

i=1



ei(t)
TPei(t)

N
∑

j=1

|αij |+ |αji|

2



 (16)

and
N
∑

i=1

N
∑

j=1

βijei(t)
TPej(t− τ) ≤

N
∑

i=1

ei(t)
TPei(t)

N
∑

j=1

|βij |

2
+

N
∑

i=1



ei(t− τ)TPei(t− τ)
N
∑

j=1

|βji|

2



 .

(17)

Then we can conclude that



V̇ (t) ≤
N
∑

i=1

ei(t)
T(−

ε

2
I + ηP + σP

N
∑

j=1

|αij |+ |αji|+ |βij |

2
+

Hi)ei(t) +

N
∑

i=1

ei(t− τ)T(σP

N
∑

j=1

|βji|

2
−Hi)ei(t− τ) =

N
∑

i=1

ei(t)
T[(δ −

ε

2
)I + ηP+

σP

N
∑

j=1

|αij |+ |αji|+ |βij |+ |βji|

2
]ei(t)−

δ

N
∑

i=1

ei(t− τ)Tei(t− τ) < −δ

N
∑

i=1

‖ei(t− τ)‖2.

(18)

V (t) = V (0)+

∫ t

0

V̇ (s)ds ≤ V (0)−δ

∫ t

0

N
∑

i=1

‖ei(s−τ)‖2ds

Since V̇ ≤ 0, V (t) is bounded. Therefore
∫∞

0

∑N

i=1
‖ei(s−

τ)‖2ds < ∞. Using Barbalat’s lemma we conclude that
ei(t) → 0 while t → ∞ for i = 1, 2, . . . , N . That is,
the zero solution of the closed-loop system (12),(13) is
asymptotically stable and xi(t) − x̄(t) → 0 while t → ∞
for i = 1, 2, . , N .

It is obvious that if θi(t) → ∞ then V → ∞. But as it was
shown V (t) ≤ V (0). That proves that θi(t) are uniformly
bounded.

4.3 Synchronization under matching conditions

The synchronization conditions formulated in Theorem
1 require that the Lipschitz constant η of h(x, t) is suf-
ficiently small which imposes strong restrictions on the
nonlinearity h(x, t). For structured nonlinearities this re-
striction may be relaxed. In order to formulate further
result we need to introduce the following definition.

Definition 2. For given G ∈ R
l a function f : Rl → R is

called G-monotonically decreasing if for any x, y ∈ R
l the

following condition holds: (x− y)TG(f(x)− f(y)) ≤ 0.

Note that if l = 1 and G > 0 then this definition coincides
with the classical definition of a monotonically decreasing
function.

Theorem 2. Suppose there exists h0(x, t) : R
n × R

+ → R

such that h(x, t) = bh0(x, t). Suppose that

εI > σP

N
∑

j=1

(|αij |+ |αji|+ |βij |+ |βji|)

for i = 1, 2, . . . , N , where ε, P are from (9). If for any t the
function h0(x, t) is a g-monotonically decreasing function,
where g is from (9), then the adaptive controller (13)
ensures achievement of the goal (2) and boundedness of
functions θi(t) on [0,∞) for all solutions of the closed-loop
system (1),(13) with bounded initial conditions ‖ϕ̄(t)‖C <
ζ, ‖ϕi(t)‖C < ζ and any γi > 0.

Proof. Since ε
2
I > σP

∑N

j=1

|αij |+|αji|+|βij |+|βji|
2

, there
exists δ > 0 such that

(ε

2
− δ
)

I > σP
N
∑

j=1

|αij |+ |αji|+ |βij |+ |βji|

2
.

Select a Lyapunov-Krasovskii function as in (14) with the
same Hi. By making calculations similar to (15) one can

derive the following inequality for V̇ :

V̇ (t) ≤

N
∑

i=1

ei(t)
T



(δ −
ε

2
)I + σP

N
∑

j=1

|αij |+ |αji|+ |βij |+ |βji|

2



 ei(t)+

N
∑

i=1

(yi(t)− ȳ(t))Tg(h0(yi(t), t)− h0(ȳ(t), t))−

δ

N
∑

i=1

‖ei(t− τ)‖2 < −δ

N
∑

i=1

‖ei(t− τ)‖2.

(19)
Similarly to the end of the proof for Theorem 1 we conclude
that xi(t)− x̄(t) → 0 while t → ∞ and θi(t) are uniformly
bounded for i = 1, 2, . , N .

Remark 2. The statements of Theorem 1 and Theorem
2 hold in case of time-varying time delay τ(t) if τ̇(t) is
small enough. The upper bound for τ̇(t) can be found
by applying the same Lyapunov-Krasovskii function (14).
As soon as for time-varying delay the following inequality
holds

V̇ ≤

N
∑

i=1

ei(t− τ(t))T[
σ

2
P

N
∑

j=1

|βji|τ̇(t)−

δI(1− τ̇(t))]ei(t− τ(t)) (20)

all statements hold if τ(t) is such that

sup
t≥0

τ̇(t) <
2δ

2δ + σ‖P‖max1≤i≤N

∑N

j=1
|βji|

.

Remark 3. Note that all obtained results are delay-
independent.

5. EXAMPLE. NETWORK OF LORENZ SYSTEMS

Lorenz system is a well known example of nonlinear system
possessing complex chaotic behavior. Let us apply our
results to synchronize a network of three interconnected
identical Lorenz subsystems with the leader subsystem.
Denote by σL = 10, rL = 28, bL = 8

3
the value of the

parameters for which chaos was observed in the original
work Lorenz [1963].

For numeric simulation we took the following values of the
system parameters:

A =

(

−σL σL 0
rL −1 0
0 0 −bL

)

, b =

(

0
1
0

)

, C = (0 1 0)

h(x, t) =

(

0
−x1x3

x1x2

)

,

and the following values of coupling parameters: σ = 0.2,
τ = 1 seconds,

α =

(

−1 1/2 1/2
1/3 −1 2/3
2/3 1/3 −1

)

, β =

(

−1 1/4 3/4
1/2 −1 1/2
1/3 2/3 −1

)

.



Fig. 1. Synchronization of three Lorenz systems with hyper-minimum-phase linear part. (A): Phase portrait of the
leader subsystem, (B): ‖ei‖, (C): ui, i = 1, 2, 3.

Fig. 2. Synchronization of three Lorenz systems with non hyper-minimum-phase linear part. (A): ‖ei‖, (B): ui, i =
1, 2, 3.

Let us take g = 1. Then the transfer function of the linear
system will have the following form W (λ) = gTC(λI −
A)−1b = λ+10

λ2+11λ−270
. Therefore, the system is hyper-

minimum-phase. By taking θ∗ = −28 and P = I, where I
is an identity matrix, we ensure the conditions of Theorem
1. Hence, a decentralized adaptive controller (13) provides
synchronization goal (2).

Phase portrait of the leader subsystem, ‖ei(t)‖, ui(t),
i = 1, 2, 3 found by numeric simulations are shown in Fig.
1. It is easy to see that ‖ei(t)‖ → 0.

Now we would like to demonstrate that the conditions
of Theorem 1 and Theorem 2 are not necessary, i.e.
synchronization takes place for non hyper-minimum-phase
system. Let us consider the same system but with C =
(1 0 0). The transfer function of the linear part is W (λ) =
g 10

λ2+11λ−270
. That is, for all g the linear system is not

hyper-minimum-phase. And still according to the numeric
simulations the control algorithm (13) with γ = 1, g = 1
will work. The results are presented in Fig. 2. We can
see that ‖ei(t)‖ → 0, i.e. all three Lorenz systems are
synchronized.

Remark 4. Both hyper-minimum-phase and non hyper-
minimum-phase systems were also simulated for other
values of time delay τ (τ = 0.01, 0.1, 10, 100 seconds). In all
cases the plots were similar to each other with insignificant
differences. Therefore the results are practically delay-
independent and they are valid for strong delays.

6. CONCLUSION

The delay-independent synchronization conditions for de-
layed coupling networks consisting of nonlinear systems
with incomplete measurement, incomplete control, incom-
plete information about system parameters are obtained.
The design of the control algorithm providing synchroniza-
tion is based on speed-gradient method, while derivation
of sufficient conditions for synchronization is based on the
Passification lemma.

Further research will be aimed at the extension of the
obtained results to the systems with variable delay.
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