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Reducing numerical precision can save computational costs

which can then be reinvested for more useful purposes. This

study considers theeffects of reducingprecision in theparametriza-

tionsof an intermediate complexity atmosphericmodel (SPEEDY).

We find that the difference between double precision

and reduced precision parametrization tendencies is propor-

tional to the expectedmachine rounding error if individual

timesteps are considered. However, if reduced precision

is used in simulations that are compared to double preci-

sion simulations, a range of precision is foundwhere differ-

ences are approximately the same for all simulations. Here,

rounding errors are small enough to not directly perturb the

model dynamics but can perturb conditional statements in

the parametrizations (such as convection active/inactive)

leading to a similar error growth for all runs. For lower pre-

cision, simulations are perturbed significantly.

Precision cannot be constrained without some quantifi-

cationof theuncertainty. The inherent uncertainty in numer-

ical weather and climate models is often explicitly consid-

ered in simulations by stochastic schemes thatwill randomly

perturb the parametrizations. A commonly used scheme

is stochastic perturbation of parametrization tendencies

(SPPT). A strong test on whether a precision is acceptable is

whether a low-precision ensemble produces the sameproba-
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bility distribution as a double-precision ensemble where the

only difference between ensemblemembers is themodel un-

certainty (i.e. the random seed in SPPT). Tests with SPEEDY

suggest a precision as low as 3.5 decimal places (equivalent

to half precision) could be acceptable which is surprisingly

close to the lowest precision that produces similar error

growth in the experiments without SPPTmentioned above.

Minor changes tomodel code to express variables as anoma-

lies rather than absolute values reduce rounding errors and

low-precision biases allowing even lower precision to be

used.

These results provideapathway for implementing reduced-

precision parametrizations in more complex weather and

climatemodels.
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1 | INTRODUCTION

Increases in computational power have been, andwill continue to be, a key contribution to the continuous improvement

of numerical weather and climatemodels (Bauer et al., 2015). With additional computational power, resources can be

invested to improve our representation of the Earth system. Resources can be invested in increased spatial resolution,

shorter timestepping or better sampling of probabilities with more ensemble members. Resources can also be invested

in extra model complexity such as improved representations of processes or inclusion of more processes not currently

represented. The challenge is to choose the allocation that gives the best model for a specific purpose given limited

computational resources.

Wemay be investing toomuch computational power in all areas of models by performing calculations at high nu-

merical precision. Reducing the precision of computations will save computational power at the expense of introducing

truncation errors. By reinvesting the computational power saved by using low-precision computingmodel improve-

ments that outweigh the errors due a precision reduction can be introduced. For example, low-precision high-resolution

models can outperform low-resolution high-precisionmodels (Düben and Palmer, 2014).

In many areas of models we may be able to use low precision without any penalty to performance because of

inherent model uncertainties (Palmer, 2014). A numerical model of the atmosphere is essentially a dynamical core,

which approximates the governing equations of fluid dynamics, coupled to parametrizations, which represent physical

processes not represented or poorly resolved by the dynamical core. Parametrizations are an essential component

of models; however, due to the simplificationsmade in parametrizations they are also a large source of uncertainties.

Because these uncertainties are at the grid scale and errors at small scales grow and saturate faster than at large

scales (Lorenz, 1969), there is a scale dependence to howpreciselywe need to represent the atmosphere (Palmer, 2014).

This scale dependence can be of practical use in spectral-transform dynamical cores where less precision is required to

represent spectral modes closer to the truncation scale (Thornes et al., 2018; Chantry et al., 2018).
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In this study we focus directly on reduced precision parametrizations and howwell rounding errors can bemasked

by the inherentmodel uncertainty. Significant improvements have beenmade by representing uncertainty explicitly

through stochastic schemes (Palmer, 2012; Leutbecher et al., 2017). Since stochastic schemes are tuned to givemodels

the right spread and can be considered to be an explicit representation of model uncertainty, they can be used to

determine the acceptable levels of rounding errors. Düben and Dolaptchiev (2015) showed that stochastic forcing

could be used as an upper limit to rounding errors using the 1D Burgers equation with stochastic sub-grid-scale forcing.

Here, we determine the acceptable precision levels of parametrizations when directly affected by SPPT (stochastic

perturbation of parametrization tendencies), a commonly used stochastic scheme in state-of-the-art weather and

climate models. Whether the noise generated by well-adjusted rounding errors can actually be used to quantify

uncertainty within simulations and to develop a new stochastic parametrisation scheme, as discussed in Düben and

Dolaptchiev (2015), is beyond the scope of this paper andwill not be investigated here.

Reduced-precision computing is already proving of practical importance. Until recently, mostmodels have used

double precision (64-bit, see section 2.2 for definitions) by default. Forecasting centres are now experimenting with

single precision (32-bit). For example, Váňa et al. (2016) found that reducing the precision of themajority of ECMWF’s

Integrated Forecasting System (IFS) from double precision to single precision reduced the runtime by 40% with no

noticeable change in forecast skill. The single-precision IFS will allow higher resolution to be used for forecasts and is

planned to be operational by 2021 (Düben et al., 2018). Similar results have been found for a single-precision version of

MeteoSwiss’ COSMOwhich is used operationally (Rüdisühli et al., 2013).

While single precision appears to be sufficient for use in most model components, a further reduction in precision

will be more difficult. Half precision (16-bit) is, for example, likely insufficient for use in manymodel components. It

is therefore useful to consider a stronger precision reduction for individual model components instead of a global

reduction in precision. Using less precision for individual model components has been shown to be applicable for

single precision, such as a single-precision dynamical core (Nakano et al., 2018) or a single-precision microphysics

parametrization in a double-precisionmodel (Gilham, 2018).

In this study, we focus on reducing the precision of individual parametrizations in SPEEDY. In section 2 SPEEDY

(2.1) and the changes applied to introduce reduced precision (2.2) and stochastic physics (2.3) are described. Results are

presented in section 3. In section 3.1, the direct impact of rounding errors on the initial parametrization tendencies are

quantified. In section 3.2, the impacts of rounding errors and SPPT on error growth are quantified using forecast-type

experiments with varying precision in the parametrizations. In section 3.3 some code improvements to reach lower

precision are presented. Results are discussed in section 4.

2 | METHODS

2.1 | SPEEDY

SPEEDY (Simplified Parametrizations primitivE Equation DYnamics) is an intermediate complexity global atmospheric

model (Molteni, 2003). SPEEDY solves the hydrostatic primitive equations using a spectral transform dynamical core

and has a suite of simplified parametrizations. SPEEDY is specifically designed towork at low horizontal and vertical

resolution. Here, a spectral resolution of T30with a 96x48Gaussian grid, eight sigma levels and a 40-minute timestep

are used.

Figure 1 gives an outline of a single timestep in SPEEDY. Each timestep the spectral prognostic variables are

transformed to the Gaussian grid where the parametrization tendencies and nonlinear terms in the dynamics are

calculated. These tendencies are then transformed back to spectral space and added to the dynamics and diffusion
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tendencies computed in spectral space. The spectral prognostic variables are than advanced forward in time using a

leapfrog schemewith a Robert-Asselin-Williams filter (Amezcua et al., 2010).

SPEEDYhas parametrizations for convection, large-scale precipitation, long-wave and short-wave radiation, surface

fluxes, and vertical diffusion. The parametrizations in SPEEDY are explicitly designed to work with the bulk approxima-

tions associated with the low vertical resolution (Molteni, 2003). The eight sigma levels are taken as representative of

one boundary-layer level, five troposphere levels and two stratosphere levels.

The boundary conditions for SPEEDY are generated from the ERA-Interim dataset (Dee et al., 2011) from 1981-

2010. Monthly means are calculated for sea ice, snow depth, land-surface temperature and soil moisture. The boundary

values are then generated each day by linear interpolation between thesemonthly means. For sea-surface temperature,

an anomaly field for each month in the dataset is included as well as the climatological monthly means. A constant

climatology is taken for surface albedo and vegetation. SPEEDY also uses realistic orography and a land-seamask.

2.2 | Emulating reduced precision

A floating point number is made up of a sign bit s , a Significand S (also known as the mantissa) and an Exponent E .

The Significand represents a number between 1 and 2 and the Exponent represents an unsigned integer such that the

floating-point number (F ) is given as,

F = (−1)sS × 2
E−B
, (1)

where B is a bias added to centre the exponent to 0. The Significand and Exponent are constructed as

S = 1 +

N∑

i=1

si 2
−i
, (2)

E =

M∑

j=1

e j 2
j−1
, (3)

with si and e j being the individual bits, and N andMbeing the number of bits of the Significand and the Exponent.

Three commonly used formats defined by the IEEE (Institute of Electrical and Electronics Engineers) floating-

point standards are double precision (N=52,M=11, B=1023), single precision (N=23,M=8, B=127) and half precision

(N=10,M=5, B=15). Although current conventional processors only implement double and single precision arithmetic,

future processors will implement half precision. Half-precision computing is also available on current GPUs (Graphical

Processing Units) which have recently been used in numerical weather and climate models (e.g. Leutwyler et al. (2016)).

Alternatively, FPGAs (Field Programmable Gate Arrays) allow for flexible precision arithmetic; however, due to the

current complexity of porting to FPGAs, actual speed-ups for reduced precision have only been demonstrated for

toy models (e.g. Düben et al. (2015); Jeffress et al. (2017)). The focus of this study is not on the hardware. Here,

we use a reduced-precision emulator to look at the full range of precision and identify issues that will arise when

reduced-precision hardware is adopted in the future.

A reduced-precision version of SPEEDY, adapted from Hatfield et al. (2018), is used here. Reduced precision is

emulated using the Fortranmodule fromDawson andDüben (2017) withmodifications fromHatfield et al. (2018) to

include the Fortran complex type. The reduced precision emulator works by representing numbers as double precision

and then truncating the number of bits in the Significand (N) of this double-precision number after every operation

following floating-point standards (“round nearest ties to even”). The number N is controlled by an “sbits” parameter.
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F IGURE 1 A diagram of a single timestep of SPEEDY. Themodel solution is based on a spectral-transformmethod.

Prognostic variables vorticity (ξs ), divergence (δs ), temperature (Ts ) and specific humidity (qs ) are stored as spherical

harmonics, denoted by a subscript s, down to a truncation limit (T30). Linear terms in the dynamics, diffusion and

timestepping are easily calculated in spectral space. Nonlinear terms and physical parametrizations must be calculated

on a grid which requires the prognostic variables to be transformed to gridpoint space, denoted by subscript g, giving

the gridpoint fields of zonal wind (ug ), meridional wind (vg ), temperature (Tg ) and specific humidity (qg ). The derived

tendencies for these variables in gridpoint space (dug , dvg , dTg , dgg ) are then transformed back to spectral space and

added to the tendencies computed in spectral space to give the total tendency for each prognostic variable in spectral

space (dξg , dδg , dTg , dgg ). These tendencies are then used to step themodel forward in time. The focus of this study is

on reducing precision in the calculation of parametrization tendencies in gridpoint space.
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The reduced-precision emulator also has the option to emulate a half-precision exponent. SPEEDYworks when using a

single-precision exponent but crasheswhen using a half-precision exponent. Although theremay be changes to the code

that could be implemented to allow numbers to fit within the half-precision dynamic range such as rescaling variables,

they are not attempted here. The focus of this study is on reducing precision in the Significand.

The reduced-precision emulator allows us tomakemeaningful studies of how a reduction in precision would impact

onmodel results. However, by doing this, the emulator is reducing rather than increasing the speed ofmodel simulations

and it is therefore beyond the scope of this paper tomeasure performance improvements due to a precision reduction

on real hardware.

There is a choice to bemade as to howfine grainedwe test the reduced-precision because having toomany different

precisions could introduce overheads that outweighs the benefits of reduced precision. In this study we have followed

the approach in theMetOffice UnifiedModel where themicrophysics parametrization can be run at single precision

while the rest of themodel uses double precision (Gilham, 2018). Gilham (2018) described this as a “bubble” of single

precision where all data within the bubble is at single precision and all data passing in and out of the bubble is cast to

the correct precision. Gilham (2018) showed good speedups within themicrophysics parametrization and for the full

model with single-precision microphysics proving that this “reduced-precision bubble” approach can be of practical

use for individual parametrizations. In this studywe implement a reduced-precision bubble for each parametrization

within SPEEDY. To achieve this, constants are copied and stored at the reduced precision for each parametrization and

all variables passed to a parametrization are copied and truncated before any calculations are performed.

2.3 | Stochastic physics

Stochastic perturbation of parametrization tendencies (SPPT) has been added to SPEEDY as a representation of model

uncertainty. The scheme has been implemented following the SPPT scheme in ECMWF’s IFS described by Palmer et al.

(2009) and is summarised here. Each timestep, the total of the parametrized tendencies is perturbed by a randomly

generated field giving the net tendency,

P = (1 + µr )
∑

Pi , (4)

where Pi is the tendency from an individual parametrization i , r is a 2d random field and µ is a vertical tapering function

than can vary between zero and one. The total random field r is taken as the sum of three random gaussian patterns of

different scales in gridpoint space. The parameters for the length and time scales are taken from table 1 in Leutbecher

et al. (2017). The value of r is then limited to the range -1 to 1. Each random pattern is generated in spectral space to

have a spatial autocorrelation in gridpoint space equivalent to a Gaussian on a sphere. At each timestep the spectral

random field is advanced by first-order autoregression with a fixed decorrelation time scale. In the IFS the tapering

function is smoothly reduced to zero in the boundary layer to avoid numerical instability and smoothly reduced to zero

in the stratosphere to avoid strong perturbations of the radiative tendencies. In this study, the tapering is effectively

switched off by setting µ to one at all levels. Setting µ to one at all levels was chosen for simplicity and to allow for an

artificial model uncertainty at all levels. Wewould expect tapering to affect our results as it would effectively decrease

this representation of model uncertainty. Since the parametrizations in SPEEDY are highly simplified and using SPPT

in SPEEDY is an artificial representation of model uncertainty, we are not concerned with using a realistic tapering

function.



SAFFIN ET AL. 7

3 | RESULTS

To assess the impact of reduced-precision parametrizations in SPEEDY, a set of different precision “forecast” exper-

iments are compared to a “truth” run for a single initial state. The initial state was created by running SPEEDY from

rest for 1 year (using boundary conditions starting from 1 January 1981), with SPPT switched on, to allow for spin up.

From this initial state, SPEEDY is runwith parametrizations in reduced precision and comparedwith double-precision

(52 sbit) “truth” runs using the same initial state. Repeating these experiments using different initial states, generated

by running the spin-up for further years, gave similar results so only the results from one initial state is presented here.

Similar to the suite of weather forecasts that are typically generated at operational weather forecast centres, we

study both deterministic and ensemble “forecasts”. We switch SPPT off for deterministic model runs and compare

simulations with reduced precision against a single run at double precision (52 sbits). We switch SPPT on for ensemble

model runs and generate 20 ensemblemembers for each ensemble at a given precision. All ensembles and ensemble

members use the exact same initial state as the deterministic model runs. The only difference between each of the

ensembles and ensemblemembers is the randomly generated seed used in the SPPT scheme.

The ultimate goal of these experiments is to find where differences from rounding errors are indistinguishable

because of the inherentmodel uncertainty where themodel uncertainty is represented by SPPT. All model runs use

an identical initial state. In principle, the inclusion of initial condition uncertainty couldmake lower precisions more

competitive. The initial state is taken from the spun-up model to minimise the effects of spin up in our experiments.

There will still be some spin up in themodel runs due to switching SPPT off in the deterministic experiments and due to

the change in the SPPT pattern in the ensemble experiments. However, we expect the effect to be small.

3.1 | Differences in initial tendencies

In this section, the behaviour of rounding errors introduced in different parametrizations is investigated by quantifying

thedirect effect of rounding errors on the initial tendencies. Wehaveoutput the tendency fromeachparametrization for

the first timestep of the experiments with SPEEDY at different precision. Note that the inputs to each parametrization

are identical for each precision, the only difference is due to the truncation of these inputs and constants as well

as calculations performed at reduced precision within the parametrization. Since we are only looking at the initial

tendencies, these are identical for the deterministic and ensemble experiments.

Figure 2 shows the average absolute difference in the initial boundary-layer temperature tendencywith respect

to double precision for the first timestep. Each line is for a different parametrization in reduced precision. The initial

boundary-layer temperature tendencies were chosen because it is the only tendency where each parametrization has a

direct contribution (apart from cloudwhich does not directly produce tendencies). Figure 2a shows the difference in

the initial tendency of the individual parametrization and Fig. 2b shows the difference in the total initial tendency.

One difference between Fig. 2a and Fig. 2b is that the latter accounts for any knock-on effects that rounding errors

in the reduced-precision parametrization will have on subsequent calculations. This knock-on effect will depend on

the order the parametrizations are called. In SPEEDY the convection scheme is called first which then affects the

condensation calculation. The results of convection and condensation then determine the cloud distribution used in

the radiation calculations. Short-wave radiation is called first then long-wave radiation is integrated downwards and

upwards with a call to the surface fluxes scheme in the middle. Finally the vertical diffusion scheme is called. This

means rounding errors in vertical diffusion will have no affects on other initial tendencies whereas rounding errors in

convection will have a knock-on effect on all the other parametrizations.

Note that gridpoints in which the initial tendency is zero for both reduced and full precision are ignored in Fig. 2.
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F IGURE 2 Themean of the absolute difference in each initial parametrization tendency with respect to double

precision for the first model timestep. Shown is the initial boundary-layer temperature tendency because each

parametrization directly affects this tendency. (a) The difference in the initial tendency from the individual

parametrization. (b) The difference in the total initial tendency with the individual parametrization in reduced precision.

The horizontal grey dashed line in (b) shows themean absolute initial temperature tendency to showwhere the

difference in the initial tendency becomes comparable to the actual initial tendency. The grey dotted line in (b) shows

this mean initial tendencymultiplied by the expectedmachine rounding error to show how the differences in the initial

tendencies compare to a simple rounding error.

This means that parametrizations that do not affect all gridpoints (condensation, convection and vertical diffusion) will

have differences averaged over all gridpoints in Fig. 2b but over a subset of gridpoints in Fig. 2a. This is most noticeable

for convection which is second only to vertical-diffusion in terms of differences in the individual parametrization’s initial

temperature tendency with respect to double precision but appears less important in terms of differences in the total

initial temperature tendency.

The difference in the initial temperature tendencywith respect to double precision largely follows the expected

machine rounding error (2−(sbi t s+1)). This is shown by the dotted grey line in Fig. 2b which shows themachine rounding

error multiplied by themean absolute initial temperature tendency. The differences for each parametrization have the

same gradient with a constant multiplier. The differences in the convection parametrization do not follow themachine

rounding error as closely as the other parametrizations. This is because differences in the convection parametrization

are dominated by the diagnosis of whether convection is triggeredwhich will be discussed later.

Expressing the difference in the initial parametrization tendency as a multiple of the machine rounding error

could be useful for model developers because it quantifies how sensitive the piece of code is to rounding errors and

could be a useful benchmark when considering reduced precision. Table 1 shows a summary of the relative difference

with respect to double precision for the initial tendencies as amultiple of themachine rounding error. The numbers

shown are theminimum andmaximum found by taking each line in Fig. 2b divided by the grey dotted line. Table 1 also

summarises the differences in the initial tendency for other variables and vertical levels. The vertical levels have been

grouped into boundary layer (σ = 0.95), lower troposphere (σ = 0.835, 0.685, 0.51), upper troposphere (σ = 0.34, 0.2)

and stratosphere (σ = 0.095, 0.025).

The largest differences in the initial boundary-layer temperature tendency with respect to double precision come

from convection, surface fluxes and vertical diffusion. Large differences in the initial boundary-layer specific-humidity

tendencies can also be seen for these three parametrizations. Only the surface-fluxes parametrization perturbs the

wind speeds and gives relatively small differences.

As expected, only rounding errors in the radiation parametrizations have any notable impact in the stratosphere.
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TABLE 1 The average difference in the initial parametrized tendencywith respect to double precision with different

parametrizations in reduced precision expressed as amultiple of themachine rounding error. The vertical levels have

been grouped into boundary layer (σ = 0.95), lower troposphere (σ = 0.835, 0.685, 0.51), upper troposphere

(σ = 0.34, 0.2) and stratosphere (σ = 0.095, 0.025). Dashes showwhere the parametrizations have zero initial tendency.

Parametrization Boundary Layer Lower Troposphere Upper Troposphere Stratosphere

Temperature

All Parametrizations 167 − 285ε 66 − 545ε 42 − 762ε 78 − 111ε

Convection 6 − 115ε 17 − 492ε 25 − 744ε 0 − 2ε

Condensation 3 − 4ε 2 − 3ε 0 − 1ε 0 − 1ε

Short-Wave Radiation 4 − 4ε 3 − 4ε 7 − 12ε 71 − 107ε

Long-Wave Radiation 21 − 31ε 17 − 26ε 9 − 11ε 22 − 25ε

Surface Fluxes 86 − 133ε 2 − 3ε 0 − 1ε 0 − 1ε

Vertical Diffusion 54 − 117ε 24 − 38ε 1 − 7ε -

Specific Humidity

All Parametrizations 74 − 463ε 16 − 533ε 19 − 1078ε -

Convection 9 − 370ε 11 − 528ε 18 − 1077ε -

Condensation 2 − 2ε 2 − 2ε 1 − 1ε -

Short-Wave Radiation < 1ε - - -

Long-Wave Radiation 1 − 1ε - - -

Surface Fluxes 66 − 104ε - - -

Vertical Diffusion 3 − 88ε 3 − 52ε - -

Zonal Velocity

Surface Fluxes 13 − 18ε - - -

Meridional Velocity

Surface Fluxes 12 − 16ε - - -

The small but nonzero impact from other parametrizations is due to the knock-on effect of small rounding errors.

The short-wave radiation parametrization results in the largest differences with respect to double precision in the

stratosphere but the long-wave radiation parametrization gives similar differences for all model levels.

For the troposphere, the largest differenceswith respect to double precision come from the convection parametriza-

tion; however, there is a large spread because the large numbers are where the convection parametrization is switching

on/off. Figure. 3a shows the numbers of gridpoints with nonzero initial tendencies as a function of precision for the

convection parametrization. With lower precision, gridboxes are increasingly likely to be diagnosed as inactive in

the convection parametrization. This introduces a bias rather than just random noise at low precision. This is also

why the differences in the convection parametrization tendencies with respect to double precision do not follow the

machine rounding error as well as other parametrizations. The differences become dominated by gridpoints activat-

ing/deactivating. The tendencies from the convection parametrization are comparatively large so any gridpoint that

activates/deactivates will have a difference that is approximately equal to the tendency.
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F IGURE 3 Number of gridpoints defined as active from the initial boundary-layer temperature tendency due to an

individual parametrization as a function of precision that the parametrization is run at. A gridpoint is active if the initial

tendency is nonzero. The gridpoint is defined as deactivated if the initial tendency is nonzero at double precision but

zero at reduced precision and defined as activated if the initial tendency is zero at double precision and nonzero at

reduced precision.
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The surface-fluxes parametrization also shows issues with gridboxes becoming increasingly likely to be inactive

(Fig. 2b). However, the relative differences for the initial surface-fluxes tendencies with respect to double precision in

table 1 do not show as large a spread as for the initial convection tendencies. This is because the gridboxes where initial

temperature tendencies are becoming zero at lower precision are those where the initial temperature tendencies were

small at higher precision (not shown). Therefore, these differences do not dominate the average difference. This can

still result in a bias because the temperature tendencies in the surface-fluxes parametrization are always positive in

SPEEDY.

The vertical-diffusion parametrization also shows a large spread of differences in the initial tendencies with respect

to double precision. It is less clear than the convection parametrization that the vertical diffusion parametrization is

activating or deactivating because it is a combination of three different terms. The vertical diffusion parametrization

includes shallow convection where there is conditional instability between the boundary layer and lowest tropospheric

level, diffusion of moisture between the boundary layer and troposphere, and redistribution of dry-static energy in

regions with a super-adiabatic lapse rate. This means that just diagnosing the parametrization as active or inactive as in

Fig 3c and d does not tell the full story because one process could be deactivated but another process still gives nonzero

tendencies. This is consistent with the large variation of differences in the initial specific-humidity tendencies with

reduced precision (table 1) but no large changes in the number of active gridpoints (Fig. 3d).

3.2 | Differences inmodel evolution

In this section, differences between the evolution of experiments with reduced-precision parametrizations and double-

precision experiments are quantified. Figure 4 shows differences with respect to the double precision experiment

for the deterministic experiments with all parametrizations using the same reduced precision in the range 5-51 sbits.

Shown is the root-mean-square (RMS) difference in geopotential height at 500 hPa in gridpoint space. The choice of

variable and vertical level makes no practical difference to the results presented here (not shown). As expected, any

change in precision results in differences in themodel state. This can be seen by the fact there is error growth in the

experiment with 51 sbits (Fig. 4a and c). Note that this difference is masked by the precision of themodel output for the

first couple of days because SPEEDY uses double precision but data is output in single precision.

In general, the lower the precision the faster the differences with respect to double precision will grow; however,

error growth is not a simple, monotonic, function of precision. The differences for half precision (10 sbits) are always

larger than single precision (23 sbits) which are in turn larger than differences with a single bit truncated (51 sbits). For

intermediate precision however, this is less straightforward. For example, we can see that the 35-sbit experiment can

have smaller differences than the higher-precision 51-sbit experiment. Also, the 11-sbit and 22-sbit experiments have

very similar error growth despite the noticeable difference from the 10-sbit and 23-sbit experiments.

Looking at differences with respect to double precision as a function of precision (Fig 4b and d), we can categorise

the error growth into three groups. At intermediate precision (11-22 sbits), the differences grow tomoderate levels

(> 1m)within the first day and then follow a similar error growth. The differences in this range are almost independent

of precision with slightly larger or smaller differences for some experiments.

At higher precision (23-51 sbits), the differences with respect to double precision are small initially (< 10
−4 m) but

later rapidly grow tomoderate levels (> 1m) and then slowly grow from this point. Apart from the lower precision in

this range, the timing of the rapid error growth is more random chance than a function of precision. This can be seen

most clearly for the differences at 14 days on a logarithmic scale (orange dots in Fig. 4d): differences for experiments

with 27-51 sbits are either ≈1mor ≈10−4mwith nothing in between and no obvious relation to the precision.

At lower precision (<11 sbits), the differences with respect to double precision are greater and increase themore



12 SAFFIN ET AL.

F IGURE 4 RMS difference in geopotential height at 500 hPa for deterministic experiments with reduced-precision

parametrizations compared to a double-precision “truth” run. (a) Difference vs time for fixed precision. (b) Difference vs

precision for fixed lead times. (c) and (d) show the same as (a) and (b) respectively but on a logarithmic scale. The dotted

grey line in (a) shows the ensemble standard deviation of 500-hPa geopotential height for the 20-member,

double-precision ensemble. The dotted grey line in (b) shows the same but only for 14-days lead time.
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F IGURE 5 Difference in geopotential height at 500 hPa between the single-precision (23 sbit) and double-precision

(52 sbit) deterministic model runs at various lead times. Please note the differences in themagnitude of the colour

schemes between the plots.

precision is reduced. The increase in differences compared to intermediate precision is most distinct for 14-days lead

time. At shorter lead times some of the lower precision experiments have similar differences as the intermediate

precision experiments and at longer lead time the effects of chaos are more noticeable with more variation in the

differences for intermediate precision.

These three groups of error growth are a result of how SPEEDY responds to the small errors in tendencies intro-

duced by the reduced-precision parametrizations. Figure. 5 shows the difference between the 23 sbit (single precision)

and 52 sbit (double precision) model runs at various lead times. Initially the differences are small (Fig. 5a). At this time,

the small differences in the tendencies have led to differences at the smallest scales of themodel but the differences are

too small to affect themodel dynamics. At a later stage, the small differences at the gridscale are enough that it changes

the diagnosis of convection in a single gridbox (Fig. 5b) leading to amuch larger difference between the twomodel runs

that rapidly grows and propagates leading tomore andmore gridpoints with different branches in the parametrizations.

TheO(1) RMSE is then dominated by small-scale differences in the tropics (Fig. 5c) and grows slowly (see Fig 4a and c).

At a later time the differences becomemore dominated by larger-scale patterns in themidlatitudes (Fig. 5d) and the

total RMSE growsmore rapidly.

At intermediate precision the rounding errors do not directly affect the large-scale dynamics but will affect the

diagnosis of convection and indirectly result in rapid error growthwithin the first few timesteps such that the differences

with respect to double precision (and each other) are similar after the first day. At higher precision it takes longer for the

rounding errors to result in differences in the diagnosis of convection and therefore the rapid error growth is delayed.

Since the rounding noise changing the diagnosis of convection is largely random, this explains why lower precision

can have smaller differences with respect to double precision (i.e. 35 sbits vs 51 sbits in Fig 4). The reason that RMS
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F IGURE 6 RMS difference geopotential height at 500 hPa for deterministic experiments with reduced-precision in

individual parametrizations compared to a double-precision “truth” run. (a) Difference vs time for 10 sbit experiments.

(b) Difference vs precision at 2-weeks lead time. The dotted grey line in (a) shows the ensemble standard deviation of

500-hPa geopotential height for the 20-member, double-precision ensemble. The dotted grey line in (b) shows the same

but only for 14-days lead time.

differences with respect to double precision for experiments with 27-51 sbits are either ≈1mor ≈10−4mwith nothing

in between is because the error growth is so rapid so no points here are sampling themiddle of that error growth.

Figure 4 shows that differences with respect to the double precision experiment become large when reducing the

precision of all parametrizations below 11 sbits; however, it should be possible to have individual parametrizations

at lower precision without large errors. To determine the precision levels for each parametrization we have run

experiments with a single parametrization in reduced precision in the range 5-23 sbits, for each parametrization.

Figure 6 shows the RMS difference in geopotential height at 500 hPawith respect to the double precision experiment

for these experiments with individual parametrizations in reduced precision. Figure 6a shows the difference as a

function of time for each experiment using 10 sbits and Fig. 6b shows the difference as a function of precision for each

experiment at two-weeks lead time. As expected, the differences with respect to double precision with individual

parametrizations in reduced precision are less than or equal to the differences with all parametrizations in reduced

precision.

The convection and surface-fluxes parametrizations result in larger differences with respect to double precision

at 10 sbits compared to the other parametrizations. The error growth for the other parametrizations is similar to the

intermediate-precision (11-22 sbits) experiments in Fig. 4. The difference with individual parametrizations in reduced

precision has a similar behaviour to Fig. 4b with a flat intermediate region and rapidly increasing differences at lower

precision. The only changes appear to be that this is shifted left (to lower precision) dependent on the parametrization.

This shift to lower precision makes sense because the individual parametrizations will introduce less errors than all

parametrizations combined. The surface-fluxes and convection parametrizations are the dominant source of errors

at low precision: all other parametrizations could individually be reduced to 10 sbits or lower without a noticeable

increase in the differences with respect to double precision compared to the differences at intermediate precision.

To truly determine the acceptable precision for parametrizations we need to consider whether the reduced-

precision errors are within a given uncertainty. One way of doing this is to compare the differences with respect to

double precision to the uncertainty from the ensemble spread. The dotted grey line in Fig. 4a shows the global mean

standard deviation of 500-hPa geopotential height for the 20-member double-precision ensemble. The dotted grey line

in Fig. 4b shows the same but for 14-days lead time. The ensemble spread grows faster than the differences shown

in Fig. 4a and only experiments with precision lower than 8 sbits have differences larger than the ensemble spread at
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F IGURE 7 Standard deviation of geopotential height at 500 hPa for the 20-member double-precision ensemble at

various lead times.

14-days lead time (Fig. 4b).

Comparing differences in deterministic experiments with ensemble spread is useful to seewhere the differences

are small compared to the uncertainty; however, it is not a strong constraint on the precision. Comparing deterministic

experiments to the stochastic ensemble is inconsistent because the model evolution and climatology will differ due

to the introduction of SPPT. Figure 7 shows the spread of the double-precision ensemble at various lead times. The

growth of ensemble spread is more rapid than the initial error growth in the intermediate precision deterministic

experiments. Within the first two days the ensemble spread is dominated by large-scale differences in themidlatitudes

(Fig. 7b) which grow and propagate (Fig. 7c and d) similar to the later stages of error growth in the single-precision

deterministic experiment (Fig. 5d). This makes sense because the SPPT scheme is perturbing the parametrizations more

than the reduced precision and globally. However, this does not rule out whether rounding errors in the parametrization

lead to errors in the probability distribution predicted when they are included in ensembles and perturbed by SPPT.

Instead we compare different precision ensembles so that we are comparing like-for-like. A precision can then be

deemed acceptable if an ensemble run at that precision produces the same probability distribution as the double-

precision ensemble. Each ensemble is run with 20members. The double-precision ensemble is compared to 23 sbit

(single precision), 10 sbit (half precision) and 8 sbit (low precision) ensembles as well as ensembles with individual

parametrizations at 8 sbits.

To compare ensemble runs, we calculated the overlap of each ensemble probability distributionwith the double-

precision ensemble probability distribution. The overlapping coefficient is given by

OVL =

∑

X

min(f1(X), f2(X))dX, (5)
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F IGURE 8 The overlapping coefficient for 500 hPa geopotential height between a double-precision reference

ensemble and other ensembles with varying precision setups. (a) All parametrizations reduced to a single precision. (b)

Individual parametrizations reduced to 8 sbits. All ensembles use 20members. The grey shaded area shows the range in

overlap calculated by randomly selecting two 20-member ensembles from 40 double-precision ensemble members 100

times.

where f1(X) and f2(X)) are the two probability distributions being compared and the sum overX represents a discrete

binning. The overlapping coefficient gives the fraction of probability mass common to both distributions (Inman and

Bradley, 1989) and is used here as ameasure of agreement between two ensembles.

The ensemble probability distributions (f1(X) and f2(X) in equation 5) are calculated at individual gridpoints by

applying a Gaussian kernel filter to values of each ensemblemember at that gridpoint. The standard deviation of the

Gaussian filter is taken as σ/2where σ is the standard deviation of the ensemble at that gridpoint. This was chosen to

give a smooth probability distribution without oversmoothing and to adapt the smoothing to the spatial and temporal

changes in spread.

Figure 8 shows the global area-weighted average of the overlapping coefficient for geopotential height at 500 hPa

for each ensemblewith respect to the reference 52-sbit ensemble as a function of time. To give ameasure of uncertainty

a second 20-member double-precision ensemblewas run (with different randomly generated seeds in the SPPT scheme).

The overlapping coefficient was then recalculated 100 times for two randomly selected 20-member ensembles taken

from the combined 40members from the two double-precision ensembles. The grey shading in Fig 8 shows the range in

the overlapping coefficient calculated this way.

Both the 23 sbit and the 10 sbit ensembles remain in the same range suggesting that precision as low as 10 sbits

is acceptable for all parametrizations. This is slightly lower than the region of interchangeable differences in the

deterministic experiments showing that SPPT canmask these rounding errors. Although not exactly the same, the point

at which differences rapidly increase with reducing precision in the deterministic experiments (see Fig. 6) does provide

a good initial estimate of the acceptable precision when including SPPT.

Reducing precision below 10 sbits can degrade the ensemble: the 8-sbit ensemble is clearly worse than higher

precision ensembles (Fig. 8a). After the first few days, the overlap of the 8-sbit ensemble starts to drop and reaches a

minimumof≈ 76%around 10 days before increasing again but remaining below the reference overlap. Of the ensembles

with an individual parametrization at 8 sbits, the convection and surface-fluxes ensembles show smaller, but significant,

decreases in overlap over a similar timescale (Fig. 8b). These are the two parametrizations that also gave the largest

errors at low precision for the deterministic experiments.

The decrease in overlap for the 8 sbit ensemble with respect to the double-precision ensemble highlights the

limitation of using ensemble spread as a constraint on differences in deterministic model runs. The difference between
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the 8-sbit deterministic experiment and the double-precision (52 sbit) deterministic experiment is lower than the

ensemble spread at 2-weeks lead time (Fig. 6b) but the 8-sbit ensemble is shown to be inconsistent with a double-

precision ensemble. At longer lead times (>4 weeks, see Fig. 6a) the difference between the 10-sbit deterministic

experiment and the double-precision (52 sbit) deterministic experiment becomes comparable to the ensemble spread;

however, it is shorter lead times (1-2weeks, see Fig. 8) that the differences in low-precision ensembles become apparent

and the 10-sbit ensemble is shown to be consistent with the double-precision ensemble at all lead times anyway.

3.3 | Fixes to optimise precision for problematic parametrizations

The dominant issue for the convection parametrization is that low precision results in a reduction in the number of

gridboxes where the convection parametrization is triggered. This is caused by the diagnosis of convectively unstable

gridboxes in SPEEDYwhich is based on conditional instability. To calculate this, the static energy (SE) is input to the

convection parametrization.

SE = cpT + φ, (6)

where cp is the specific heat capacity of dry air at constant pressure,T is temperature andφ is the geopotential. From

SE themoist static energy (MSE) and saturatedmoist static energy (MSEsat ) are calculated.

MSE = SE + Lq , (7)

MSEsat = SE + Lqsat (8)

where L is the latent heat of evaporation, q is the specific humidity and qsat is the saturated specific humidity.

Convection is diagnosed ifMSEsat onany tropospheric half level above thefirst is lower thanMSEsat in the boundary

layer. Convection is then activated if either of the following two criteria aremet

1. MSEsat at the tropospheric half level is lower thanMSE in the boundary layer or the lowest tropospheric level

2. Specific humidity in the boundary layer and the lowest tropospheric level exceed set thresholds

The problem with this diagnosis of convection at low precision is checking the differences between two values

that are almost equal. With the coarser representation of numbers at lower precision two close numbers at double

precision can often become the same number at low precision. For the convection parametrization, this means that

checking if one number is greater than another number will preferentially go from “True” at high precision to “False”

at low precision. Changing the check from “greater than” to “greater than or equal to” can remove this problem but

introduces a similar problem in the other direction: checks that were previously “False” at high precision will become

equal and therefore “True” at low precision leading to a bias where the convection parametrization is activating too

much at low precision.

This issue with equality in logical checks is not easy to fix but the problem can bemitigated at low precision. This is

becausewe are only interested in vertical differences inMSE but these are small compared to the absolute value ofMSE.

Therefore, because rounding errors are relative, the differences inMSE are excessively truncated. This means that this

issue withMSE emerges at higher precision than other errors. By re-expressingMSE as an anomaly, the rounding errors

in the differences inMSE can be put more in line with other variables allowing us to use lower precision. To achieve this,

the surface value of SE is subtracted from each column before it is input to the convection parametrization.
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The change to SEbeing stored as an anomaly is also propagated into the vertical diffusion parametrization. Although

vertical diffusion was acceptable at 8 sbits, there were issues with the parametrization activating or deactivating at low

precision with some checks based on vertical differences in SE.

The dominant issue for the surface-fluxes parametrization is that low precision results in small, positive, tendencies

being rounded to zero. The temperature tendency from surface fluxes is the sensible heat flux (SHF) computed as,

SHF = ρsC |Vs |cp (Ts −T0), (9)

where ρs is the density at the surface, C is an empirical coefficient which is different for land and sea, |Vs | is the

wind-speedmagnitude including a gust factor, cp is the specific heat capacity of dry air at constant pressure,Ts is the

extrapolated surface temperature andT0 is the temperature in the boundary layer.

The problem with this equation at low precision is diagnosing the difference between the boundary-layer tem-

perature and the surface temperature. The difference between these two temperatures is small (typically less than

one Kelvin). At 8 sbits, temperature in Kelvin close to 0◦ C gives a precision of ≈ 1K. Therefore, at low-precision the

difference between these numbers is increasingly likely to become zero. However, if the temperature is expressed

in Celsius the precision is improved because the rounding error is relative to the absolute value of the number being

stored. Unlike the static energy, temperature is also usedmultiplicatively and so this change is only applied within the

surface-fluxes parametrization as it requires more careful code changes.

With these changes to SE and temperature implementedwe have re-run the deterministic experiments as well as

the 8-sbit ensemble. Table 2 shows the relative difference in the initial tendencies with respect to double precision as a

multiple of themachine rounding error for the parametrizations that have beenmodified. Comparing with table 1we

can see that the relative differences in the initial tendencies aremuch improved. Even the initial velocity tendencies due

to surface fluxes have improvedwhich can only be due to converting temperature to Celsius.

The spread in differences in the initial convection and vertical-diffusion tendencies with respect to double precision

has also reduced. This reduced spread corresponds to an improvement of the bias in the number of gridpoints with

nonzero initial tendencies at low precision. Figure 9 shows the numbers of gridpoints with nonzero initial tendencies as

a function of precision, with the code changes applied, for the same initial tendencies as Fig. 3. All the parametrizations

show substantial improvement. The initial tendencies for surface fluxes and vertical diffusion don’t have any flipping of

active/inactive until very low precision and even then it is a small number of gridpoints. Convection is much better but

still shows the largest differences which suggests further improvements to the convection diagnosis could bemade.

These improvements have resulted in a reduction in the differences with respect to double precision from the

deterministic experiments with all experiments at 10 sbits showing similar error growth (Fig. 10a). The convection

parametrization now gives the largest differences at low precision, consistent with the differences in the initial tenden-

cies. These differences are nowmuch closer to the next worst parametrization, long-wave radiation, which hasn’t been

modified here (Fig. 10b). These improvements are also reflected in amuch improved 8-sbit ensemble (Fig. 8a). The fixed

8-sbit ensemble is much better than the original 8-sbit ensemble and is almost entirely within the uncertainty of the

double-precision ensemble apart from some small degradation near the beginning.

4 | CONCLUSIONS

Wehave investigated reducing the precision of parametrizations in an intermediate-complexity atmospheric model

(SPEEDY). Reducing precision in parametrizations introduces errors to the gridpoint tendencies; however, the errors
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F IGURE 9 Same as Fig. 3 but with the changes to themodel code described in section 3.3

F IGURE 10 Same as Fig. 6 but with the changes to themodel code described in section 3.3
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TABLE 2 The same as table 1 but with the changes to themodel code described in section 3.3. Only the

parametrizations that have beenmodified are shown.

Parametrization Boundary Layer Lower Troposphere Upper Troposphere Stratosphere

Temperature

All Parametrizations 33 − 43ε 22 − 55ε 16 − 84ε 77 − 110ε

Convection 0 − 9ε 2 − 33ε 4 − 70ε < 1ε

Surface Fluxes 15 − 23ε 2 − 4ε 0 − 1ε 0 − 1ε

Vertical Diffusion 6 − 7ε 2 − 2ε 0 − 1ε -

Specific Humidity

All Parametrizations 13 − 39ε 7 − 40ε 7 − 112ε -

Convection 1 − 26ε 2 − 35ε 6 − 111ε -

Surface Fluxes 9 − 14ε - - -

Vertical Diffusion 3 − 11ε 3 − 8ε - -

Zonal Velocity

Surface Fluxes 2 − 2ε - - -

Meridional Velocity

Surface Fluxes 2 − 2ε - - -

can bemasked by the inherent uncertainty in these tendencies. Including stochastic perturbation of parametrization

tendencies (SPPT) as a representation of model uncertainty, we can reduce the precision of all parametrizations to

10 sbits (equivalent to a half precisionmantissa) without seeing any degradation in our “forecast” experiment: a 10-sbit

ensemble is indistinguishable from a double-precision (52 sbit) ensemble. Note that these ensemble “forecasts” use an

identical initial state and the only difference between ensemblemembers is the randomly generated seed used in the

SPPT scheme. This was done tomake sure it was only model uncertainty, as opposed to any initial condition uncertainty,

that could bemasking rounding errors.

We have investigated the effects of rounding errors on the initial tendencies output from the parametrizations.

The average difference in the tendency from each parametrization with respect to double precision was found to scale

with themachine rounding error and can be expressed as amultiple of themachine rounding error (see table 1). The

differences in the convection parametrizationwith respect to double precision do not follow themachine rounding error

as closely as other parametrizations. This is because at low precision, differences in the convection parametrization

tendencies are dominated by the diagnosis of convection as active or inactive over a subset of gridpoints. Looking at

the number of active gridpoints showed that the convection parametrization is strongly biased towards deactivating

when reducing precision. Other parametrizations also show tendencies becoming zero with reduced precision. For

the surface-fluxes parametrization this is due to small tendencies becoming zero as opposed to a diagnosis of active or

inactive.

We also compared deterministic experiments (no SPPT) where the only difference between eachmodel runwas

the precision used in the parametrizations. Without SPPT, any reduction in precision will eventually result in large

differences between experiments due to the chaotic nature of the atmosphere. This means that determining the

acceptable precision can be difficult without some way of quantifying the acceptable level of differences. However,
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with deterministic experiments using an identical initial state, there is a wide range of precision (11-22 sbits) where the

error growth remains similar even though the differences in the initial tendency scales with themachine rounding error.

The limit of this range of precision with similar error growth provides a surprisingly good estimate (< 11 sbits) of where

differences in ensembles with SPPTwill start to become apparent (< 10 sbits).

A similar error growth for a large difference in errors is indicative of the butterfly effect (Lorenz, 1969). Durran

andGingrich (2014) showed that large-scale errors in initial conditions dominate butterfly-effect type error growth

in operational forecasts. The error growth is different here because we have excluded initial condition uncertainty

to focus onmodel uncertainty. In ensemble experiments with differences generated only by a stochastic convection

parametrization there is upscale error growth (Selz, 2018; Baumgart et al., 2019). Baumgart et al. (2019) analysed the

dynamical mechanisms of uncertainty growth in these experiments and showed that short lead time differences were

dominated by differences in convection which are then projected on to small differences in the upper-level midlatitude

wave pattern within the first two days which then continue to grow over the next twoweeks. The uncertainty growth in

our ensemble experiments, where the only difference is the randomly generated seed used in the SPPT scheme, are

qualitatively similar.

The error growth in the deterministic experiments initially behaves differently to the ensemble spread. For higher

precision experiments, the noise from the parametrizations results in very small differences that do not affect the

model dynamics. These differences eventually trigger a difference in a parametrization (i.e. convection active/inactive)

which rapidly grows such that the error is dominated by small-scale differences in the tropics. The errors in the tropics

grow slowly and it is then only at longer lead times (≈ 2weeks later) that the differences become dominated by the

midlatitude wave pattern.

Finding the acceptable precision by comparing deterministic experiments to each other gives a similar answer to

comparing the ensembles with each other; however, comparing the deterministic experiments with the ensembles

directly can make a lower precision appear acceptable. This is because we are comparing inconsistent models: the

deterministic experiments without SPPT and the ensembles with SPPT. The error growth for deterministic experiments

with rounding error is also different to the growth in ensemble spread which means the conclusion about accept-

able precision is strongly dependent on lead time when only using the ensemble spread to constrain deterministic

experiments.

We have also run experiments with individual parametrizations in reduced precision. Reducing precision of indi-

vidual parametrizations has been shown to be useful in an operational model context: Gilham (2018) improved run

times in theMetOffice UnifiedModel by reducing themicrophysics parametrization to single precision. We find that

for the deterministic experiments and stochastic ensembles two parametrizations, convection and surface fluxes, are

the dominant source of differences. This gives the option of savingmore computational resources by setting precision

on a parametrization-by-parametrization basis.

Some changes to themodel code can bemade tomitigate issues with the convection parametrization deactivating

and the surface-fluxes parametrization rounding small tendencies to zero allowing for extra bits of precision reduc-

tion. In SPEEDY the convection parametrization is activated in regions of conditional instability diagnosed based on

differences in moist static energy. The problemwith these threshold-type checks at low precision is that a comparison

between two similar numbers becomes a comparison between two identical numbers. This means that for comparisons

which don’t include equality (“<”, “>”) the comparison becomesmore likely to return “False” at lower precision whereas

comparisons including equality (“<=”, “>=”, “==”) become more likely to return “True”. While this comparison issue

cannot be easily fixed, the likelihood of the two slightly-different numbers being rounded to the same number can be

reduced by expressing them as an anomaly field. This will, in effect, increase the number of digits that are available to

represent these fields when using reduced precision since rounding errors are relative. To achieve this, we replaced the
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static energy field input to the convection parametrization with an anomaly of static energy relative to the surface.

The surface-fluxes parametrization rounds small temperature tendencies to zero at low precision. The calculated

tendency is proportional to differences between the surface temperature and the boundary-layer temperature. The

differences between these two temperatures are small compared to the absolute values of temperaturewhen expressed

in Kelvin; therefore, the two temperatures are increasingly likely to be expressed as the same number as precision is

reduced resulting in zero tendency. This can bemitigated by expressing temperature in Celsius (or as an anomaly) such

that the range of numbers is centred close to zero with the result that more decimal digits are available to express the

actual physical signal. However, care needs to be taken if model fields are re-scaled tomake sure that all model fields

are working with the correct physical units.

Rerunning experiments with these improvements included shows a substantial improvement, allowing us to use

lower precision than initially expected. This means that the errors at low precision were dominated by a few operations.

Both improvements were changing an absolute field to an anomaly field which is good practice when trying to use low

precision. Beyond these improvements certain sensitive operations can be performed at higher precision (Dawson et al.,

2017) or amore fine grained approach can be usedwhere each variable uses the lowest precision necessary (Düben

et al., 2017).

The code changes to improve themodel’s resilience to low precision were implemented based on differences found

in the initial parametrization tendencies with respect to double precision. Formore complexmodels this means that

these improvements could bemade using a single-columnmodel rather than having to run a full model which would

save computational resources. However, the initial tendencies alone did not tell us where the rounding errors would

lead to degraded forecasts so the single-columnmodel could only be used for the first step of improving themodel code.

The results here are not exhaustive: we only considered a single “forecast” and did not use a bespoke stochastic

scheme for SPEEDY. Instead, these results help us to design future experiments for implementing reduced-precision

parametrizations in fully complex numerical weather and climatemodels which can be summarised in a step-by-step

guide.

1. Using a single columnmodel, find the best version of a parametrization for low-precision computing. Bymodifying

the code, minimise the amplification of the rounding error found in the initial tendencies and reduce biases that

emerge at low precision

2. With the improved parametrizations implemented in the full model, run deterministic forecasts over a range of

precision to find the point at which differences rapidly increase relative to double-precision reference forecasts

3. Using the precision setup determined from the deterministic forecasts, run ensembles of forecasts, using an internal

representation of model uncertainty as the only difference between forecasts, to find a low-precision setup that is

still indistinguishable from double precision

Each step is increasingly computationally expensive so this step-by-step guide allows computational resources to be

savedwhile still allowing a thorough implementation of reduced precision.
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