
This is a repository copy of Performance evaluation of HEVC RCL applications mapped
onto NoC-based embedded platforms.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/158753/

Version: Accepted Version

Proceedings Paper:
Penny, Wagner, Palomino, Daniel, Porto, Marcelo et al. (2 more authors) (2019)
Performance evaluation of HEVC RCL applications mapped onto NoC-based embedded
platforms. In: Proceedings - 32nd Symposium on Integrated Circuits and Systems Design,
SBCCI 2019. 32nd Symposium on Integrated Circuits and Systems Design, SBCCI 2019,
26-30 Aug 2019 Proceedings - 32nd Symposium on Integrated Circuits and Systems
Design, SBCCI 2019 . ACM , BRA

https://doi.org/10.1145/3338852.3339868

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Performance Evaluation of HEVC RCL Applications Mapped
onto NoC-Based Embedded Platforms

Wagner Penny
ViTech/PPGC/UFPEL, IFSUL

RTS/University of York

York, United Kingdom

wi.penny@inf.ufpel.edu.br

Daniel Palomino
ViTech/PPGC/UFPEL

Pelotas, Brazil

dpalomino@inf.ufpel.edu.br

Marcelo Porto
ViTech/PPGC/UFPEL

Pelotas, Brazil

porto@inf.ufpel.edu.br

Bruno Zatt
ViTech/PPGC/UFPEL

Pelotas, Brazil

zatt@inf.ufpel.edu.br

Leandro Indrusiak
RTS/University of York

York, United Kingdom

lsi@cs.york.ac.uk

ABSTRACT

Today, several applications running into embedded systems have

to fulfill soft or hard timing constraints. Video applications, like

the modern High Efficiency Video Coding (HEVC), e.g., most often

have soft real-time constraints. However, in specific scenarios, such

as in robotic surgeries, the coupling of satellites and so on, harder

timing constraints arise, becoming a huge challenge. Although the

implementation of such applications in Networks-on-Chip (NoCs)

being an alternative to reduce their algorithmic complexity and

meet real-time constraints, a performance evaluation of the mapped

NoC and the schedulability analysis for a given application are

mandatory. In this work we make a performance evaluation of

HEVC Residual Coding Loop (RCL) mapped onto a NoC-based

embedded platform, considering the encoding of a single 1920x1080

pixels frame. A set of analysis exploring the combination of different

NoC sizes and task mapping strategies were performed, showing

for the typical and upper-bound workload cases scenarios when

the application is schedulable and meets the real-time constraints.

CCS CONCEPTS

· Information systems→Multimedia information systems; ·Net-

works → Network on chip; · Computer systems organization

→ Real-time systems; Embedded systems.

KEYWORDS

NoC, real-time systems, embedded systems, HEVC

ACM Reference Format:

Wagner Penny, Daniel Palomino, Marcelo Porto, Bruno Zatt, and Leandro

Indrusiak. 2019. Performance Evaluation of HEVCRCLApplicationsMapped

onto NoC-Based Embedded Platforms. In 32nd Symposium on Integrated

Circuits and Systems Design (SBCCI ’19), August 26ś30, 2019, Sao Paulo, Brazil.

ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3338852.3339868

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SBCCI ’19, August 26ś30, 2019, Sao Paulo, Brazil

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6844-5/19/08. . . $15.00
https://doi.org/10.1145/3338852.3339868

1 INTRODUCTION

Nowadays, digital videos have spread at a huge rate due to the ever-

increasing amount of handheld digital devices (according to [20],

today, more than 70% of all video visualizations on internet happen

at these devices), and the fast popularization of streaming video

services, like Youtube, Prime, and Netflix. The crescent demand

for higher resolutions and frame rates lead to the development of

modern video coding standards, capable of greater compression

ratios. Today’s state-of-the-art video coding standard is the High

Efficiency Video Coding (HEVC), released in 2013 by the Joint

Collaborative Team on Video Coding (JCT-VC) [18] to replace its

predecessor H.264/AVC (Advanced Video Coding), keeping a similar

objective video quality, whereas enhancing the compression ratios

almost twice when compared with H.264 [19].

The main problem with HEVC, likewise other modern video

coding standards, is the great computational effort required due

to the enhanced tools introduced/improved when compared with

previous standards. Depending on encoding configurations, HEVC

can be up to 500% more complex than its predecessor [14]. E.g., the

Residual Coding Loop (RCL) is one of the most time-consuming

steps within HEVC, executed several times during the encoding

process and responsible for up to 18% of total encoding time [4].

Besides complexity constraints, real-time constraints also arise

as a challenge in the context of video coding. Broadly speaking,

video applications have soft real-time constraints. E.g., a full high-

definition (FHD)(1920x1080 pixels) video requires a minimum frame

rate of 30 fps [19] to give a continuous motion sensation, i.e., each

frame can spendmaximum time of 33 ms to be processed, otherwise,

the frame rate won’t be reached, missing the deadline. However, in

specific video applications, such as in robotic surgeries and coupling

of satellites, these constraints are harder and a performance analysis

aiming the fulfillment of the deadlines is mandatory.

Indeed, video coding has been seen as complex and sophisti-

cated workloads, requiring efficient platform resources manage-

ment mechanisms besides optimized scheduling of tasks, as a way

to optimize performance and meet deadlines. To address such con-

straints, many approaches consider the mapping of applications

onto Systems-on-Chip (SoCs), with multiple processing units, in-

terconnected with Networks-on-Chip (NoCs), which can intercon-

nect tens to hundreds of processing cores by an on-chip packet-

switching network that allows data to be transferred between the

SBCCI ’19, August 26–30, 2019, Sao Paulo, Brazil Wagner Penny, et al.

local memory of each core and from/to external memory [8]; com-

pounding a complex Multiprocessor System-on-Chip (MPSoC), ca-

pable of reducing the computational time and meeting the time

constraints of such complex applications [17].

Nevertheless, the mapping of an application, described by pa-

rameterized task graphs, onto a given NoC, is seen as a key re-

search problem. In fact, the general NoC’s cores mapping problem

is NP-complete and its solutions are only allowed based on efficient

heuristics [7][16]. Furthermore, the performance of the NoC inter-

connections also arises as a critical issue regarding time constraints.

The choice of the best NoC configuration/application mapping,

with a NoC schedulability evaluation, is not a trivial issue. Solu-

tions found through simulation, addressing specific scenarios, are

widely used by industry and academia. However, such an approach

presents two main limitations: the execution time, which can be

prohibitively large; and the pruning of possible scenarios, since only

specific scenarios are simulated [8]. Although the simulation anal-

ysis could be used in specific situations, analytical methods can be

used to deal with its mentioned problems, providing a schedulability

evaluation of a NoC-based multicore embedded system, verifying

whether or not the system can fulfill all the timing constraints,

improving the design space exploration.

In this work, we propose a performance evaluation of the HEVC

RCL application mapped onto NoC-based multicore embedded plat-

forms. The application workload is modeled based in Sporadic

Task-Chain, mapped onto different NoC sizes. The case study con-

siders the encoding of an FHD frame in the typical and upper-bound

workload case scenarios. We propose different task mappings and

platform topologies, showing when the tasks and flows are schedu-

lable or not, for each case study.

2 LITERATURE BACKGROUND

2.1 HEVC

The HEVC encoder [18] follows a hybrid coding model, based on

the encoding of residues (the difference between the original and

the predicted frame). This model is composed of the prediction

steps (intra and inter), the transform (T) and quantization (Q) steps,

and the entropy coding. As a way to guarantee the same references

at encoder and decoder sides, the encoder also contains steps from

decoder, like the motion compensation (MC), inverse transform (IT)

and inverse quantization (IQ). The set of steps T, Q, IQ, and IT is

called Residual Coding Loop (RCL).

In the HEVC, during the encoding process, many decisions must

be made. Each frame is divided into basic structures called Coding

Tree Units (CTU), a quadtree starting with the size of 64x64 in the

root, recursively divided assuming sizes of 32x32 or 16x16 (smallest

CTU size). The leaf nodes of a CTU-rooted are called Coding Units

(CUs), always-squared shaped blocks presenting the basic informa-

tion about the blocks being coded, capable of assuming a minimum

size of 8x8 (for inter-prediction) or 4x4 (for intra-prediction). See

in Fig. 1 a frame recursively divided in CTUs and CUs.

The CUs can be divided into Prediction Units (PUs), during the

prediction steps, which inform about prediction modes (intra or

inter), and into Transform Units (TUs), during the RCL and after

the calculation of the residues (see in Fig. 1 the example of a resid-

ual quadtree (RQT) structure starting with a 32x32 root). Each TU

Figure 1: Partitioning of a frame into structured quadtrees

(adapted from [21]).

contains information about the transformed and quantized blocks,

always squared varying from 32x32 down to 4x4 sizes). Each coding

mode (intra or inter), as well as the best partitioning, is determined

in HEVC by a Mode Decision (MD) unit, based on the RD (Rate

Distortion) cost, which is a trade-off between distortion (objective

video quality) and bit-rate, hence, the encoder must test an exhaus-

tive amount of encoding possibilities to make the best decision.

During the HEVC RCL, the direct transform is applied to the

residues (typically a Discrete Cosine Transform - DCT), converting

the information from space to frequency domain. Direct quantiza-

tion reduces the magnitude of the transformed residuals, leading

most of the quantized transformed equals to zero, which improves

the entropy coding efficiency. The inverse quantization and inverse

transform are used to perform the inverse operations in order to

reconstruct the block, used as a reference in the encoder. The RCL

must be executed several times during the encoding of a single

frame and has been being the main goal of several works in the

literature due to its complexity.

2.2 Performance Analysis for NoCs

Networks-on-chip (NoCs) are common architectural templates for

processors with dozens, hundreds or even thousands of cores. In

Fig. 2 we show a simplified example of a simple 3x3 NoC architec-

ture. All the nodes are interconnected, and each one has a core c,

linked to a local cache, which stores local information, and a router

r, which routes the data packets towards the destinations (it can be

another core, the off-chip memory, etc.) [8]. The communication

between the cores and the router is made by two unidirectional

links (one from c to r and other from r to c). In this work, we have

applied the widely used 2D-mesh topology [2][8][9], considering

wormhole NoCs with priority-preemptive arbitration, widely stud-

ied in the literature due to their ability to provide resources for

hard real-time guarantees [9][16].

In a wormhole switching network, the data is encapsulated into

a packet format, where each packet is divided into a number of

Perf. Eval. HEVC RCL Mapped onto NoC-Based Emb. Platforms SBCCI ’19, August 26–30, 2019, Sao Paulo, Brazil

Figure 2: Mesh 2D NoC 3x3 architecture with a router detail-

ing the priority-driven virtual channels (adapted from [16]).

fixed size flits (data words) [16]. The router is based on priority-

preemptive virtual channels (VCs) as a way to guarantee more

predictability. Each packet has a different priority assigned, thus it is

possible to packets with higher priority preempt the oneswith lower

priorities. See in Fig. 2 that in each input port there is a FIFO buffer

storing the incoming flits of packets arriving through different VCs.

The routing and flow controller decides the correct output port for

each packet, according to its destination. A credit-based approach,

first stated in [1], was applied, ensuring the forwarding of the data

only when there is sufficient space in the VC of the next router.

In order to determine whether application tasks being executed

and communicating over a specific NoC can fulfill the required

timing constraints, it is necessary to perform a schedulability anal-

ysis. A system is schedulable iff all its tasks and communicating

flows meet the deadlines. In this paper, we have applied the end-

to-end schedulability analysis presented in [8], which ensures all

tasks executing over a processing core and their respective packets

flow over a NoC will meet their deadlines even in the worst-case

scenario. For the analysis of packet flows, we incorporated the im-

provements from [9], which consider the impact of finite buffers,

flow control backpressure, and multi-point progressive blocking

in priority-preemptive NoCs. For a comprehensive review on NoC

performance analysis, see [10].

3 APPLICATION WORKLOAD MODELING

A co-design flow of embedded systems, which consists of a set of

steps starting with the specifications of requirements and ending

with the hardware/software integration into silicone chips [6], is of

utmost importance nowadays. The co-designmodeling phase allows

designers to explore the design space, making the best architectural

choices in order tomeet user requirements, platform and application

constraints during the development phase [17].

In this work, we follow modeling based on Sporadic Task Model

[8], where an application can be modeled as a taskset Γ = {τ1, τ2,...,

τn }, where each task τi is a 6-tuple τi = {Ci , Ti , Di , Ji , Pi , ϕi }, which

are respectively the worst-case computation time, the period (min-

imum inter-release time interval), the deadline, the release jitter

(time between the request of a task and it starts to be processed), the

priority, and a message, defined as a 3-tuple ϕi = {τd , Zi , Ki }, repre-

senting the destination task, the message’s size and the maximum

release jitter (total time the packet takes to reach the destination,

including preemption and interference). A sporadic task-chain X =

{τ1, τ2,..., τx } is an ordered subset of Γ, where a task sends a message

Figure 3: HEVC Simplified Block Diagram with RCL Mod-

eled as Sporadic Task-Chains.

to a subsequent task in X. In this case, all tasks within X have the

same period and deadline. The final task of every task-chain must

be the empty set é.

In this work, the evaluated application is the HEVC RCL. See in

Fig. 3 a simplified block diagram of the HEVC encoder and the RCL

modeled as a sporadic task-chain model. Each step of the RCL is

considered as a task: direct transform (T), direct quantization (Q),

inverse quantization (IQ), and inverse transform (IT). In addition,

the first and last tasks of the chain are memory-related tasks: MI

(Memory Input) and MO (Memory Output), respectively. The first

one represents the modeling of a block being read from off-chip

memory until reaches T. The final task is an empty set, treated as

a sink (i.e., a place holder with computation time equals to zero),

where the necessary information is stored for the forward steps

of the encoder (outside the scope of our evaluation). The payload,

given in flits, are packets containing information about the data

being processed, varying the size according to the TU size (4x4,

8x8, 16x16 or 32x32), NoC flit size (depends on NoC topology), bit

word size, and adopted subsampling (relation between number of

luminance and chrominance samples, in this work we have adopted

the widely used 4:2:0).

As a way to simplify the modeling, we have made some as-

sumptions. We considered that all blocks of a single frame can be

independently processed, allowing the exploration of maximum par-

allelism. In order to do that, we must consider only the processing

of inter-predicted blocks in the modeled RCL, since intra-predicted

blocks have strong data dependency, which narrows the full paral-

lelism exploration. Since the majority of blocks in a real encoding

are inter-predicted such assumption does not incur in loss of im-

portance of the proposed evaluation. Besides that, we also have

considered that the inter-prediction is giving to RCL always the

final decision in terms of prediction modes and CU size, i.e., only

the evaluation of the best TU is carried out (see that in this case we

are not caring about which kind of PU decision was made, we just

need to know what was the selected CU sizes, which will be the

roots of the RQTs in the RCL).

To model the HEVC RCL, we have first analyzed the compu-

tation time of each RCL step in HEVC. We encoded 64 frames of

five video sequences (BasketballDrive, BQTerrace, Cactus, Kimono,

and ParkScene) from class B (1920x1080 pixels), considering four

Quantization Parameters (QPs - 22, 27, 32, and 37), according to the

SBCCI ’19, August 26–30, 2019, Sao Paulo, Brazil Wagner Penny, et al.

Table 1: RCL Task’s Computation Time and Payload

TU Size MI T Q IQ IT MO Payload

4x4 42 96 535 99 122 0 26

8x8 81 270 2072 159 375 0 98

16x16 223 1444 9889 394 1465 0 386

32x32 716 9365 42017 1249 9000 0 1538

HEVC Common Test Conditions (CTCs) [3], using the reference

software HM 16.18 (HEVC Test Model) [5], running isolated into an

i7 core with a fixed frequency of 3.0 GHz. The computation times

of RCL tasks were obtained for each TU size (4x4, 8x8, 16x16, and

32x32) and are presented in Table 1. Note that we found the aver-

age computation time, obtaining a Gaussian distribution with the

measured times. The computation times applied in the modeling

(showed in Table 1 in nanoseconds) were the upper quartiles of

the distribution since we want to model worst-case scenarios. In

Table 1 we also show the payload for each TU size, considering

a packet header of two flits. Furthermore, the period of the tasks

into a chain is the same and equal to the inverse of frame rate (e.g.,

we considered 30 fps in this work, thus the period is 33 ms). The

deadline for all tasks in the chain is equal to the period.

Each task was conceived with a different priority and must have

given different names, ensuring that each task node is different

from the others. The developed model is modular, a task-chain for

each TU size can be created, and further replicated and instantiated

to compound any sort of RQT distribution (e.g., the evaluation of a

block 16x16 must use one chain 16x16 to analyze the 16x16 TU, four

chains 8x8 to analyze the four 8x8 TUs compounding the 16x16 TU,

and so on). This approach is better detailed in the next section.

4 PERFORMANCE EVALUATION

The task-chains were conceived in a modular way (the explanation

of a single RCL task-chain modelling was done in the previous

section). The modules are presented in Fig. 4. We follow a cluster-

based approach to instantiate any number of task-chains as wished.

To perform the RCL of a 4x4 TU a simple task-chain is necessary,

called Cluster 4x4. To analyze an 8x8 TU is necessary a task-chain

for the 8x8 TU plus four task-chains to 4x4 TUs (which compound

the 8x8). This structure is called Cluster 8x8. When analyzing a

16x16 TU, a task-chain for 16x16 is necessary, besides four Cluster

8x8 (which already contain resources to evaluate the 4x4 TUs). Such

a structure is called Cluster 16x16. Finally, to perform the evaluation

of a 32x32 TU, Cluster 32x32 is built by using a sporadic task-chain

for 32x32 TU, in addition to four Cluster 16x16. As explained before,

64x64 TUs are not allowed, but the CUs can assume such size. In

this case, the block must be split into four 32x32 TUs, requiring

four Cluster 32x32. See that in order to cover all possibilities of TU

splitting (starting from a given CU size), the divisions were also

considered to the maximum limit, always going to the lowest level

of the RQT (leaves 4x4).

The performance evaluation was based on two main case studies:

the building of an upper-bound workload model and the building

of a typical workload model. The upper-bound workload model

considers a single FHD frame, equally divided into CTUs 64x64.

Figure 4: Modular Distribution of HEVC RCL Modeled as

Sporadic Task-Chains.

Such a pessimist scenario consists of the assumption that the inter-

prediction selected only 64x64 CUs. These CUs must be partitioned

into 32x32 TUs and the RQT can reach the smallest value of 4x4

TUs, resulting in the processing of 506 64x64 blocks, recursively

divided until 4x4 TU sizes. Note that, regarding processing effort,

no other situation is worse than this one. A schedulability test for

this workload, ensuring the meeting of timing constraints, resulting

in a schedulable system, automatically means that any other work-

load scenario will be also schedulable. However, such a pessimist

scenario is not real, in a practical way would never happen.

A typical workload scenario, also considering an FHD frame,

must take into account the occurrence of skips and the average CU

size selection. A skip occurs when the predicted block is equal to

the original. In this case, the generated residue will be equal to zero.

Therefore, the RCL can be skipped since the resulting transformed

and quantized coefficients will also be equal to zero. This way, all

effort demanded to process the RCL of this block will be avoided.

The average skip occurrence in FHD videos is about 73.5% [11]. The

percentual of selection of each CU in HEVC was obtained using

results presented in [15] combined to in-house experiments using

the reference software: 64x64 (5.86%), 32x32 (19.49%), 16x16 (35.21%),

and 8x8 (39.44%). In terms of processing effort, the combining of

skip occurrence and the percentual of CU selection results in a

scenario (in terms of required processing), equivalent to process

136 64x64 blocks, recursively divided until 4x4 TU sizes.

The task mapping step is a critical part of the development. This

process defines where each task of the application is mapped onto

which processing core, i.e., where each task is executed. A first

approach, poorly efficient, which can be applied is a Random Task

Mapping. In this mapping, the tasks (even from the same task-

chain), are mapped in aleatory cores. Besides being straightforward

to implement, the distribution of the tasks may imply in high-level

of interference among data flows.

A more efficient mapping must consider all tasks from a chain

onto the same processing core, except its memory-related tasks.

These tasks need to be mapped onto cores that directly access the

off-chip memory through DMAs (Direct Memory Accesses). Based

on such information, we have developed two approaches to map the

Perf. Eval. HEVC RCL Mapped onto NoC-Based Emb. Platforms SBCCI ’19, August 26–30, 2019, Sao Paulo, Brazil

Figure 5: HEVC RCL Workload Mapping Strategies onto

NoCs 4x4 (a) Heuristic 0 and (b) Heuristic 1.

workload onto NoCs, presented in Fig. 5. In Fig. 5 (a) is presented

the Mapping Heuristic 0 (MH0) and in Fig. 5 (b) is presented the

Mapping Heuristic 1 (MH1). MH0 consists of mapping all memory-

related tasks in core 0, whose router is connected to the DMA. In

this approach, there is an intensive traffic flow from the other cores

towards core 0. On the other hand, MH1 tries to decrease the data

flow intensity, strategically allocating DMAs in all NoC corners.

In such mapping, the traffic flows are kept into smaller quadrants

from the NoC, flowing from the other cores to the corners. For MH1

onto NoCs 2x2 and 3x3 are considered only two DMAs, in opposite

corners (routers 0 and 3, 0 and 8, respectively). Furthermore, a third

heuristic that is not showed in the figure, called Mapping Heuristic

2 (MH2), is also proposed. MH2 is a non-realistic scenario, applied

just to verify the upper limit of tasks that can be mapped into a

single core. In this case, it is considered that each router in the NoC

is able to connect directly the DMA. In such a specific scenario

there are no flows running inside the NoC, only from the core to

router, and from the router to off-chip memory.

Schedulability analysis for the proposed workload scenarios,

combining different NoC sizes and mapping approaches were per-

formed and presented in the next section.

5 EXPERIMENTAL SETUP AND RELATED
WORKS

In order to perform the schedulability evaluation of the HEVC RCL

modeling, an experimental setup proposing 24 different scenarios is

presented in Table 2. Each experiment has an identification number

(Exp. ID), mapped onto NoCs 2x2, 3x3, 4x4, and 5x5. The considered

workloads are the ones mentioned in section 4 (upper-bound and

typical). Note that upper-bound was analyzed only for 4x4 and 5x5

NoCs due to the fact that, according to the great number of tasks,

there are no available cores to map all tasks from this workload onto

a NoC smaller than 4x4. The mapping strategies are four: a random

mapping (but keeping memory-related tasks onto core 0), MH0,

MH1, and MH2. We also considered two types of core distribution:

a maximum core utilization (MCU), where we map a number of

tasks near to the supported limit of the core (which can imply in

sub utilization of cores sometimes, or even cores without mapped

tasks), and an uniform core utilization (with equal task distribution

among all the cores of the NoC).

The platform follows the architecture stated in section 2, with

homogeneous cores running priority-preemptive task schedulers,

2D-mesh NoC interconnected with XY squared dimension routing,

distributed memory, 8 virtual channels with priority-preemptive

Table 2: Experimental Setup

Exp. ID NoC Size Workload Mapping Core Util.

01 2x2 typical MH0 uniform

02 2x2 typical MH1 uniform

03 2x2 typical random none

04 3x3 typical MH0 uniform

05 3x3 typical MH0 MCU

06 3x3 typical MH1 uniform

07 3x3 typical MH1 MCU

08 3x3 typical random none

09 4x4 typical MH0 uniform

10 4x4 typical MH0 MCU

11 4x4 typical MH1 uniform

12 4x4 typical MH1 MCU

13 4x4 typical ramdom none

14 4x4 upper-bound MH0 uniform

15 4x4 upper-bound MH0 MCU

16 4x4 upper-bound MH1 uniform

17 4x4 upper-bound MH1 MCU

18 4x4 upper-bound random none

19 4x4 upper-bound MH2 uniform

20 5x5 upper-bound MH0 uniform

21 5x5 upper-bound MH0 MCU

22 5x5 upper-bound MH1 uniform

23 5x5 upper-bound MH1 MCU

24 5x5 upper-bound random none

link arbitration. The schedulability analysis is based on [8] and [9],

and the results are presented in Fig. 6.

In Fig. 6 we present the response times regarding all flows within

the proposed 24 experiments. The average response time is plotted

in orange triangles, the worst-case response time is represented

as blue crosses, and the deadline is showed as a gray dashed line.

Response times greater than the deadline are presented above its

dashed line and their values, considerable high, are not represented

in the graph for simplicity. Note that even though many experi-

ments have been presented worst-case time responses smaller than

the deadline, the whole system may not be fully schedulable since

the time response of the tasks also must be taken into account.

In the considered experiments, the tasks were most often schedu-

lable since we have previously analyzed the capacity of each core.

Only on the random mapping of experiments 02 and 18 some tasks

Figure 6: Flow’s Response Times of 24 Proposed Experi-

ments.

SBCCI ’19, August 26–30, 2019, Sao Paulo, Brazil Wagner Penny, et al.

Figure 7: Number of Unschedulable Flows within the 24 Pro-

posed Experiments.

were unschedulable. On the other hand, the flows depend on NoC

resources and the path they need to cross until reaching the desti-

nation. We have also analyzed the number of unschedulable flows

within the experiments and they are presented in Fig. 7, thus veri-

fying which experiments give a fully schedulable system.

When analyzing Fig. 7, we can see that only experiments 04, 06,

08, 09, 11, 13, 19, and 22 have zero unschedulable flows. Among

them, experiments from 04 to 13 consider a typical workload. Note

that the system is fully schedulable with a 3x3 NoC, connected to

off-chip memory using only one DMA and with uniform task core

distribution (experiment 04). Although other configurations also

being schedulable, they spend more resources, which makes exper-

iment 04 the best configuration when mapping a typical workload.

Experiment 19 is fully schedulable but represents a non-realistic

scenario, where all routers can connect to DMA. Finally, regard-

ing upper-bound workload, the only configuration that is fully

schedulable is experiment 22. Therefore, the system will be fully

schedulable when the HEVC RCL is mapped onto a 5x5 NoC, con-

nected with four DMAs and uniform task core distribution. In this

case, we can guarantee that the system will be always schedulable

since the time constraints were met even for the worst case.

Many works in the literature aim the modeling of HEVC in

higher abstraction levels. In [17], besides modeling the HEVC video

decoder with Synchronous Data Flow in order to solve problems of

placing and scheduling the application onto an embedded platform,

they consider only the decoder and apply simulation methods to

analyze the system. Works [13] and [12] also propose HEVC model-

ing in higher levels of abstraction. In [13] is developed a synthetic

workload generation of broadcast-related HEVC stream decoding

in constrained systems. Work [12] proposes a dynamic and static

task allocation for hard real-time video stream decoding on NoCs.

Although modeling the HEVC in higher levels of abstraction, these

works consider only the decoder and they do not model specific

steps of the encoder, like RCL. To the best of the author’s knowledge,

it is the first work in the literature proposing the modeling of the

HEVC RCL onto embedded platforms based on NoCs, performing a

schedulability evaluation to meet the real-time constraints of the

application.

6 CONCLUSIONS

In this work, we presented a performance evaluation of HEVC

RCL applications mapped onto NoC-based embedded platforms.

The application was modeled based on Sporadic Task Model, fol-

lowing a cluster-based approach. Two workloads were generated

(upper-bound and typical), regarding characteristics of the HEVC

encoder. A set of 24 experiments was built, combining workloads,

NoC configurations, and different task mapping strategies. For each

configuration, a schedulability analysis was applied in order to

verify if the system meets the real-time constraints posed by the

application. We found out that, for typical workloads, a 3x3 NoC

with only one DMA and uniform core distribution is schedulable.

On the other hand, for upper-bound workload scenarios, the system

is only schedulable using 5x5 NoCs, with four DMAs and uniform

core distribution.

ACKNOWLEDGMENTS

This study was financed in part by the Coordenação de Aperfeiçoa-

mento de Pessoal de Nível Superior - Brasil (CAPES) ś Finance code

001 (bolsista da Capes/PDSE/processo nº88881.188774/2018-01), the

CNPq, and the FAPERGS.

REFERENCES
[1] T. Bjerregaard and S. Mahadevan. 2006. A Survey of Research and Practices of

Network-on-chip. ACM Comput. Surv. 38, 1, Article 1 (June 2006).
[2] E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny. 2004. QNoC: QoS architecture

and design process for network on chip. JSA 50, 2 (2004), 105 ś 128. Special
issue on networks on chip.

[3] F. Bossen. 2011. Common test conditions and software reference configurations.
JCTVC-L1100, Geneva.

[4] F. Bossen, B. Bross, K. Suhring, and D. Flynn. 2012. HEVC Complexity and
Implementation Analysis. IEEE TCSVT 22, 12 (Dec 2012), 1685ś1696.

[5] J. Boyce. 2014. HM16: High Efficiency Video Coding Test Model (HM16) Encoder
Description. JCTVC-R1002, Sapporo.

[6] P. Ehrlich and S. Radke. 2013. Energy-aware software development for embedded
systems in HW/SW co-design. In 2013 IEEE DDECS. 232ś235.

[7] W. Hu, C. Du, L. Yan, and C. Tianzhou. 2009. A fast algorithm for energy-aware
mapping of cores onto WK-recursive NoC under performance constraints. In
2009 HiPC. 359ś367.

[8] L. Indrusiak. 2014. End-to-end schedulability tests for multiprocessor embedded
systems based on networks-on-chip with priority-preemptive arbitration. JSA
60, 7 (2014), 553 ś 561.

[9] L. Indrusiak, A. Burns, and B. Nikolić. 2018. Buffer-aware bounds to multi-point
progressive blocking in priority-preemptive NoCs. In 2018 DATE. 219ś224.

[10] A. Kiasari, A. Jantsch, and Z. Lu. 2013. Mathematical Formalisms for Performance
Evaluation of Networks-on-chip. ACM Comput. Surv. 45, 3, Article 38 (July 2013).

[11] J. Kim, J. Yang, K. Won, and B. Jeon. 2012. Early determination of mode decision
for HEVC. In 2012 PCS. 449ś452.

[12] H.Mendis, N. Audsley, and L. Indrusiak. 2017. Dynamic and Static Task Allocation
for Hard Real-Time Video Stream Decoding on NoCs. Leibniz Transactions on
Embedded Systems 4, 2 (2017), 01ś1ś01:25.

[13] H. Mendis and L. Indrusiak. 2016. Synthetic Workload Generation of Broadcast
Related HEVC StreamDecoding for Resource Constrained Systems. In 2016 ICETE.
SCITEPRESS - Science and Technology Publications, Lda, Portugal, 52ś64.

[14] L. Mengzhe, J. Xiuhua, and L. Xiaohua. 2015. Analysis of H.265/HEVC, H.264
and VP9 coding efficiency based on video content complexity. In IEEE ICCC.

[15] W. Penny, G. Paim,M. Porto, L. Agostini, and B. Zatt. 2015. Real-TimeArchitecture
for HEVC Motion Compensation Sample Interpolator for UHD Videos. In 28th
SBCCI. ACM, New York, NY, USA, Article 12, 6 pages.

[16] Z. Shi and A. Burns. 2008. Real-Time Communication Analysis for On-Chip
Networks with Wormhole Switching. In 2008 ACM/IEEE NOCS. 161ś170.

[17] H. Smei, A. Jemai, and K. Smiri. 2017. Performance Estimation of HEVC/h.265
Decoder in a Co-Design Flow with SADF-FSM Graphs. IJCNS 10 (2017), 261 ś
281.

[18] G. Sullivan, J. Ohm, W. Han, and T. Wiegand. 2012. Overview of the High
Efficiency Video Coding (HEVC) Standard. IEEE TCSVT 22, 12 (2012), 1649ś1668.

[19] J. Vanne, M. Viitanen, T. Hamalainen, and A. Hallapuro. 2012. Comparative
Rate-Distortion-Complexity Analysis of HEVC and AVC Video Codecs. IEEE
TCSVT 22, 12 (2012), 1885ś1898.

[20] Youtube. 2019. Youtube Statistics. Retrieved Jan 26, 2019 from https://www.
youtube.com/intl/pt-BR/yt/about/press/

[21] C. Zhou, F. Zhou, and Y. Chen. 2013. Spatio-temporal correlation-based fast
coding unit depth decision for high efficiency video coding. JEI 22, 4 (2013).

	Abstract
	1 Introduction
	2 Literature Background
	2.1 HEVC
	2.2 Performance Analysis for NoCs

	3 Application Workload Modeling
	4 Performance Evaluation
	5 Experimental Setup and Related Works
	6 Conclusions
	Acknowledgments
	References

