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Abstract 

 

To create neural representations of external stimuli, the brain performs a number of 

processing steps that transform its inputs. For fundamental attributes, such as stimulus 

contrast, this involves one or more nonlinearities that are believed to optimise the neural 

code to represent features of the natural environment. Here we ask if the same is also true 

of more complex stimulus dimensions, such as emotional facial expression. We report the 

results of three experiments combining morphed facial stimuli with electrophysiological and 

psychophysical methods to measure the function mapping emotional expression intensity to 

internal response. The results converge on a nonlinearity that accelerates over weak 

expressions, and then becomes compressive for stronger expressions, similar to the situation 

for lower level stimulus properties. We further demonstrate that the nonlinearity is not 

attributable to the morphing procedure used in stimulus generation.  

 

Keywords: emotional expressions; nonlinear transduction; SSVEP; psychophysics; morphing. 

 

1. Introduction 

 

Facial expressions are communicative tools; they signal an individual’s emotional state and 

motivation, and provide us with a wealth of information in social contexts (Adolphs, 2002; 

Öhman, 2002). An expression can range from very subtle to very intense, and previous work 

has used morphing software to parametrically manipulate emotional intensity within faces of 

the same identity (Blair et al., 2001; Harris et al., 2012; Hess et al., 1997). But how do changes 

in stimulus intensity map onto changes in the brain’s response to, and our perception of, 

another’s face? Despite the importance of this question for our understanding of perceived 

emotion, the precise mapping is currently unclear. 

 

Nonlinearities in the neural representation of low-level image features are very well 

established. The brain responds to image contrast (defined as the luminance difference 

between the brightest and darkest parts of an image, scaled by the mean luminance) 

according to a saturating nonlinearity, that accelerates at intermediate contrasts, and 

becomes shallow at higher contrasts. This pattern is consistent across measurements using 

psychophysical contrast discrimination, matching and scaling paradigms (Kingdom, 2016; 

Legge & Foley, 1980), functional magnetic resonance imaging (fMRI; Boynton et al., 1999), 

electroencephalography (EEG; Campbell & Kulikowski, 1972; Tsai et al., 2012), single- and 
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multi-unit recording (Albrecht & Hamilton, 1982; Busse et al., 2009; Ohzawa et al., 1982) and 

optical imaging using voltage sensitive dyes (Reynaud et al., 2007). 

 

Measuring neural responses to higher order stimulus properties (such as facial expression) is 

possible using a fast periodic visual stimulation (FPVS) technique, which induces oscillations 

in the EEG signal at specific frequencies. In this paradigm, ‘oddball’ target stimuli (e.g. faces 

bearing an expression, or of a specific identity) are interleaved within a sequence of base 

stimuli (e.g. neutral faces, or faces of a different identity) at a specific temporal frequency. If 

the target can be discriminated, responses are evident at harmonics of the oddball frequency 

(Braddick et al., 1986; Liu-Shuang et al., 2014). Most previous studies have used high intensity 

expressions and made comparisons across different configurations (e.g. upright and inverted; 

Coll et al., 2019; Dzhelyova et al., 2017). However, by parametrically varying the intensity of 

emotional expression in the oddball stimulus, an ‘emotion-response function’ (analogous to 

a contrast-response function) can be measured. This directly reveals the transfer function 

between facial expression intensity and neural response. One recent study (Leleu et al., 2018) 

has reported such an experiment, and shown evidence of nonlinear components in the 

emotion-response function. 

 

The perceptual consequences of neural nonlinearities can also be measured in a variety of 

ways. For stimulus levels around detection threshold, the slope of the psychometric function 

(the function relating stimulus intensity to accuracy in a two-alternative-forced-choice 

detection task) depends on the underlying transducer nonlinearity in that region of stimulus 

space (assuming no uncertainty about the task). A linear system will result in a shallow 

psychometric function (Weibull b values around 1.3, see Meese & Summers, 2012; Pelli, 1985; 

Tyler & Chen, 2000), whereas accelerating nonlinearities produce steeper slopes. There is 

some evidence from recent work (Marneweck et al., 2013) of slopes with b > 1.3 for 

discriminating four distinct emotional expressions from neutral, though deviation from 

linearity was not formally assessed. 

 

A complementary approach to characterize signal processing is to use a discrimination 

paradigm, in which a participant’s ability to detect differences in magnitude is measured at a 

range of starting (‘pedestal’) levels (Nachmias & Sansbury, 1974). Relative to detection in the 

absence of a pedestal, weak pedestal levels can reduce the target level required to reach 

threshold performance (facilitation), whereas strong pedestal levels can increase thresholds 

(masking). The combination of these effects creates a characteristic ‘dipper’ shaped function 

(Legge & Foley, 1980) when threshold is plotted against pedestal level, that is determined by 

the gradient (steepness) of the underlying nonlinearity. A linear system would not produce 

either the facilitation or masking effects, and thresholds should remain constant regardless 

of pedestal level. Dipper functions have been reported for a range of sensory cues, including 

motion (Gori et al., 2011), blur (Watt & Morgan, 1983), depth (Georgeson et al., 2008), texture 

(Morgan et al., 2008), duration (Burr et al., 2009), loudness (Raab et al., 1963), and amplitude 

modulation (Baker et al., 2020; Nelson & Carney, 2006), suggesting that the underlying 

nonlinearity is a common property of perceptual systems. 

 

One previous study has applied a similar paradigm to investigate the representation of facial 

identity. Dakin and Omigie (2009) measured identity-strength discriminability of faces using 

an odd-one-out paradigm. They morphed between an average identity face and an individual 
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identity face in a number of steps. They then presented three faces: two identical faces 

(containing the pedestal level of identity), and one face containing the pedestal identity with 

an additional increment of identity. They repeated this at a number of different identity 

pedestal-levels, measuring sensitivity at each level. When plotting threshold against pedestal 

identity, they found evidence for shallow dipper-shaped functions, suggestive of a 

nonlinearity in the representation of identity. However, these functions typically lacked the 

masking region found for contrast (the dipper ‘handle’). Work by Marenweck, Loftus and 

Hammond (2013) reports discrimination for emotional expressions, but the pedestal level 

was not fixed within a condition, making interpretation difficult. A primary aim of the present 

study is to investigate whether emotional expression intensity is also subject to a process of 

nonlinear transduction by measuring thresholds for expression discrimination at a range of 

pedestal levels. 

 

Here we report the results of three experiments. In the first we use an EEG paradigm to 

measure neural responses to facial expressions in order to map out an emotion-response 

function. In the second we measure the slope of the psychometric function for an expression 

detection task. Finally, we assess the discriminability of emotional expressions from a range 

of baseline (pedestal) levels. The results give a comprehensive picture of how expression 

intensity information is processed to form an internal representation of others’ emotional 

states. We find evidence of a nonlinear transduction process similar to that reported for other 

variables, which accelerates at low expression levels, and becomes shallower for more 

intense expressions. A preliminary report on this work was made available at: 

https://doi.org/10.31234/osf.io/svw8q 

 

2. Methods 

 

2.1 Participants 

 

Twenty-four adult participants completed the EEG and detection experiments (Mage = 23; SD 

= 5.29; 5 males), and six participants completed the discrimination experiment (1 male). All 

had normal or corrected-to-normal visual acuity. All experiments were approved by the ethics 

committee of the Department of Psychology at the University of York, and written informed 

consent was obtained from all participants.  

 

2.2 Apparatus and stimuli 

 

All stimuli were derived from greyscale male and female faces taken from the NimStim face 

set (Tottenham et al., 2009), depicting 6 basic emotional expressions (angry, fear, happy, sad, 

surprise, and disgust; Ekman & Friesen, 1971). In the EEG and detection experiments, we used 

16 female and 22 male identities, having a variety of racial backgrounds. For each identity, we 

used a program (developed by Adams et al., 2010) to morph between neutral and an 

emotional expression in 6 steps, creating 7-levels of emotional intensity: 0, 6, 12, 24, 48, 96 

and 144% (Calder et al., 1997, e.g. 2000). For the discrimination experiment, we also created 

an averaged identity for each gender (based on 19 female and 23 male exemplars), and then 

morphed between neutral and 150% expression in 0.5% steps. Pedestal morph levels (see 

below) were: 0, 15, 30, 45, 60 and 75%. The use of linear versus logarithmic spacing of 

stimulus levels in the two experiments is arbitrary, and was informed by pilot experiments to 



 4 

ensure that the sampling spanned the range of interest and was suitably dense. In the EEG 

and detection experiments, we included high intensity stimuli (morph levels of 96 and 144%) 

to promote strong EEG signals and high psychophysical performance. In the discrimination 

experiment, the largest pedestal morph level was 75% to allow sufficient headroom to 

measure a threshold. The linear pedestal spacing here permitted us to measure the slope of 

the dipper handle with greater resolution. External features (i.e. hair and ears) were removed 

from all faces using an elliptical mask blurred by a cosine function. All stimuli were equated 

for mean luminance and root-mean-square contrast. 

 

In the EEG experiment, we recorded brain activity from 64 sensors laid out in a WaveGuard 

cap (ANT Neuro, Netherlands) according to the 10/20 system. Blinks were monitored using 

bipolar electro-oculogram electrodes placed above the left eyebrow and on the left cheek. 

EEG signals were amplified and then digitised at 1kHz, before being recorded to the hard drive 

of a PC using the ASAlab software (ANT Neuro, Netherlands). All stimuli were displayed on a 

gamma corrected VIEWPixx monitor (VPixx Technologies Inc., Quebec, Canada) with a 

resolution of 1920x1200 pixels, a refresh rate of 120Hz, and a mean luminance of 50cd/m2. A 

25-pin parallel port was used to send trigger codes from the VIEWPixx device to the EEG 

amplifier to identify each condition and record stimulus onset times. The PsychToolbox 

routines (Brainard, 1997), running in MATLAB on an Apple Macintosh computer, were used 

to control the display hardware and send triggers. The same display hardware was used in 

the detection experiment, but EEG activity was not recorded. In the discrimination 

experiment, stimuli were centrally presented on a gamma corrected 21-inch Iiyama 

VisionMaster Pro 510 monitor with a mean luminance of 32cd/m2 and a resolution of 

1152x768 pixels, driven at 75Hz by an Apple Macintosh computer. 

 

2.3 Procedures 

 

EEG experiment: Sequences of faces were presented for trials of 60 seconds duration. Faces 

subtended approximately 8x12 degrees of visual angle at the viewing distance of 57cm, and 

were presented against a grey background with a central black fixation cross. The contrast of 

the faces was modulated between 0 and 100% according to a 5Hz sine wave (see Figure 1a). 

The identity of the face was changed at the minimum of each period (when the contrast was 

zero), resulting in a seamless stream of different identities. In this paradigm, each face 

stimulus was presented for 200ms, but because contrast was 0 at the face onset and offset, 

each face was visible for around 180ms. All stimuli had a neutral expression, except for an 

‘oddball’ stimulus presented every fifth cycle (i.e. at 1Hz; see Figure 1a). This stimulus had a 

randomly selected expression on each presentation, at a specific morph level that was 

constant throughout the trial. Similar timings have been used previously with face stimuli (Liu-

Shuang et al., 2014; Rossion et al., 2012) and appear to be a good compromise between 

potential floor and ceiling effects (i.e. too fast to allow isolation of each individual response, 

or too slow to give large face-selective responses). Participants were asked to fixate on a 

central cross for the duration of the trial and try to minimise blinking; there was no 

behavioural task. Each block consisted of eight trials; one for each morph level, plus an 

inversion condition using the 96% expression, but with all faces rotated through 180 degrees. 

There was an inter-trial interval of 8 seconds. Each participant completed four repetitions, 

taking around 40 minutes in total. 
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Figure 1: Stimulus protocol and example EEG spectra. Panel (a) represents the stimuli presented during a brief 

(1.8s) period of an extended (60s) trial. Stimulus contrast was sinusoidally modulated at 5Hz, with the face image 

changed every 200ms at the trough of the modulation. An ‘oddball’ emotional face was presented every 5 cycles, 

at a rate of 1Hz. Panel (b) shows the Fourier spectrum (expressed as signal-to-noise ratio) in the condition where 
the oddball stimuli were also neutral, averaged across all participants (N=24). A strong response is evident at 

the modulation frequency (5Hz), which is maximal at the occipital pole, with additional activity at more lateral 

sites. The spectrum is derived from electrode P8, shown by the grey point. Panel (c) shows the Fourier spectrum 

for a 96% target morph level. Here additional peaks in the spectrum are evident at integer frequencies.  

 

Detection experiment: We used a two-interval forced choice procedure that was designed to 

closely mirror the temporal properties of the EEG experiment. Participants were presented 

with two sequential streams of faces; a target stream containing a single emotional face 

embedded within 8 neutral distractors, and a null stream containing only neutral faces. The 

target face always appeared on the fifth cycle (the midpoint of the target stream; see Figure 

1b). The target and distractors were random identities, and the same identity was never 

repeated on two adjacent cycles. The two streams were separated by 500ms. Participants 

were asked to detect which stream contained the emotional target, and indicated their 

responses using a mouse. Target intensity, target expression, and target interval were 

randomised across trials. There were 480 trials (60 per emotional intensity condition, 

including 60 trials for the inversion condition at the 24% morph level), separated into 5 blocks, 

taking around 40 minutes to complete.  

 

Discrimination experiment: We used a two-interval forced choice procedure; on each trial, a 

face (subtending 10x16 degrees at the viewing distance of 57cm) was presented centrally for 

100ms in each of two intervals, separated by 400ms. One face had its expression set at the 

pedestal level (the null stimulus; pedestal levels were 0, 15, 30, 45, 60 and 75%), the other 

face had its expression set at the pedestal level plus an increment (the target stimulus). 

Participants indicated which interval contained the face with the strongest expression 

intensity (i.e. the target) using a mouse. In additional conditions, pedestal and target stimuli 
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were applied to different halves of the face; the results of these conditions will be reported 

in a subsequent publication. Stimuli were surrounded by a black square, and divided 

horizontally by a black line. The purpose of the black line was to mask luminance 

discontinuities caused by combining upper and lower face halves from different expression 

intensities in some conditions, and is consistent with standard composite effect procedures 

(Rossion, 2013). The gender of the face was chosen randomly on each trial (with equal 

probability), but was the same across the null and target intervals. The expression was 

constant across the null and target intervals, but was chosen at random on each trial in the 

main experiment. On each trial, the level of the target increment was selected using a 

staircase procedure (three-down, one-up, step size of 2.5%) that terminated after the lesser 

of 70 trials or 12 reversals. Participants received auditory feedback on the accuracy of each 

response. The main experiment took around 4.5 hours to complete for each participant, and 

consisted of around 8000-9000 trials per participant (of which around ¼ are reported here). 

We also ran a control experiment for a restricted set of pedestal levels, in which the 

expression was fixed within a block. 

 

2.4 Data Analysis 

 

EEG experiment: We took the Fourier transform of the EEG waveform (i.e. transformed the 

responses from the time domain to the frequency domain) from each electrode for the 60 

seconds during which stimuli were presented. For each participant, we coherently averaged 

the Fourier spectrum (i.e. including the phase information) across all repetitions of a given 

condition. Activity in each frequency bin was then converted to a signal-to-noise ratio (SNR) 

by scaling by the absolute amplitudes of the activity in the adjacent 10 bins (±0.08Hz). There 

was a strong response from occipital electrodes at the baseline frequency (5Hz) in all 

conditions, reflective of the general change in contrast (and other image properties, such as 

identity) of the stimuli at this rate. Our measure of interest was the amplitude at harmonics 

of the oddball frequency (1Hz), as this measure is specific to emotional expression. We 

excluded responses at the baseline frequency (5Hz) and its second harmonic (10Hz), as these 

are difficult to interpret given the strong contribution from the baseline flicker component. 

We also did not consider responses above the peak alpha frequency (i.e. >10Hz). 

 

Detection and discrimination experiments: Individual thresholds were estimated from each 

participant’s responses (as well as the pooled data in the detection experiment) by fitting a 

cumulative Weibull function using the quickypsy package in R (Linares & López-Moliner, 

2016). We defined threshold as the morph intensity required to reach 81.6% correct (i.e. the 

balance point of the Weibull function), and the slope as the b parameter of the fit. 

 

Data and code availability: Primary analyses were performed in R. Analysis scripts and raw 

data are available at: http://dx.doi.org/10.17605/OSF.IO/8MS4Y 

 

3. Results 

 

3.1 The emotion-response function is nonlinear 

 

In our first experiment, we measured the neural response to stimuli of different emotional 

intensities using a steady-state FPVS EEG paradigm, in a group of 24 adults. Streams of face 
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images with random identities were presented at 5Hz, with every fifth ‘oddball’ image bearing 

a randomly chosen emotion, and the remainder being neutral (see Figure 1a). When the 

oddball faces were also neutral (i.e. had a 0% expression morph level) there were clear 

responses only at the carrier modulation frequency of 5Hz (see Figure 1b). When the oddball 

faces carried a strong expression, responses were also evident at harmonics of the oddball 

frequency (i.e. multiples of 1Hz, see Figure 1c), and were strongest over parieto-occipital 

electrodes in the right hemisphere (insets in each panel of Figure 2). These responses 

increased monotonically with morph level at each harmonic, as shown in Figure 2 (note the 

log-log axes).  

 

 
Figure 2: Emotion-response functions at harmonics of the oddball frequency. Each panel shows the signal-to-

noise ratio (SNR) for 7 oddball morph levels, averaged across all participants (N=24). The green point in each 

panel represents the inversion condition, where all stimuli were rotated through 180 degrees. Inset scalp 

topographies show the distribution of activity across the head (see scale in panel a), and mark the location of 

electrode P8 (grey point), from which the emotion-response functions were taken. Panel (i) shows the average 

across panels (a-h). Grey shaded regions and error bars represent bootstrapped 95% confidence intervals. Red 
curves are the best fits of a descriptive model detailed in the text, and values of p in the lower right of each plot 

give the best fitting exponent. 

 

We compared activity at each morph level with the expected baseline of SNR=1 for the data 

averaged across eight harmonic frequencies (1, 2, 3, 4, 6, 7, 8 & 9Hz) using one-sample t-tests 

and Bayes factor estimates. This analysis revealed that morph levels of <=12% did not differ 

from the baseline (all t<1.1, all p>0.3, all BF10<0.35), and morph levels >=48% were 

substantially above the baseline (all t>6.4, all p<0.001, all BF10>52). A morph level of 24% was 

marginally significant if considered in isolation (t=2.27, p=0.03) but did not survive correction 

for multiple comparisons, and had a Bayes factor score (BF10=1.82) that suggested 

inconclusive evidence of a difference. Consistent with previous work (Dzhelyova et al., 2017), 

inverting all images in the stream generated a weaker expression-specific response, 
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particularly at higher harmonics, as shown by the green symbols in Figure 2. For data averaged 

across harmonics, this inversion effect was highly significant (paired t-test; t=5.60, df=23, 

p=0.000011, d=1.1, BF10=2038). 
 

To assess the linearity of these data quantitatively, we fitted a descriptive two-parameter 

exponential model with an additive noise baseline. This was defined as: resp = Ip + s, where I 

is stimulus intensity (i.e. morph level), p is the exponent, and s is the noise level. To convert 

the model responses to SNR estimates, the response was then scaled by the noise parameter: 

SNR = resp/s. For each harmonic frequency, we found best fitting values of p and s by 

minimising the root-mean-square (RMS) error between model and data. Estimates of the 

exponent (p) are given in the lower right corner of each panel in Figure 2, and the best model 

fits are shown by the red curves in each panel, all of which provide a good characterization of 

the data. An exponent value of p=1 would suggest a linear increase in response with signal 

strength, after activity rises above the noise floor. Values of p=2 imply a square law. At all 

individual harmonic frequencies, the exponent value lay in the range 1.31 < p < 1.55, with an 

average value of p = 1.44. For the mean across harmonic frequencies (Figure 2i), the best 

fitting exponent had a value of p = 1.42. We used a bootstrapping procedure (resampling 

10,000 times with replacement across participants) to estimate 95% confidence intervals on 

this exponent value; these had a lower bound of 1.32 and an upper bound of 1.55. Because 

the lower bound was substantially above 1, this provides strong evidence of nonlinear 

transduction. We further confirmed the insufficiency of a model with a linear exponent (p = 

1), which gave a poor fit to the data by eye (see dotted curve in Figure 2i), and a worse 

numerical fit (RMSE of 0.20 when p = 1, versus 0.12 with p as a free parameter). 

 

3.2 A nonlinear psychometric function for emotion detection 

 

We next sought to measure the psychometric function for detection of emotional expressions 

as a function of morph level. We based the stimulus sequence on that used in the SSVEP 

experiment, and presented two sequences of 9 face images, each lasting 1.8 seconds (see 

Figure 1a). One sequence comprised only neutral faces, and the other contained an emotional 

face as the fifth image. Participants indicated which sequence they believed contained the 

emotional face. Performance increased monotonically as a function of morph level, from 

chance performance at low morph levels (0 - 12%), reaching near ceiling performance for 

morph levels of 96 and 144% (see Figure 3a). Again, there was an inversion effect (see green 

point in Figure 3a), which reduced accuracy from 0.66 to 0.59 when the faces were presented 

upside-down (paired t-test; t=3.19, df=23, p=0.004, d=0.65, BF10=10.28). 
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Figure 3: Nonlinear psychometric functions for detection of emotional expression. Panel (a) shows the group 

average psychometric function (N=24), along with the best fitting Weibull function (black solid curve). The grey 

shaded region at the foot shows the distribution of individual thresholds, along with the mean (black point). The 

black dotted curve is a Weibull function with the same threshold, but a slope of b = 1.3, showing the prediction 

for a linear system. Panel (b) shows individually fitted thresholds and slopes (blue points), along with the fit to 

the group average data (green). Grey shaded regions show distributions for each parameter, along with their 

means across participants (black points). For slope values, the red square is the mean with the 4 outliers at b = 

8 included, and the black point shows the mean with the outliers excluded. The dotted black line at b = 1.3 gives 

the prediction for a linear system. Error bars in both panels show 95% confidence intervals. 

 

We fitted a cumulative Weibull function to the group averaged psychometric function (see 

solid curve in Figure 3a), and also to the functions for each individual participant (N=24), to 

estimate the threshold and slope. The group average threshold at 81.6% correct occurred at 

a morph level of 31.0%. This agreed well with the mean of the individual thresholds, which 

was 30.9%. The psychometric slope for the group averaged data was b = 2.31, substantially 

above the slope expected for a linear system of b = 1.3 (assuming no uncertainty). A 

psychometric function with a slope of b = 1.3 is shown by the dotted curve in Figure 3a gives 

a poor fit to the data. Because slope values can sometimes be underestimated for group data 

if individual participants have different thresholds (see e.g. Wallis et al., 2013), we also 

assessed the slope values of individual fits (see Figure 3b). The geometric mean psychometric 

slope across the group was b = 2.9, which was also above the linear prediction of b = 1.3 

(t=7.42, df=23, p<0.001, d=1.51, BF10=101258). Four fits returned a slope at the upper bound 

of the permitted values (b = 8). When these participants were excluded, the geometric mean 

slope reduced to b = 2.4, which was still significantly steeper than b = 1.3 (t=8.88, df=19, 

p<0.001, d=1.98, BF10=396167).  

 

The slope value of b » 2.4 corresponds to an effective transduction exponent of 

approximately 2.4/1.3 = 1.85. This is a somewhat steeper nonlinearity than that implied by 

our EEG data (exponent of ~1.4). One likely explanation is that the SSVEP paradigm was not 

sufficiently sensitive to detect responses in the sub-threshold range of morph levels (morph 

levels below 48% did not generate responses that were reliably above the noise floor, see 

Figure 2). On the other hand, psychophysical performance had almost asymptoted by this 

morph level (see Figure 3a). The two results can therefore be considered complementary, as 

they reveal the nonlinearities operating in different ranges of the stimulus continuum. This is 

also broadly consistent with other cues, such as contrast, which feature a stronger 

nonlinearity around threshold than at higher stimulus intensities (e.g. Legge & Foley, 1980; 
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Meese, Georgeson, & Baker, 2006). This combination of nonlinearities should result in a 

‘dipper’ function for emotional expression intensity discrimination; our final experiment 

investigates this prediction. 

 

3.3 A ‘dipper’ function for emotion discrimination 

 

We measured emotion discrimination functions in six participants using a two-interval forced 

choice paradigm. To avoid the potentially complicating factors of temporal and identity 

uncertainty that might stem from the stimulus presentation sequences used in the previous 

experiments, we simplified the paradigm in two ways. First, only a single face was presented 

on each interval of a trial. Second, this face was an averaged identity, created by morphing 

either male or female faces (see Figure 4a,b for examples). We measured discrimination at a 

range of pedestal levels using a staircase method, and then fitted psychometric functions (see 

Figure 3a) to estimate thresholds. A linear system should produce a completely flat function 

for discrimination paradigms, where the pedestal level has no effect on threshold; any 

modulation of thresholds is therefore evidence of nonlinear processing. 

 

Thresholds at six pedestal morph levels are shown in Figure 4c. For a pedestal level of 0%, the 

task is one of emotion detection. On average, participants required morph levels of around 

29% to reliably detect (at 81.6% correct) the interval containing an emotional face (leftmost 

point in Figure 4c). This compared closely with thresholds in the previous experiment (mean 

of 31% morph level) using the method of constant stimuli with a different stimulus set and 

temporal sequence. For weak pedestal expressions (15% morph level) sensitivity to the target 

increment improved (i.e. thresholds decreased) by around a factor of 1.6, showing evidence 

of facilitation from the pedestal. At higher pedestal levels a masking effect occurred, whereby 

increment thresholds were higher than without a pedestal. This pattern was evident for each 

individual participant (red lines in Figure 4c). Overall, there was a substantial effect of 

pedestal level on threshold (F(5,25)=23.49, p<0.001, h2=0.75, BF10=7758025) that was driven 

by thresholds in the 0% pedestal condition being significantly higher than in the 15% pedestal 

condition (t(5)=5.68, p=0.002, d=2.32, BF10=20.72), and lower than in the 60% and 75% 

pedestal conditions (t(5)=-3.33, p=0.021, d=1.36, BF10=3.98; t(5)=-3.63, p=0.015, d=1.48, 

BF10=5.06, respectively). The slope of the rising limb of the dipper handle (estimated using 

linear regression over the highest four pedestal contrasts) was 0.57 (95% CIs: 0.41, 0.73). 
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Figure 4: A dipper function for emotion discrimination. Panels (a,b) show example morphed facial stimuli for 6 

expressions at the pedestal morph levels, for male (a) and female (b) averaged identities. Panel (c) shows the 

emotion discrimination function for individual participants (N=6, red lines) and their average (points; error bars 

show ±1SE). The grey curve shows the best model fit (see text for details), and the dashed oblique line has unit 

slope. Panel (d) shows the underlying emotion response function implied by the model fitted to the data in (c). 

Pink points replot the averaged data of Hess et al. (1997). 

 

We fitted the average data with a standard nonlinear transducer function (Legge & Foley, 

1980) with four free parameters. The response to a face of a given intensity level (I) is given 

by, 

    (1) 

 

where p, q, and Z are free parameters. Thresholds are determined by calculating the 

increment level that satisfies f(pedestal+increment) = f(pedestal) + σ, where σ is a further free 

parameter that represents internal noise in the system. We determined best fitting 

parameters using a downhill simplex algorithm that minimised the RMS error between data 

and model predictions. The best fitting curve is shown in Figure 4c, with parameters in the 

upper left corner. With four free parameters, the model provides an excellent description of 

the data, yielding an RMS error of 0.05dB. 

 

In Figure 4d we plot the underlying transducer nonlinearity (the output of equation 1 for a 

range of inputs) using the parameters derived from the fit in Figure 4c. The function has a 

steep region around morph levels between 10% and 40% (i.e. around detection threshold), 

but becomes shallower at higher morph levels. This function represents the way in which 

f (I ) =
I
p

Z
q
+ I

q
,
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stimuli of different emotional intensities are mapped onto an internal response scale, and 

shares several common features with the rating scale data of Hess et al. (1997), most 

especially the shallowing at higher intensity levels. The points in Figure 4d replot the data 

from Hess et al. (1997) averaged across expression (anger, disgust, happiness and sadness) 

and face gender. It is clear that the data show extremely good correspondence with the 

predictions of the model, with no additional free parameters required (though note that the 

y-axes are scaled independently for the data points and the curve). In particular, the slope of 

the function at high intensity levels accurately predicts that observed in the data. 

 

3.4 Uncertainty reduction cannot explain the facilitation effect 

 

An alternative explanation for facilitation effects that does not require a nonlinear transducer 

is uncertainty reduction (Pelli, 1985). Under this account, at detection threshold an observer 

is uncertain about which mechanisms to monitor and performs poorly. When the pedestal is 

added, this helps the observer determine which mechanisms (or features of the stimulus) to 

attend to, and performance improves (facilitation). Because the facial expressions shown in 

our experiments were determined randomly on each trial, we wondered if the facilitation 

effects could be explained by expression uncertainty. To test this, we conducted a control 

experiment (on five participants) in which we blocked trials by emotion. Participants were 

explicitly told at the beginning of a block of trials which emotion would be presented. All other 

experimental parameters were the same as for the main dipper experiment. 

 

 
Figure 5: Facilitation effects occur for individual emotional expressions. Circles show thresholds for individual 

emotions for the blocked control conditions, and the black horizontal bars give their average. The red horizontal 

bars represent analogous conditions from the main experiment for the five participants who completed the 

control experiment. Error bars and shaded regions show ±1SE across participants (N=5). 

 

Results for this control experiment are presented in Figure 5. For all expressions, a facilitation 

effect was still observed at 15% pedestal level. There were variations in sensitivity across 

expressions (circles; see also Marneweck et al., 2013); in particular thresholds were 

somewhat higher for sad expressions (pink symbols) than they were for other expressions. 

The average thresholds from the blocked conditions (black lines) were slightly lower than 

those from the interleaved method used in the main experiment (red lines). A 2 (pedestal 

level) x 2 (blocking condition) ANOVA showed a main effect of pedestal level (F(1,4)=47.79, 
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p=0.0023, hp
2=0.92) but no effect of blocking condition (F(1,4)=3.63, p=0.13) or interaction 

effect (F(1,4)=1.44, p=0.30). We can therefore conclude that uncertainty effects were minimal 

for our paradigm, and the dipper effect we report can be most straightforwardly explained 

by a transducer nonlinearity. 

 

4. Discussion 

 

We have demonstrated a nonlinear mapping between the facial expression intensity in a 

stimulus and the internal response magnitude evoked by that stimulus. Across three 

experiments, we find that the nonlinearity is extremely similar to that reported for more basic 

visual dimensions such as contrast. Responses are negligible at low intensities, rise steeply at 

intermediate intensities around threshold, and exhibit a shallower portion at high intensities 

(Figure 4d). The nonlinearity produces facilitation and masking effects in an expression 

discrimination task, leading to a ‘dipper’ function similar to those reported for a range of 

other sensory cues, and accurately predicts rating data from a previous study. 

 

What is the purpose of this nonlinear transduction process for expression intensity? One 

explanation for similar phenomena in contrast transduction (e.g. contrast gain control; 

Carandini & Heeger, 2012; Heeger, 1992) is that they focus the greatest sensitivity in the 

region of intensities most commonly experienced in the environment, or that is of most use 

to the organism. In everyday social interactions, individuals rarely display extremes of 

emotion with the intensities associated with our 100% morphs (middle image in Figure 1a). 

Instead, most of the expressions we encounter in real life are weaker, and perhaps quite 

fleeting. Yet it is crucially important that we are able to detect and discriminate changes in 

these expressions to gauge the emotional states of our conspecifics. Therefore a mechanism 

that is most sensitive to changes in weak emotions is likely to have been most useful during 

human evolution. It is also likely that adaptation to emotional expressions (e.g. Adams et al., 

2010; Butler et al., 2008; Fox & Barton, 2007; Juricevic & Webster, 2012; Webster et al., 2004; 

Winston et al., 2004) serves to maintain this sensitivity even when individuals display more 

extreme levels of emotion on average. 

 

The use of stimuli that are morphed along continua of expression or identity has become 

increasingly common in face processing research. Yet some such studies implicitly assume 

that linear steps in the morph space should correspond to linear differences in perception 

(Blair et al., 2001; Orgeta & Phillips, 2008; Rotshtein et al., 2005). Our data, along with those 

of others (Dakin & Omigie, 2009; Hess et al., 1997; Leleu et al., 2018), indicate that this 

assumption is incorrect. Our decision to use a neutral expression as a baseline condition was 

arbitrary (see Young et al., 1997), and we anticipate that similar results would be obtained 

when morphing between two emotional expressions (see Chen et al., 2014 for preliminary 

evidence of this), or with other facial attributes associated with character traits such as 

trustworthiness and dominance (Oosterhof & Todorov, 2008). This suggests that 

multidimensional ‘face space’ accounts (e.g. Russell & Bullock, 1986; Valentine, 1991) must 

become more complex than previously proposed, because of the need to incorporate 

nonlinear processes that will distort the space (Tanaka et al., 1998). 

 

Category boundary effects for both emotional expression (Calder et al., 1996; Etcoff & Magee, 

1992) and facial identity (Beale & Keil, 1995) have been widely reported, and can be 
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considered a severe form of nonlinearity. Categorical processing is typically defined by a rapid 

transition between categories (e.g. neutral and happy expressions, or between two 

identities), and more similar perception or neural activity within rather than between 

categories, even for comparable physical changes to the stimulus (Rotshtein et al., 2005). We 

suspect our finding of a steep psychometric function for detection (Figure 3), and a transducer 

that accelerates and then compresses (Figure 4d) might meet the criteria often used for 

identifying categorical perception, and think it unlikely that our data could discriminate 

between these two explanations. However, we note that category effects are formally 

equivalent to high-threshold theory, which has been widely discredited for low-level cues in 

favour of a signal detection theory approach (Nachmias, 1981; Tyler & Chen, 2000). 

Characterising the underlying nonlinearity, as we have done here, offers greater explanatory 

and predictive power (e.g. Figure 4d) than positing a binary category boundary. 

 

Alternatively, it may be that different brain regions contain categorical and continuous 

representations of emotional expression, with evidence that cortical regions in the temporal 

lobe contain a continuous representation, whereas subcortical structures including the 

amygdala contain a categorical representation (Harris et al., 2012). Since subcortical 

structures are too deep for EEG to probe directly, our SSVEP signals most likely originate in 

cortical regions from which EEG activity can be detected, explaining the continuous response 

we report (see Figure 2). On the other hand, cortical responses might also relay activity from 

subcortical regions, though presumably further processing would be applied in cortex that 

might change the nature of the response. 

 

4.1 Alternative metrics still support nonlinear processing 

 

In all our experiments we used a morphing technique to generate intermediate levels of 

emotional expression. The morphing process produces a linearly increasing sequence of 

expressions, but it manipulates the images geometrically in two dimensions, which could 

introduce nonlinearities into the low level image features. In principle the apparently neural 

nonlinearities we measure experimentally could be inherited from the stimuli if participant 

responses were based on cues other than expression. We quantified this in two ways to 

investigate whether image nonlinearities might be responsible for the apparently nonlinear 

processing that we report. First, we measured the average absolute difference between pixels 

in each successive morphed face image (the square root of the mean squared difference 

produced a very similar result). This gives an aggregate measure of how local luminance 

changes as a function of morph level, and shows evidence of a mild nonlinearity (see Figure 

6a). Second, we measured the average absolute amplitude difference at each orientation and 

spatial frequency in the Fourier transform of the images. This gives an indication of how the 

global spectral content of the images changes as a function of morph level, and shows a more 

profound nonlinearity (see Figure 6e). 
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Figure 6: Alternative metrics still support nonlinear processing. Panels (a,e) show how stimuli of different morph 
levels differ in pixel luminance or Fourier amplitude. Black points show the estimates averaged across the 38 

identities used in the first two experiments. Coloured curves show the estimates averaged across the male and 

female examples used in the discrimination experiment, starting at different pedestal levels. In each case, the 

values were divided by the difference at 100% (or 96%) morph level and expressed as a percentage, so that the 

units were comparable to the morph level units used throughout the paper. The oblique dashed line shows the 

expectation for a linear mapping between units. The remaining panels replot the data from Figures 2i, 3a and 4c 

using the alternative units, but with the same plotting conventions as described in the relevant figure captions. 

 

To understand how these alternative metrics might influence our conclusions, we re-ran our 

analyses replacing the (linear) morph levels with the pixel or spectral difference values 

(rescaled to be in analogous percentage units). Our rationale is that if the nonlinearity in the 

stimulus is responsible for (some of) the apparently nonlinear processing in the brain, using 

these alternative units will result in more approximately linear processing. These results are 

shown in Figure 6, and in Table 1 we report four indices of nonlinearity across the three 

experiments. Figures 6a,e show how the difference metrics change as a function of morph 

level. If these were entirely linear all curves would run parallel to the oblique dashed unity 

line. Clearly there are some substantial deviations, however we note that the very steep 

portion of the nonlinearity is at small morph levels (<15%) well below detection threshold 

(see Figure 3a) where neural responses cannot be differentiated from noise (Figure 2). This 

means that the main influence of using these alternative units will be determined by the 

shallower slope evident at higher morph levels. 

 

When using the pixel difference metric, the emotion response function (Figure 6b) and the 

psychometric function (Figure 6c) are shifted to the right and become steeper. This is because 

over most of the range of stimulus levels the pixel differences increase with a slope of less 

than 1 (compare points in Figure 6a with the oblique dashed line). This means that, relative 

to using the morph level units, a smaller change in the stimulus is required to produce a unit 

increase in response (or accuracy). The summary indices shown in Table 1 support this – the 

exponent of the emotion response function and the slope of the psychometric function both 

increase relative to those derived using morph level units. The dipper functions also shift to 

the right and become somewhat steeper, for similar reasons (see Figure 6d). However, the 

form of the dipper is still apparent, with clear facilitation (a factor of 1.34), and masking in the 
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‘handle’ region (with a slope of 0.76). All of these changes become more extreme for the 

spectral difference metric (Figure 6f-h), yet in all cases there is still evidence of nonlinear 

processing in the brain. Overall then, our main indices of nonlinearity are changed somewhat 

by the use of image-based units, but we can still conclude that neural processing of emotion 

is nonlinear. 

 
Table 1: Summary of indices of nonlinearity for different candidate input units. The units summarise the main 

features of nonlinearity for each experiment, and comprise: the fitted exponent of the emotion response 

function, the transducer exponent inferred by the slope of the psychometric function (Weibull b/1.3), the 

amount of facilitation given by the ratio of thresholds between 0% and 15% morph levels of the dipper function, 

and the slope of the dipper handle (over the four highest pedestal levels). These indices give evidence of 

nonlinear processing when they deviate from the linear predictions listed in the bottom row. 
 

Input units SSVEP exponent Weibull b/1.3 Facilitation Handle 

Morph level 1.42 1.78 1.55 0.57 

Pixel difference 2.78 3.42 1.34 0.76 

Spectral difference 3.08 9.95 1.09 0.90 

Linear prediction 1 1 1 0 

 

We think it relatively unlikely that these low-level image differences are actually used by 

participants for several reasons. In the psychophysical tasks, participants were explicitly 

instructed to respond to the emotional content of the stimulus rather than image features 

such as luminance, spatial frequency and orientation. Viewing the stimuli used in these 

experiments delivers a compelling subjective experience of changes in emotion, which ‘pop 

out’ of the dynamic sequences used in the first two experiments (see Figure 1a). Because we 

used random identities in this temporal sequence, this will likely confound the low-level 

changes that might be present within an identity. In addition, we observed strong inversion 

effects (Eimer & Holmes, 2002; Yin, 1969) in the SSVEP and detection experiments (green 

points in Figures 2 and 3a). For inverted stimuli, differences in low level image properties 

remain constant, yet performance and neural responses are both significantly reduced 

relative to upright stimuli. Finally, making reliable judgements about expression in everyday 

life is unlikely to be possible using cues such as luminance, which will vary idiosyncratically 

depending on the situation. It is conceivable that the visual system might use some of the 

information from lower level features in combination with the expression information, yet 

our analysis suggests that this would only increase the evidence for nonlinear neural 

processing. 

 

3.3 Conclusions 

 

Across three experiments using different paradigms and stimuli, we find evidence that facial 

expression intensity is processed in a nonlinear fashion. These findings are consistent with 

the idea that relatively weak expressions are most typically experienced in everyday life, and 

the brain might benefit from increasing sensitivity to subtle changes of expression within this 

range. We predict that similar nonlinearities might apply along other dimensions of face-

space, including facial identity, age, attractiveness, and facial features that communicate 

character traits such as dominance and trustworthiness. Such nonlinearities would distort the 

geometry of ‘face space’ in predictable ways that might be quantified in future studies using 

the methods developed here. 
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