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1 Abstract 
 

Purpose: Understanding and predicting the flow of bulk pharmaceutical materials could be key in 

enabling pharmaceutical manufacturing by continuous direct compression (CDC).  This study 

examines whether, by taking powder and bulk measurements, and using statistical modelling, it 

would be possible the flow of a range of materials likely to be used in CDC.  

Methods: More than 100 materials were selected for study, from four pharmaceutical companies.  

Particle properties were measured by static image analysis, powder surface area and surface energy 

techniques, and flow by shear cell measurements.  The data was then analysed and a range of 

statistical modelling techniques were used, to build predictive models for flow. 

Results: Using the results from static image analysis a model could be built which allowed the 

prediction of likely flow in a shear cell, which can be related to performance in a CDC system.  Only a 

small amount of powder was required for the image analysis.  Surface area did not add to the 

precision of the model, and the available surface energy technique did not correlate with flow.   

Conclusions: A small sample of powder can be examined by Static image analysis, and this data can 

be used to give an early read on likely flow of a material in a CDC system or other pharmaceutical 

process, allowing early intervention (if necessary) to improve the characteristics of a material, early 

in development. 

Keywords: Powder Flow, static image analysis, continuous direct compression, modelling, shear cell, 

powder surface area.  
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2 Introduction 

The flow of powders, active pharmaceutical ingredients (API’s) and excipients, is a key 

determinant of their performance in the pharmaceutical manufacture of solid oral dosage forms. 

Continuous direct compression1-6 is a particularly attractive route of development for solid 

oral dosage forms as it reduces some aspects of scale up, can be implemented in a relatively low 

footprint environment and, from the initial development of the technology, has had Process 

Analytical Tools (PAT) and process control designed into the implementation, meaning that the 

processes should be inherently understandable and controllable7,8.  Continuous processing is now an 

established manufacturing route for pharmaceuticals9, with more products being developed and 

approved using this technology, and is thus viable as a key route for development of new products.  

A key component for continuous direct compression processes are loss-in-weight (LIW) 

feeders.  These devices hold and transport the individual components for a formulation, and 

transmit the material to the blending component of a continuous process.  A key determinant of the 

ability of a LIW feeder’s ability to control the delivery of the material is the flow of the powder, 

defined by its material properties10. 

Flow is a notoriously difficult property to measure (and predict) for some powders, 

particularly when the particles are very small and the size and shape distributions are uncontrolled, 

and their flow performance is governed not only by gravity but by other forces and interactions11,12.  

Nevertheless a guide for potential performance of powders in LIW feeders suggests that a Flow 

Function Coefficient (FFC), measured on a shear cell or equivalent13-16, of greater than 3 is a good 

predictor of acceptable (i.e. predictable and reproducible gravimetric feeding) performance in a 

feeder7.  Historically a FFC of 2-4 is defined as cohesive, and therefore poorly flowing, and whilst it is 
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clear that LIW feeders can cope with some materials in this class, the most cohesive can be 

troublesome.  It is also important to note that there is not a simple cut-off in performance at three, 

and that materials close to this FFC are likely to be difficult, regardless of whether they fall over or 

under the nominal FFC limit of 3.  Recent data has suggested that, in some cases, materials with a 

FFC<3 do not perform in all circumstances in LIW feeder systems17.  In some cases, for powders with 

unacceptable flow and performance, it has been necessary to pre-blend drug powders with flow aids 

to achieve the necessary performance in the continuous system, which adds a batch process (the 

pre-blending) to the nominally continuous one. 

The flow of powders, and cohesive forces which can affect flow, has been demonstrated to 

be influenced by a range of factors, including but not limited to, particle size18, particle shape, 

particle size distribution19, surface area, surface energy and electrostatics20.  Capturing all of these 

factors can be difficult, but multivariate and other modelling approaches are used to understand 

better the factors, and their interrelationships.17,18  It is recognised that engineering of materials to 

ensure performance in LIW feeders is a possible, and perhaps necessary, adjunct to the successful 

use of such manufacturing approaches.1 

The composition (material) and geometry of a feeding system also makes a significant 

difference to the flow that a material achieves through the system, as can other perturbations such 

as when the feeding system is topped up21,22.  The amount of material that is being refilled into a 

hopper, the ability of the system to adjust feed rate and controller parameters and algorithms to 

control these factors are all-important in ensuring reproducible and predictable flow into the mixer 

part of the CDC system, and thus the production of a robust blended system. 

Even though they are inherently compact and efficient systems, trials of LIW feeders in 

conjunction with formulations requires significantly more material than is often available during the 

initial phase of development, and that predicting the flow properties to determine whether a 
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material is likely to have the correct properties would be beneficial.  One means to achieve this is to 

use surrogate materials for this purpose.  The general methodology for identifying surrogate 

materials has been outlined23, as well as its specific use in predicting flow in continuous systems24.  

However, in the published cases the surrogate materials are more similar to larger, relatively free 

flowing materials, rather than the more difficult materials representative of API’s. 

A potential block to the more widespread adoption of continuous direct compression in 

pharmaceutical development is a lack of knowledge, early in a development programme, of the 

likely performance of a new material in a putative continuous process.  If the performance of the API 

is an unknown, or cannot readily be inferred or predicted, it is possible that a “conservative” choice 

of formulation route, albeit one which is ultimately less efficient, is chosen.  This decision, made in 

early development in order to mitigate against the unknown, may persist long after improvements 

are made in the properties of the API.   

If one assumes that most companies utilise a “platform” formulation for their continuous 

processing activities, i.e. use known excipients of low variability, the only variable that needs to be 

determined is the likely performance of the API.  It would be valuable to know how an API is likely to 

perform in an LIW feeder, and whether the API could be engineered to meet necessary 

characteristics.  It can be seen from recent data25 that materials have a range of properties, which 

may necessitate exceptional formulation efforts, but that a decision on formulation may be made 

early in the development process, before all information is known.  

The aim of this project is to extend the window of predictability of flow for materials outside 

the range of published information, to micronized systems and for materials with other adverse 

properties, as demonstrated by poor performance in LIW systems.  The intention was to predict, 

when relatively little material is available (e.g. when manufacturing scales are at the 100g stage of 

development, at which time it is not feasible to commit all of the available material to a flow test), 
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whether a material is likely to have acceptable properties in the LIW feeder, or whether further 

intervention and engineering is necessary to make the API acceptable for processing by CDC.   

It would be anticipated that excipients, at least those intended to aid flow and provide other 

bulk properties, would have better flow properties than those of the API’s which they are “carrying”.  

However, there appears to be a floor value, of an FFC around 3, which all materials must meet to 

ensure that flow is sufficiently predictable for consistent use in CDC systems.   

The model would also be able to predict the properties of feasible but unmanufactured 

materials, i.e. materials that could be made using available technologies (size, shape and their 

respective distributions) but only exist in silico for the moment, to indicate which would have the 

most acceptable properties.  The aim here would be identify particle properties in silico, which, if 

manufactured, would have acceptable properties.  This would help direct engineering efforts.   

In many cases API’s, as initially tested, will have unacceptable characteristics, but capturing 

this in an objective manner will help frame the discussion on likely and successful interventions.  In 

addition, the ability to develop a model, which will predict those particle properties that are likely to 

achieve sufficient flow, is a key goal for early stage examination of materials.  This would give a 

target for Chemical Engineers and Chemists with an additional in silico experimental tool for 

translating putative materials from bench to manufacturing scales, to aim at during development of 

an API for this process. 

Statistical models predicting flow from particle properties have been published 

previously26,27.  Initial systems using this data set were built as data became available, using a data 

analysis workflow enabling data to be integrated into the prediction as new materials where made 

available by the pharmaceutical consortia. Whilst it was possible that additional compound analysis 

techniques could have been developed for this work, as a first pass it was agreed that if the 

modelling approach could achieve a predictive capability across the wide range of particle 
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properties, that was better than currently available models (which tend to have been built from 

materials with relatively “good” flow properties)28 then the additional techniques would potentially 

not add additional meaningful granularity.   

Although models for the prediction of flow in a range of pharmaceutical systems have begun 

to emerge28 the data sets used in these previous studies were either smaller than the one envisaged 

for this programme and (or) did not cover the full range of powder flow characteristics observed in 

pharmaceutical oral solid dosage forms.  Also those models may not have incorporated size and 

shape from robust instrumentation, capable of capturing size and shape, and their relevant 

distributions, which can be key in understanding material performance.29 

A consortium of companies and a specialist data centre conducted this work as part of the 

Advanced Digital Design of Pharmaceutical Therapeutics (ADDoPT) programme.  
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3 Selecting Materials and Techniques for the Study 

The study was conducted by a team from the ADDoPT Consortium, consisting of members 

from four multinational drug companies, “Primes”, experienced in continuous manufacturing 

(AstraZeneca, Bristol-Myers Squibb, GlaxoSmithKline and Pfizer), experts in the control and 

understanding of continuous processing systems (Perceptive Engineering), and the Science and 

Technology Facilities Council’s Hartree Centre, providing expertise in data science. 

The techniques chosen for characterisation of the bulk powders were agreed between the 

four Pharmaceutical Companies, and the organization doing the data analysis, based on the 

following agreed principles: 

1. The techniques had to be commonly available, and in regular use, at all of the 

companies, i.e. were a regular part of their workflow; 

2. There had to be some evidence that the techniques should be predictive of flow 

characteristics and/or a good surrogate for performance in an LIW feeder (recent 

developments in this area have been reported30); 

3. The data, raw or summarised, had to be capable of being outputted in a machine-

readable format suitable for use in statistical methods such as machine learning. 

Following extensive discussion, it was agreed that the techniques meeting these criteria 

were: 

1. Bulk flow properties: Data generated from the Shear Cell, using an agreed protocol 

(outlined below) was chosen as the mechanism to generate FFC data16.  Shear cells, 

which have a fundamental underpinning in the physics and understanding of flow, are 

widely used in the Pharmaceutical Industry to understand relevant flow measurements; 
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2. Particle characterisation by Static Image Analysis: Image analysis has the ability to 

generate both size and shape information from a wide range of relevant powders, even 

for small (micronized) particles, and the data can also capture the presence of 

agglomerated particles and their impact on the particle size distribution31; 

3. Surface area from Brunauer-Emmett-Teller (BET) theory.  BET measurements11,32; 

thought to be an important factor in predicting material flow properties and 

performance25  and is widely measured on robust apparatus.  A subset of the data was 

tested for this parameter; 

4. Surface energy measurements.  Considered a factor in particle-particle interactions.  

Surface energy measurements via surface energy analysis (SEA) was generated23, 26, as 

this has been shown, in some cases, to provide some small advances in the predictive 

capability of models in this area.   A subset of the data was tested for this parameter. 

Specific apparatus was not prescribed for the shear cell measurements or BET 

measurements, subject to the use of standard equipment for this purpose, as these measurements 

were felt to be robust across a range of apparatus.   

For particle size and shape by static image analysis the Morphologi G3 instrument was 

chosen29,31,33,34.  This instrument can accommodate a wide range of particle sizes and shapes relevant 

to pharmaceutical processing27, from micronized materials to granules and agglomerates, and also 

captures shape factors.  Protocols for generating the data were agreed and updated, along with 

those for data analysis. 

The selection of materials for the testing was made by the Pharmaceutical primes, from their 

portfolio of batches, but also including excipients and model drugs with specific properties.  The aim 

was to represent the widest range of materials likely to be incorporated into formulations for oral 

solid dosage forms, in particular for CDC.  Materials for inclusion were intended to encompass the 
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range of materials that each of the Pharmaceutical companies envisaged for possible use in 

continuous direct compression.  Active API’s were selected to have a broad range of properties, 

aligned with what was expected from CDC systems.  Unmilled, milled, and micronized powders were 

included, as were a range of particle morphologies, including needles.  The aim was to have 

materials both above and below the FFC of 3, which has been shown elsewhere to be a key 

parameter in determining acceptable performance in LIW feeders35.  In addition, excipient materials 

were also chosen and were all expected to have higher FFC’s than 3, as demonstrated in previous 

studies.  It is to be expected that bulk excipients (i.e. those added to improve bulk properties rather 

than perform another function such as lubricity) will have good flow, and this would drive their 

choice in CDC.  Table 1 gives a breakdown of the materials tested. 

A subset of samples, in this case 50, were tested by SEA and BET.  For this work, the SEA 

system instrumentation from Surface Measurement Systems was utilised, as per previous 

publications.36,37  These samples represented the tested samples from one of the Primes.  The 

samples had properties representative of the spectrum of materials tested overall. 

A statistical modelling approach, outlined below, was used to generate predictions of flow.  

In general, an R2>0.80 for model predictions was thought to be a good first step towards an 

adequate model.  This level of prediction has been possible for narrow ranges of materials (e.g. free 

flowing materials) but has not been published for a wider range of particle size and shape.   

4 Method Protocols and Data Analysis 

4.1 Materials included in the study 

Materials, API’s and excipients, anticipated to have flow properties across the spectrum of 

what could be accepted to feed into a LIW feeder in a CDC system, were included in the study.  A 

significant number of materials Micronized and other milled materials were included.  Materials 
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within the study had been demonstrated, in some cases, to have acceptable or unacceptable 

properties in trials. 

The intention of the study was to capture in the models those materials with clearly 

acceptable properties of flow, but also those whose characteristics would currently preclude them 

for use, without pre-processing, in a CDC formulation approach using currently available LIW feeder 

systems in CDC. 

4.2 Morphologi G3 measurements - image based particle 

characterisation 

Particle size and shape analysis for each batch was determined using a Malvern Morphologi 

G3 particle characterisation system (Malvern Panalytical, Malvern, UK).  Powder analysis requires 

less than 500mg of material per test, but sampling characteristics and particle counts for effective 

understanding of distributions can be assessed33.  The use of this technique is aligned with proposals 

for improving the understanding of particle performance, and product critical quality attributes 

(CQA’s), in developing pharmaceuticals.38 

Sample dispersion and imaging approaches were aligned to the nature of the material being 

analysed, as published in previous work29,39-42. In order to remove partially imaged and overlapping 

particles morphological filtering of the raw image data was conducted using a combination of 

convexity and solidity filters, according to previous studies29,33,38,39,43.  

Where samples were observed to contain aggregates (loosely associated particle 

assemblages) and/or agglomerates (fused particle assemblages), size distributions for both 

aggregated/agglomerated and primary particles were obtained.  For such samples, shape data was 

only reported for the primary particle dataset. 

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com   For evaluation only.



11 
 

4.3 Surface Area Measurements 

The samples were analysed using a Gemini 2390A surface area analyser (Micromeritics, 

Norcross, USA) or equivalent, with nitrogen as the probe gas.  Samples were typically out-gassed for 

12 hours at 50°C under nitrogen gas prior to analysis.  Samples were then evacuated at a rate of 500 

mmHg/min for 5 minutes and equilibrated for 5 minutes.  Multipoint measurements (8 points) over 

the range of 0.05-0.3 P/P0 were performed, and linearity within the B.E.T. range confirmed. 

4.4 Shear Cell Measurements 

4.4.1 Instrument  

The specific instrument used by the consortium was not stated, but an example instrument 

was the Ring Shear Tester (RST-XS, Dietmar Schulze, Wolfenbüttel, Germany).  In each case, the 

included software was used to determine specific terms for further analysis.  It was not possible to 

control completely the humidity in all of the laboratories, so this factor was not directly controlled in 

the testing.  Relative humidities (RH) in the labs ranged from 40% RH-60% RH. 

4.4.2 Bulk density 

The reported bulk density was determined from the shear cell tester.  This value may not be 

consistent with other measures of bulk density44, but was consistently used in this study.   

 

4.4.3 Wall Friction Testing 

Shear cell conditions were set, but the specific instrument was not controlled in the study.  A 

Ring Shear Tester (for example, RST-XS, Dietmar Schulze, Wolfenbüttel, Germany) was used for 

measuring the wall friction properties of the powders using a XS-Wm standard cell.  Spacers were 

used to leave a 4 mm recess at the top of the cell to fill a layer of the test powder.  A disk of 0.4 RA 
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316 stainless steel was used as the top disk to provide the test surface against which the test was 

performed.  The consolidation load used was 4000 Pa and the test loads were 400, 800, 1200, 2400, 

3200 and 4000 Pa.  

The shear cell is rotated while the lid is fixed in position by the tie rods and wall shear stress 

increases (θ,w). This decreases over time until a constant wall stress is achieved. The values at wall 

normal stress (σ,w ) and constant wall shear stress (θ,w) describe the kinematic wall friction.  The 

process begins with the greatest wall normal stress and once steady-state is reached, the normal 

load is reduced while the shear cell continues rotating. With each decrease in wall normal stress, the 

wall shear stress also decreases. The pairs of values of wall normal stress and wall shear stress were 

plotted to give the Wall Yield Locus. 

4.5 SEA Measurements 

50 samples were tested with the SEA apparatus, using a range of dispersive probes; n-

decane, n-nonane, n-octane, n-heptane, and n-hexane were injected at a range of 10 fractional 

surface coverages between 0.2% and 20%. Determination of the concentration free dispersive 

surface energy (i.e. the dispersive surface energy at 0% probe coverage) was calculated using a line 

of best fit through the data points.  Specific (polar) probes, ethyl acetate and chloroform were also 

analysed at an equivalent range of fractional surface coverages, as used for the dispersive probes.  

The column dead time was determined using an inert probe, methane (0.208 cm3 injection volume).    

The dispersive component was obtained using the Dorris and Gray approach and the polar 

components obtained using the polarization approach 37,45,46.  For the purposes of comparison, the 

values utilised were nominally the 5% surface coverage results although for dispersive surface 

energy results for 3% and 10% were additionally included. 
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4.6 Data Analysis Principles 

Yu et al19 used partial least squares methods to predict the flow of common pharmaceutical 

excipients based on particle size data from laser diffraction and particle imaging data from dynamic 

image analysis. In that study only one sample had an FFC of less than 3. In another study Sandler et 

al26 also used particle imaging data from dynamic image analysis of granular materials to predict 

flowability amongst other things. All materials in that study had FFC values of 6.9 or higher, 

representing easy or free flowing materials.  Both these studies used particle size (and shape where 

applicable) distributions as input to the modelling. 

The cumulative distribution function (e.g. of particle length) is a high dimensional object, not 

adequately summarized by a few numbers. This study sought to use the full distributions, rather 

than point measurements such as D50 or D90, as input to the predictions, rather than digesting them 

to a small-dimensional set of descriptors.  

Support vector regression is a standard machine learning method. In least squares 

regression the investigator uses prior knowledge to select features that are suspected to be 

predictive. In support vector regression, the investigator provides instead a "kernel function" that 

indicates how similar two inputs are 

Kernel approaches are suitable for this purpose. A suitable kernel function captures the 

notion of “similar” samples in a precise function: 

�(�, ��) ⟹ �		 Equation 1 

A kernel function shows large values for similar samples, and small values for samples which 

are different.  It therefore increases as a metric (distance) function decreases. Given a metric 

function, this most commonly used kernel function, and the one used here, is the Radial Basis 

Function 
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�(�, ��) 	⟹ ��� �− ‖����‖���� � Equation 2 

Where the parameter α is large if the property to be predicted is very local in distribution 

space, and smaller correlations persist for larger differences. 

To use this approach, we used a function that represents the distance between distributions, 

meeting the mathematical definition of a metric, including obeying the triangle inequality. The 

method chosen for this study was the Wasserstein Distance47, also known as Earth Movers’ 

distance48   There are several ways to measure of the difference between two distributions. Our 

approach required one that obeys the triangle inequality, to be suitable for forming a kernel function 

for a support vector machine, which excludes Kullback-Leiber diverence. The Wasserstein 

(Kantorovich–Rubinstein) metric is informally known as the Earth Mover's Distance: if the probability 

density function were the profile of a sand pile, it is a measure of how much sand has to be moved 

to transform one into the other. For the current purposes a sample with 90% fines and 10% of 

particles of radius 0.1mm is similar to one with 10% of particles of radius 0.11µm, more so than it is 

similar to one with 10% of size 0.12µm. The Wasserstein metric captures this, in way that the 

alternative L1 or L2 metrics do not 

Given a kernel function, there are varieties of statistical learning methods available.  Of all 

the kernel methods available, Support Vector Machines are especially suitable when the amount of 

training data is low, because they are well regularized and their regularization is well understood49. 

Support vector regression (SVR) is used with the data sets’ particle size (or particle size and 

shape) similarity matrix as input50 and hyper-parameters ν, and C. 

All hyper-parameters (α, ν, C and, if applicable, ds) are optimised during model training using 

leave-one-out cross-validation. When the powder sample left out is one of the six samples with 

duplicate particle size and shape measurements, both of these are left out of the training set and 

two predicted flowability measures are computed, one for each measured particle size (or particle 
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size and shape) distribution. Least absolute deviation between measured and predicted values is 

used as the criterion for model optimisation to limit the sensitivity to potential outliers (points with 

large residuals). 

For each SVR system with optimised hyper-parameters, the predicted values were fitted 

against the measured ones using linear regression and the R2 value is reported. 

In order to assess whether additional bulk powder properties, such as specific surface area 

and properties measured by surface energy analyser, might help explain part of the residuals from 

the models obtained, linear regression of the models’ residuals against those measured properties 

were performed.  R2 is reported. 

An analysis of variance model is then performed on the models obtained to assess the effect 

of the following experimental design factors on the R2 values obtained: 

1. number of particle size bins n, 

2. particle size only or particle size and shape model, 

3. and flowability at low-σpre , mid-σpre, high-σpre, low σ1 or mid σ1. 

The principle of binning materials into classes is captured in figure 1.  

Tukey’s Honest Significant Differences were computed between the levels of factors that 

have a significant effect. 

5 Summary of data generated 

The data set consisted of 106 fully characterised materials, in terms of static image analysis 

measurements and associated shear cell data.  50 samples, from one Prime, were additionally tested 

for surface area (BET) and by surface energy analysis (SEA) according to the protocol. The modelling 
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methods were validated by leave-one-out cross-validation, which is appropriate for a data set of this 

size.  As larger data sets become available it may be possible to come up with cross validation 

protocols leaving out more data, however this approach is robust for the data set in this case. 

Initial analysis confirmed that these materials had the full spectrum of flow characteristics of 

materials expected to be included in solid oral dosage forms manufactured by continuous direct 

compression.  FFC values range from 1 to 22 across the range of shear cell measurements (table 2), a 

range of surface areas from 0.05 to 10.23m2/g were also observed.  Median particle sizes from 2.4 

µm to 443 µm were seen, and a range of shapes of particles was also observed in the samples.   

Particle size distributions included narrow particle size distributions, wider distributions and some 

bimodal distributions with wide spans.   

There were a significant number of batches with a measured FFC of less than 3, ensuring 

that models could be trained using the range of powder flow behaviours encountered in 

pharmaceutical development laboratories, i.e. materials above and below the proposed threshold 

for acceptable flow were included in the study. 

6 Model Building and Outcomes 

6.1 Particle Size and Shape Information 

Individual particle size and shape summary measures were obtained from 100 powder 

samples.   These measures were obtained in duplicate for six powder samples, resulting in 106 

powder size and shape samples, and a total of 16.6 million particles in the pre-processed files 

obtained from the industrial partners.  All particles are included in the size and shape summaries 

described below and during the modelling. 

Volume based distributions have previously been shown to be better predictors of flow, as 

the proportion of large, free flowing, particles within a system is an important determinant of flow.34  
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In the presence of fines, the distributions of particule size, mass, and surface area can be very 

different: 99% of particles might account for half the surface area but only 10% of the mass. In the 

light of this, we defined the buckets for our histograms by particle mass. 

In order to summarise particle size information for all powder samples, the range of sphere 

equivalent volumes across all samples was calculated, and from that the particles were binned into n 

= 30, 40 or 50 sphere equivalent volume bins Si. The total volume V1 of particles in each size bin Si is 

then calculated for each powder sample. In addition, the median particle sphere equivalent volume 

across all samples is calculated per size bin. 

The aspect ratio of a particle is defined as its width divided by its length.  It is the inverse of 

particle elongation. For each particle size bin Si, and each powder sample, the mean aspect ratio ARi 

of the particles in that bin is calculated, yielding a maximum value of one if the particles have equal 

widths and lengths, or a lower value, decreasing with increasing elongation. 

6.2 Comparing Morphologi G3 Data Sets 

For each powder sample, the summary of size and shape information described above is 

contained in n pairs of values, representing a size and shape fingerprint (or signature) for this 

sample. These values summarising the distributions of particle size and particle mean aspect ratio 

obtained are compared. These fingerprints can then be used to compare samples as described next. 

6.2.1 Using Particle Volume Information 

The Earth mover’s distance (EMD)48 was used to compare the fingerprint of each sample to 

every other sample in the data set. 
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For every bin Si, the particle size bin index is used as the location of a particular data point in 

a one-dimensional space, and the total volume of particles in that bin Vi is used as the weight. The 

information for all bins is used to calculate the distance metric. 

6.2.2 Using particle Volume and Aspect Ratio Information 

In addition to particle volume information in the first dimension, a second dimension is 

added, a particle shape dimension representing the mean aspect ratio ARi per size bin Si. This results 

in each data set being represented by n points in a two-dimensional space. When compared to the 

sample summary obtained using particle size information only, adding particle aspect ratio 

information shifts each point at size location i to the value ARi in the shape dimension. The total 

volume of particles per bin Vi remains the same. The EMD distance is calculated using points located 

in the 2-dimensional “particle size – particle mean aspect ratio” space. 

Figure 1 illustrates the method for the hypothetical case of one powder sample where the 

particles are classified into only four size bins.  The insets illustrate the sizes and shapes of the 

particles in these bins at the same hypothetical scale.  In this case the fraction of the total powder 

volume that is made up of the smallest particles (left test tube) is the largest of the four fractions as 

shown by the amount of powder in this test tube.  Particles in this fraction also have the lowest 

average aspect ratio (highest average elongation) as shown by the extreme position of the test tube 

along the aspect ratio axis. The test tube representing the next particle size class (second from the 

left) contains a lower volume of powder, and is made up of nearly spherical particles so it is located 

at the other extreme of the aspect ratio axis. In the next two size classes, the powder volume again 

differs, with that in the fourth class similar to that in the second class, and the average aspect ratio 

decreases from one class to the next. This powder “fingerprint” in two dimensions, size and aspect 

ratio, is used as the basis for comparing assessing similarities between different powder samples 

during modelling 
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6.3 Powder flow Measurements 

The flowability of each powder sample was measured by ring shear cell at a range of consolidation 

stresses σ1, measured at three normal stresses during pre-shear σpre (at or near 1.0, 3.0 and 7.0 KPa). 

In particular, some of the measurements were concentrated around the two σ1 values 2.3 (low σ1, 

2.3 ± 0.3KPa, measured at σpre = 1.0 KPa) and 6.0 KPa (mid σ1, 6.0 ± 0.7KPa, measured at σpre = 3.0 

KPa). From the measured flowability, an angle θ is calculated, such that: 

 θ = arctan (1/ FFC).  

Predicted FFC and θ values at these two consolidation stresses and three pre-shear stresses 

are reported here, giving a total of five summary flowability measures per powder sample. GNU 

parallel51 software was used to parallelise the computations across the summary flowability 

measures and the different number of sphere equivalent volume bins n. The hypothesis that the 

distributions of FFC and θ values across powder samples for each summary flowability measure 

differ from a uniform distribution is tested using a one sample Kolmogorov-Smirnov test, which is 

widely used for this purpose52. 

6.4 Powder Surface Area Measurements 

The specific surface area (SSA) of 50 of the powder samples was measured by nitrogen 

adsorption using the isotherm from the Brunauer–Emmett–Teller (BET) theory. 

6.5 Powder Surface Energy Measurements 

The same 50 samples were also analysed using a surface energy analyser. The parameters 

measured were dispersive surface energy at 0, 3, 5 and 10% coverage, specific surface energy at 5% 

coverage and total energy, as published in previous work36,37,45,53. 
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6.6 Modelling 

A Gaussian radial basis function was used to convert the distance metrics obtained from 

particle size (and optionally shape) descriptors into similarity (kernel) metrics, with hyper-parameter 

α determining the length scale. 

For models that use particle size and aspect ratio information, a scaling hyper-parameter ds 

is used that determines the ratio of the range in the particle size dimension to the range in the 

particle aspect ratio dimension. 

6.6.1 Regression Models 

Support vector regression (SVR) is used with the data sets’ particle size (or particle size and 

shape, along with their respective distributions) similarity matrix as input50 and hyper-parameters ν, 

and C. 

6.6.2 Classification Models 

Classification models for each summary flowability measure were built using particle size 

information only and particle size and shape information, as described for regression models in the 

previous section. The models were built using support vector classification to predict which of the 

two classes, FFC <= 3 or FFC > 3, each powder sample belongs to. The performance measure used to 

train the model is the area under the ROC curve. 

7 Results 

7.1 Distribution of Particle Volumes 

The wide range of samples in the study is illustrated in figure 2.  This figure illustrates that, 

across the sample population of 16 million particle, a wide range of particle properties was 
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observed.  Of course for bulk properties such as flow it is the mixture of particle sizes in an individual 

sample which determines the flow for that material.  Between the 106 samples more than 16 million 

particles with reported size and shape information were available for analysis. The bulk of most 

samples is made up of particles with volumes in the range 20 to 107 μm3 but this encompasses the 

range of particle size of materials envisaged for use in CDC.  A few extreme partial volumes are seen 

outside of that range, particularly at the high end of particle volume.   

This covers the range of likely materials in pharmaceutical development for solid oral dosage 

forms.  Figure 3 also shows that a wide range of morphologies and size and shape distributions was 

captured by the study.    

7.2 Distributions of particle size and shape 
 

Figure 4 shows particle volumes Vi as a function of particle size bins Si and particle mean 

aspect ratio ARi for 16 powder samples. The samples shown are arranged in decreasing order of 

flowability measured at low pre-shear stress, from the best to the least flowing sample (from top left 

to bottom right). Each sample is coloured according to its flow class.  The area of each circle is 

proportional to the partial volume of powder in the particular particle size class. In general, it can be 

seen that, as flowability decreases, the bulk of the powder volume shifts from being made up of 

rather large particles (say 1.5e+04 μm3 and larger) to being made up of small to medium particles 

(say less than 1.5e+04 and as low as 1e-02 μm3). 

7.3 Distribution of flowability and theta values 

Table 2 shows the distributions of available FFC values and angles θ for the five shear cell 

experimental settings, as well as the outcome of the test of whether each distribution is significantly 

different from a uniform distribution. The distributions of FFC values and angles θ measured at the 

three pre-shear stresses σpre = 1, 3 and 7KPa is shown in figure 5. The dashed vertical lines show the 

median values. For all pre-shear stress values, the distribution of FFC values is skewed towards low 
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values. In contrast, none of the distributions of θ is significantly different from the uniform 

distribution as shown in the last column of table 2. The median and mean FFC observed is higher in 

the low σpre (σ1) experiment than in both mid and high σpre (mid σ1) experiments, showing that 

powder flowability tends to be lower when measured at low σpre (σ1) in our datasets.  

7.4 SVR modelling 

The model learnt by the SVM is a linear model in a high dimensional space, so is equivalent 

to a linear regression with a custom set of descriptors. However, these descriptors need never be 

calculated to use the SVM. Given this hidden linearity, a transformation of the value to be predicted 

sometimes helps build a better model, e.g. predicting the logarithm if the process is fundamentally 

multiplicative. In this case, better models were achieved by predicting the arc tangent of the FFC, 

which we have referred to as θ.  Without this transformation, the training process would be 

dominated by trying to fit the numerically large but less relevant FFC values (as the performance of a 

free flowing excipient is less vital than that of an API): i.e. predicting accurately whether the flow 

function coefficient is 2 or 4 is more important than predicting whether it is 5 or 10. 

When a shape parameter was included in the model, the predictive accuracy always 

improved, as can be seen in Table 3 

A support vector regression model was built using flowability measured at mid σpre, and 

particle surface area in µm2 (as reported by the Morphologi G3 instrument and instead of sphere 

equivalent volume) and aspect ratio summarised in n = 40 bins. This model yields R2 = 0.82, as shown 

figure 5.  This demonstrates that the approach is compatible with building a robust model across a 

range of particle properties.  
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7.5 Correlation with other measured bulk powder properties 

For a subset (n=50) of the data surface area was carried out in addition to the particle size 

and shape data.  The R2 values obtained from fitting the residuals of the SVR models to bulk powder 

properties measured by BET and SEA are shown in Table 4. There is no correlation between the 

residuals and the specific surface area measured.  Surface area does correlate with flow throughout 

the model, but in this case, it does not add to the predictive nature of the model, as the information 

provided by the surface area is captured in the detailed descriptors of size and shape.  For the subset 

of data tested, the surface area data alone did not provide a model with similar predictive 

capabilities as the size and shape data.   

No parameters from the SEA, for this data set, correlated with flow or provided any 

predictive additions to the models.  The strongest correlation between the residuals and properties 

measured by surface energy analysis is obtained for the dispersive surface energy at 5% coverage, 

for the flowability model at low σpre (R2=0.130).  The SEA values were only tested on 50 samples, 

around half of the dataset.  It is possible that inclusion of the other 50 samples could have improved 

these correlations better but this additional analysis was not conducted, as the initial testing did not 

indicate an effect.  

In general, these parameters do not add significantly to the power of the model.  Whilst it is 

possible that there are subsets of the data that would benefit from greater granularity (e.g. the 

surface area of finer systems), overall the targets for applicability of the model were met without 

including this extra data.  Further examination of these parameters may yield benefits in later 

iterations of the model but they are not examined further in this paper.   

Surface energy may from a key part in determining the flow of powders so it is not clear 

from this data whether this assumption is not appropriate or whether an alternative measure of 

surface energy is required. 
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7.6 Effects of experimental design 

The outcome of the analysis of variance are summarised below, together with Tukey’s 

honest significant differences where experimental factors are significant: 

1. n (the number of particle size bins) does not significantly affect model 

quality, whether all models are considered, or only those that make use 

of the particle size and shape information (p = 0.777 and p = 0.840 

respectively). 

2. The choice of particle descriptors used to train the models (particle size 

only or particle size and shape information) significantly affects model 

quality (p = 5.3e-04), difference in R2 = 0.0346, 95% confidence interval 

[0.018; 0.055]. 

3. The ring shear cell settings used to measure flowability significantly 

affects model quality (p = 3.92e-06). 

7.7 Additional Modelling 

In addition to the SVR model, a support vector classification (SVC) model was trained 

alongside the SVR prediction to produce a binary classifier for predicting FFC < 3, potentially 

facilitating the application of our approach in rapid identification and screening of powders with 

potentially problematic manufacturing properties.  The SVC model was built using particle volume 

and aspect ratio information with n = 40 particle size bins and flowability measured at mid σpre, using 

leave-one-out cross-validation. 

Table 5 shows the outcome of the classification models obtained for the various flow 

measurement settings.  Once again, the worst models are those corresponding to low pre-shear 

stress. 
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8 Summary and Conclusions 

The models developed and utilised here expand the predictive capabilities of flow, relevant 

to LIW feeders, across the range of materials likely to be processed by such systems.  Inclusion of the 

model in the early stage of assessment of the suitability of a material for development by continuous 

direct compression.  It also allows the input of criteria, in the form of potential (but feasible) particle 

distributions likely to achieve such flow.   

As can be seen the predictions have considerable value, giving prediction of likely flow 

properties across a wide range of materials (in a pharmaceutical context), with reasonable precision.  

This was achieved despite the work being done across multiple laboratories with some conditions 

(e.g. the humidity of the flow experiments) not being controlled to an extent that may be possible in 

future.  It is, of course, possible that future predictions, and more controlled models, could introduce 

some greater accuracy.  However, this work suggests that particle size and shape, along with their 

respective distributions, are sufficient as a first pass to predict flow to a degree not achieved 

previously.   

It can be seen that different particle morphologies make a key contribution to observed 

flow, and that large needles (for instance) are detrimental to flow in a way that might be predicted 

but has not been systematically observed.  The data also captures the fact that materials have a 

particle shape distribution, e.g. low aspect ratio at small particle sizes, but more needle like at larger 

sizes.  Such a distribution may occur in an incompletely attrited system. 

Similarly, a particle size distribution around a nominal D50 or similar value can make a key 

contribution to whether that material flows or not.  A bimodal distribution which has a nominally 

similar D50 to another sample with a unimodal distribution, and have very different flow properties, 

by measurement and thus as predicted by the modelling.  The presence, or otherwise, of 
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agglomerates which facilitate the improved flow for bimodal distributions, may not have been 

captured by previous studies, as they may have been removed during processes such as dry 

dispersion for laser light scattering.  It is already known that, for some excipients, that the presence 

of a small proportion of a larger particles in amongst finer particles is a key enabler of flow43, and 

this appears to hold for agglomerates in this case. 

Previous work indicated that particle size distribution and particle shape were key enablers 

of flow19, allowing reasonable prediction based on particle properties, but mainly for relatively free 

flowing systems54.  This work confirms that hypothesis with a wider range of materials, across a wide 

range of flow conditions.  A predictive power of around 0.8 is similar to that seen for previous 

models, and may be inherent in a test such as shear testing, but here we have expanded that 

capability to relatively poor flowing materials.  The presence of agglomerates or other flow enabling 

constructs (which may not be detected in point measurements such as D50) may be key to 

understanding flow.  It has previously been demonstrated that the presence of a small number or 

larger, disruptor, particles may explain the improved flow performance of grades of microcrystalline 

cellulose.43  One of the merits of static based image analysis is that an appropriate method can be 

developed which does not break agglomerates or primary particles (which can occur in inadequately 

controlled dispersion techniques or be utilised specifically to break particles55), and that the post 

processing of data can include or exclude agglomerates if necessary31.  The issue of the presence, or 

otherwise, of agglomerates in samples merits significant further investigation.  Agglomerates can be 

induced in formulations, sometimes deliberately to enhance flow (e.g. in inhaled systems such as the 

Turbohaler), and it is possible that manipulation of agglomeration of poorly flowing materials could 

help induce flow for other pharmaceutical powders.  

The ability of the model to predict whether a material is likely to meet the flow criteria for a 

material with acceptable performance in LIW could be a key step in rationally choosing materials 

that are suitable for this form of development. It is important to note that the test of the system for 
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“true/false” answers set a nominal target of ±3, so that a measured value of 2.9 which was predicted 

at 3.1 would not be regarded as an accurate prediction.  In practice, as there is not an absolute cut-

off, the model predicts that the system would be on the cusp of poor performance.  In any such 

case, a material would benefit from intervention and possible modification. 

As it stands the model has only been developed for single materials, rather than blends.  

Whilst it may be suitable for some blends and granules, this has not yet been examined.  It is also 

necessary to note that if a flow agent was added to a material (e.g. 0.1% colloidal silicon dioxide) it is 

unlikely that this would be captured by the particle size and shape data (although surface area would 

be perturbed in this case), even by techniques such as Morphologi G3, as the silicon dioxide is likely 

to adhere to the surface of particles.  Thus, the model is meant to identify single materials, which 

may require enablement rather than be universal for flow prediction, at this stage.   

Regarding model accuracy, the final R2 value of ~0.8 obtained from this work was considered 

fit for purpose and meets the aims of the study, which was to demonstrate the applicability of the 

approach of using advanced analytical techniques and data analysis to predict flow.  While higher R2 

values could likely be achieved by using data from an individual pharmaceutical company, the final 

model incorporates a range of particle sizes generated independently across 4 pharmaceutical 

companies, thereby reducing issues of bias and over-fitting to one particular class of compound, and 

presenting a robust model with the potential for use across the pharmaceutical industry and their 

portfolio of compounds.  The reason for the differences between sites could also be investigated 

further.  It is possible that a more rigorous and exhaustive protocol on testing could be generated 

and followed, as small differences between sites can be observed in the protocols. 

The work presented here demonstrates that one form of data analysis allows a prediction to 

be made from static image analysis data, if appropriately sampled and analysed.  It is, of course, 

possible that other data techniques, for instance multivariate analysis techniques, could also build 
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successful models from this data.  The value of this technique in elucidating previously difficult to 

predict parameters is demonstrated, and will no doubt improve as alternate and improved physical 

testing techniques and modelling approaches are applied to this and other data sets. 

Once a team knows which sizes, shapes and shape distributions are required to facilitate 

flow they can work with colleagues and partners to collaborate to develop suitable materials.  This 

facilitates a discussion about whether particle engineering could be used to develop a suitable 

material.  All of this can occur early in a development programme, to allow rational formulation 

choices.  

The system here demonstrates the value of the overall approach.  It would difficult to 

replicate this precise system, as many of the specific materials here cannot be shared, as they are 

proprietary. 
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10 Figures and figure Captions 

Figure 1: Principles of binning data for size and shape to generate powder fingerprint.  Schematic 
rather than specific description, so scale bars not included. 
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Figure 2: a) Distribution of measured estimated sphere-equivalent volume for all samples examined. 
b) Summary of partial volumes of powders for all samples as a function of particle volume range. 
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Figure 3: Sample Photomicrographs showing range of materials tested in this study, indicating the 
representative range of samples in the study. 
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Figure 4: Partitioning of total powder volume as a function of particle volume and mean aspect ratio 
for samples spanning the range of measured powder flows.  These samples represent 16 samples 
from the 106 tested, the 16 samples being from across the spectrum of materials tested overall.  
Each graph corresponds to one powder sample, it shows 40 circles, one for each particle volume 
range (x-axis). The volume ranges correspond to increasing particle volumes from left to right. Each 
circle is located along y at the mean aspect ratio of all particles within the corresponding volume 
range and has an area that is proportional to the total volume of the particles in that range. The 
median particle volume is shown on the x-axis for a few regularly spaced volume ranges. 
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Figure 5: Outcome of support vector regression model to predict flow measured by shear cell using 
particles sphere-equivalent volumes and aspect ratios.  
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11 Tables and Table Captions 

Tables 

 

Nature of tested material  Number Number of milled materials 
API  58 20 
Excipients  48 1 
Total  106 21 
 

Table 1 API’s and excipients tested for flow in this study.  Includes a number of duplicate 
samples  
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flow 
measure 
setting 

flowability 
summary minimum 

first 
quartile median mean 

third 
quartile maximum p value 

high σpre Angle 3.58 11.26 20.51 21.07 32.08 44.03 0.220 
low σ1 Angle 4.00 15.33 23.26 24.49 34.07 43.57 0.753 
low σpre Angle 3.58 15.33 23.85 24.51 35.28 42.24 0.628 
mid σ1 Angle 2.59 11.18 20.68 21.16 32.08 42.83 0.543 
mid σpre Angle 2.59 11.26 20.68 21.16 32.08 42.83 0.543 
high σpre FFC 1.03 1.60 2.67 4.40 5.02 15.98 1.8E-13 
low σ1 FFC 1.05 1.48 2.33 3.14 3.65 14.32 1.3E-15 
low σpre FFC 1.10 1.41 2.26 3.31 3.65 15.98 1.3E-15 
mid σ1 FFC 1.08 1.60 2.65 4.52 5.06 22.07 1.3E-15 
mid σpre FFC 1.08 1.60 2.65 4.58 5.02 22.07 1.3E-15 

  
lowest 
angle     

highest 
angle  

  2.59     44.03  

  
lowest 
FFC     

highest 
FFC  

  1.03     22.07  
Table 2: Summary of the shear cell experiment measurements. A wide range of flowability is 
observed, from very cohesive powders at FFC ≈ 1 to free flowing powders with FFC > 10, depending 
on the shear cell experiment. The last column “p value” shows the outcome of the Kolmogorov-
Smirnov test of whether the distribution of FFC (angle) for a given shear cell experiment is 
significantly different from a uniform distribution as is the case for all FFC distributions (p < 2e-13) 
and none of the angle distributions (p > 0.2). 
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Experiment condition for FFC summary Particle information R2 
high σpre Volume 0.78 
high σpre volume + AR 0.82 
low σ1 Volume 0.65 
low σ1 volume + AR 0.67 
low σpre Volume 0.65 
low σpre volume + AR 0.69 
mid σ1 Volume 0.76 
mid σ1 volume + AR 0.81 
mid σpre Volume 0.77 
mid σpre volume + AR 0.80 

 

Table 3. Summary of the model outcome for predicting flowability given particle size (and shape) 
information for the various ring shear cell FFC measurements. In all cases, the addition of shape 
information (mean aspect ratio) during model training improves the model, especially when its 
performance is lower with particle volume information only (when R2 < 0.8). 
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flow measure 
settings 

BET Surface energy Analysis 

log(SSA) DSE at 
0% 

DSE at 
3% 

DSE at 
5% 

DSE at 
10% SSE TE 

low σpre 0.000 0.010 0.098 0.130 0.056 0.000 0.074 
low σ1 0.000 0.030 0.103 0.128 0.069 0.008 0.094 

mid σpre 0.000 0.001 0.022 0.017 0.000 0.028 0.000 
mid σ1 0.000 0.064 0.084 0.128 0.078 0.003 0.086 

high σpre 0.003 0.046 0.077 0.058 0.008 0.000 0.033 
 

Table 4. R2 values obtained by fitting the residuals of the five SVR models obtained from using 
particle size and shape information to other bulk powder properties measured by BET or using a 
surface energy analyser. SSA: specific surface area in m2/g, DSE: dispersive surface energy in mJ/m2 
(DSE at 3%: dispersive surface energy at 3% coverage), SSE: specific surface energy, TE: total energy. 
The highest R2 value for each bulk property (table column) is highlighted. There is no correlation 
between the models residuals and SSA measured by B.E.T. The strongest correlation with a 
measurement obtained from surface energy analysis is obtained for DSE at 5% for the model 
obtained from flow at low σpre.  
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flow 
measure 
settings 

number of 
samples with FFC 
≤ 3 (out of 106) performance 

true 
negative 

false 
negative 

false 
positive true positive 

low σpre 61 0.80 34 4 10 57 
low σ1 59 0.79 53 9 5 38 
mid σpre 48 0.84 37 6 49 53 
mid σ1 47 0.83 53 10 10 33 
high σpre 47 0.83 53 11 4 37 

 

Table 5. Summary of the model outcome for predicting the powder flow class given particle size (and 
shape) information for the various ring shear cell FFC measurements. The models were trained to 
return true if FFC ≤ 3, false otherwise. False negative: predicted FFC > 3 but measured FFC ≤ 3. False 
positive: predicted FFC ≤ 3 but measured FFC > 3. 
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