

This is a repository copy of Active Based-Metasurfaces for Mid-Infrared Optoelectronics Devices.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/158699/

Version: Accepted Version

Proceedings Paper:

Boulley, L, Maroutian, T, Laffaille, P et al. (4 more authors) (2018) Active Based-Metasurfaces for Mid-Infrared Optoelectronics Devices. In: Proceedings High-Brightness Sources and Light-driven Interactions. Mid-Infrared Coherent Sources 2018, 26-28 Mar 2018, Strasbourg, France. OSA . ISBN 978-1-943580-40-8

https://doi.org/10.1364/mics.2018.mm3c.2

© 2018 The Author(s). One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibited. Uploaded in accordance with the publisher's self-archiving policy.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

Active Based-Metasurfaces for Mid-Infrared Optoelectronics Devices

Laurent Boulley^{1*}, Thomas Maroutian¹, Pierre Laffaille¹, Raffaele Colombelli¹, Lianhe Li², Edmund Linfield², Adel Bousseksou¹

¹Centre de Nanosciences et de Nanotechnologies, CNRS, Univ. Paris-Sud, Université Paris-Saclay, C2N – Orsay, 91405 Orsay cedex, France ²School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, UK

*laurent.boulley@c2n.upsaclay.fr

Abstract : We develop low-temperature (450°C) deposition conditions for vanadium di-oxide phase change material. It permits implementation of tunable mid-infrared meta-surfaces on quantum cascade lasers based heterostructures. © 2018 The Author(s) **OCIS Code :** (250.0250) Optoelectronics; (160.0160) Materials

Summary :

Vanadium di-oxide (VO₂) is a close to room temperature (RT) phase transition material. Its electrical conductivity and optical index change by several orders of magnitude around 68° C [1]. These properties are very promising for applications as imaging, sensing memory devices and optoelectronics. However, the typically high deposition temperature of VO₂ and a large lattice mismatch with respect to typical III-V semiconductor materials hampers its integration with III-V-based optoelectronic devices operating in the infrared (IR) and mid-IR spectral ranges.

In our work, we demonstrate passive and active VO_2 -based mid-IR optoelectronic devices. We have developed low temperature pulsed laser deposition of VO_2 on III-V heterostructures and characterized topologically, electrically and optically the VO_2 deposited layers. We observe low roughness, an electrical conductivity change of several orders of magnitude and a high optical reflectivity contrast across the temperature-driven phase transition.

We have then implemented mid-IR metallic meta-surfaces on the VO₂ deposited layers. These frequency-selective meta-surfaces consist of a periodic array of nano-resonators defined by electron beam lithography and lift-off of a 3nm/80nm Titanium/Gold layers. Figure 1 shows scanning electron microscopy (SEM) images of a typical sub wavelength split-ring-resonator (SRR) array.

The frequency response of the SRR can be assumed to be an 'LC' resonator where the metallic loop acts as an inductance (L) and the gap as a capacitor (C) [2]. Figure 2 shows the measured reflectivity as a function of the sample temperature. It exhibits a change of the reflectivity maximum as function of the temperature. It also reveals a maximum frequency shift of hundreds of cm⁻¹ of the metamaterial resonance between 65°C and 72°C.

Finally, we have implemented a mid-IR quantum cascade laser (QCL) with a VO₂ layer on its top. The laser operates at λ =7.7 µm and the laser current threshold is only 10% higher than a reference device without VO₂ layer. This demonstration is very promising for the integration of VO₂ on III-V based optoelectronic devices, in order to obtain novel functionalities such as amplitude or phase modulation or wavelength tunability.

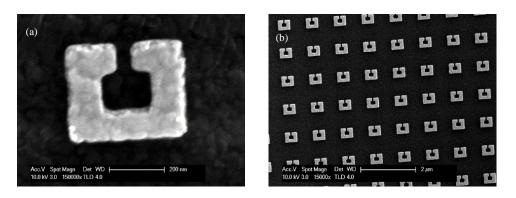


Figure 1 : (a) Scanning electron microscopy (SEM) image of a typical SRR (b) SEM image of a typical SRR array on a VO_2 layer

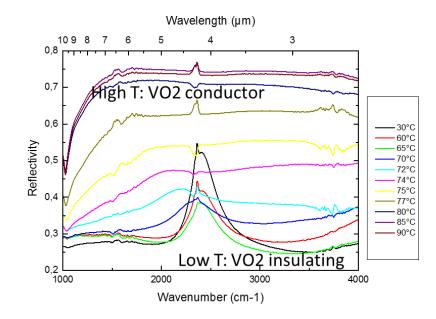


Figure 2: Experimental reflectivity spectra of a VO₂-based meta-surface on a GaAs susbtrate. The meta-surface is composed of a sub-wavelength array of metallic SRRs implemented on top of the VO₂/GaAs. Temperature tuning modulates the optical response via the VO₂ phase transition.

References

[1] H.S. Choi, "Mid-infrared properties of a VO2 film near the metal-insulator transition", Physical Review B, Vol. 54, N°7, 4621-4628 (1996)

[2] S. Tretyakov, "On geometrical scaling of split-ring and double-bar resonators at optical frequencies", Metamaterials 1, 40-43 (2007)