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Shape reconstruction using Boolean operations
in electrical impedance tomography

Dong Liu, Member, IEEE, Danping Gu, Danny Smyl, Jiansong Deng and Jiangfeng Du

Abstract— In this work, we propose a new shape reconstruction
framework rooted in the concept of Boolean operations for elec-
trical impedance tomography (EIT). Within the framework, the evo-
lution of inclusion shapes and topologies are simultaneously esti-
mated through an explicit boundary description. For this, we use
B-spline curves as basic shape primitives for shape reconstruc-
tion and topology optimization. The effectiveness of the proposed
approach is demonstrated using simulated and experimentally-
obtained data (testing EIT lung imaging). In the study, improved
preservation of sharp features is observed when employing the
proposed approach relative to the recently developed moving
morphable components-based approach. In addition, robustness
studies of the proposed approach considering background inho-
mogeneity and differing numbers of B-spline curve control points
are performed. It is found that the proposed approach is tolerant to
modeling errors caused by background inhomogeneity and is also
quite robust to the selection of control points.

Index Terms— Electrical impedance tomography,

B-spline curves, Boolean operations, shape recon-

struction, lung imaging.

I. INTRODUCTION

ELECTRICAL impedance tomography (EIT) is an imag-

ing modality, which estimates the conductivity distri-

bution within a body from boundary measurements. The

invention of EIT as a medical imaging technique is usually

attributed to the pioneering work of Webster [1]. The first

practical realization of a medical EIT system was detailed

in the 1980s by Barber and Brown [2] at the Department of

Medical Physics and Clinical Engineering, Royal Hallamshire

Hospital in Sheffield (UK). Nowadays, EIT has attracted

considerable research interest, and is broadly applicable in the
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field of medical imaging [3]–[6] and other disciplines such as

process tomography [7] and non-destructive testing [8], [9].

For state-of-the-art reviews of EIT, see e.g. [10], [11].

To date, two major categories of EIT reconstruction methods

exist, pixel/voxel-based image reconstruction and shape-based

image reconstruction. The pixel/voxel-based image recon-

struction method is an inverse medium problem using noisy

observation data – essentially the estimation of a distribution

for the unknown conductivity. Some commonly used inverse

methods are the regularized Gauss-Newton method [12], [13],

D-bar method [14], subspace-based optimization method [15],

nonlinear Land-weber method [16], learning based methods

[17]–[19], etc.

Compared to the pixel/voxel-based reconstruction method,

shape-based image reconstruction has the advantage of directly

incorporating prior information on the target shape into the

reconstruction framework; for example, size, location, and

the number of inclusions. This feature promotes the ability

to reconstruct sharp properties and accurate boundaries. To

do this in practice, we formulate the reconstruction problem

as an inverse problem using a geometrical representation

of embedded objects. Among the shape-based approaches

that have been applied are, e.g., factorization methods [20]–

[24], linear sampling methods [25], [26], monotonicity-based

methods [27]–[30], enclosure based methods [31], [32], shape

perturbation method [33], truncated Fourier series [34], [35],

direct parameterization methods [36]–[38], geometric con-

straint methods [39], level set methods [40]–[45], and moving

morphable components (MMCs) based method [46].

It is worth noting that in the aforementioned (level set)

methods, the inclusion boundary is described in an implicit

way. For example, in the traditional level set (TLS) methods

[40], the level set function (LSF) is usually defined as a

signed distance function (SDF). However, the LSF may lose its

signed-distance property due to numerical dissipation. There-

fore, the LSF is regularly reinitialized, which, in turn, will

degrade the robustness and efficiency of the reconstruction.

To achieve better numerical flexibility and computational

efficiency, parametric level set (PLS) based methods have been

proposed in absolute EIT [43], [45], and difference EIT [44].

In the PLS scheme, the LSF is decomposed into the weighted

summation of radial basis functions (RBFs) defined on each

RBF centers. The corresponding weights are chosen as the un-

known variables to control the LSF during the reconstruction

process. PLS provides a series of benefits for level set based

shape reconstruction, including no need for reinitialization

and dimension reduction. Concurrently, the clear boundary

representation and flexibility in handling topological changes
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inherited from TLS itself is preserved. However, with RBFs,

the corresponding weights have no physical meaning and their

ranges cannot be determined explicitly. Further, comparable

to TLS, PLS reconstruction regularly shows strong smoothing

effects and/or has locally high curvature in the reconstructed

shapes, affecting the image quality to the target (to be recon-

structed) with sharp properties.

To conduct shape reconstruction in a more geometrically

explicit and flexible way, a new shape reconstruction method

based on MMCs has been developed for absolute EIT [46].

The key idea is to use a set of morphable components

represented by hyperelliptic shape and topology description

functions (STDFs) with variable parameters (such as lengths,

thicknesses, orientations) as the basic blocks of shape recon-

struction. Following, the optimal shape is found by optimizing

variable parameters in STDFs. It has been shown that this

reconstruction method can reduce the number of unknowns

substantially and incorporate shape features such as size

and location explicitly. However, similar to level set based

methods, the reconstruction performance can be influenced

by the selection of STDFs. These challenges, and others

aforementioned, form the founding motivation for this work.

To address these challenges, we propose a new shape

reconstruction framework rooted in Boolean operations, which

is inspired from the field of structural topology optimization

[47], [48]. Owing to B-spline’s local modifiability and flexible

controlling property [49], we apply B-spline curves to explic-

itly describe the boundaries of basic shape primitives which

are used to form the shapes in the reconstruction. The proposed

framework has the following distinctive features:

• The complex shapes of inclusions are rigorously modeled

using Boolean operations coupled with B-spline curves.

• Boolean operations applied to basic shape primitives

account for overlapping, merging, and separation of dif-

ferent shapes.

• Shape reconstruction problems are solved through a

purely explicit boundary evolution without resorting to

hyperelliptic STDFs.

• Direct incorporation of enriching geometric information

into the reconstruction.

• The shape reconstruction problem is converted to an

inverse problem with a small number of design variables,

e.g. the control points of B-spline curves.

To contextualize the proposed framework among contempo-

raries, Table I provides a comparison of the pros and cons

associated with the EIT shape reconstruction approaches.

The article is organized as follows: in Section II, we briefly

review the EIT observation model. Following, the properties of

explicit boundary representation and the proposed shape recon-

struction framework using Boolean operations are introduced

in Sections III and IV, respectively. In Section V, we present

the implementation details. The numerical and experimental

results are shown in Section VI, and a discussion is provided

in Section VII. Lastly, conclusions are presented in Section

VIII.

II. FORWARD MODEL OF EIT

In EIT, a set of L electrodes (eℓ, ℓ = 1, ..., L) is affixed

to the boundary ∂Ω of a body Ω ⊂ R
q, q = 2, 3. The EIT

forward problem consists of an electrostatic approximation of

Maxwell’s equations, and the aim is to compute the electrode

voltages Uℓ (corresponding to electrode eℓ) given the injected

currents Iℓ and the conductivity distribution σ(x), by solving

the following partial differential equation

∇ · (σ(x)∇u(x)) = 0 , x ∈ Ω, (1)

with suitable boundary conditions on ∂Ω. Here x ∈ Ω is the

spatial coordinate.

Considering the fact that, in medical applications of EIT,

contact impedance zℓ exists between the skin and electrode

eℓ, equation (1) is solved together with a set of boundary

conditions based on the so-called complete electrode model

(CEM) [53]. Specifically, the boundary conditions satisfy

u(x) + zℓσ(x)
∂u(x)

∂ν
= Uℓ, x ∈ eℓ, ℓ = 1, ..., L (2)

∫

eℓ

σ(x)
∂u(x)

∂ν
dS = Iℓ, ℓ = 1, ..., L (3)

σ(x)
∂u(x)

∂ν
= 0, x ∈ ∂Ω\

L⋃

ℓ=1

eℓ (4)

where ν denotes an outward unit normal.

In addition, the current must satisfy the current conversation

law and a potential reference level need to be fixed:

L∑

ℓ=1

Iℓ = 0,

L∑

ℓ=1

Uℓ = 0. (5)

In this work, we compute the numerical solution to the

CEM model (1-5) with finite element method (FEM) (see

details in [54]). By assuming an additive noise model for EIT

measurement noise, we have the observation model:

V = U(σ) + ǫ, (6)

where vector V consists all the measurements, U(σ) is the

FEM based forward solution, and ǫ models the Gaussian

distributed noise with mean ǫ∗ and covariance matrix Γǫ,

which can be experimentally determined, see [55].

III. EXPLICIT BOUNDARY REPRESENTATION

In this section, we discuss how to express the shape

boundary (inclusion interface) in an explicit way. As an initial

effort to develop an explicit boundary evolution-driven shape

reconstruction approach, B-spline curves are adopted in the

present work to demonstrate the fundamental concept although

other types of closed parametric curves may also serve the

same purpose.

Let T = {t0, · · · , tm} be a nondecreasing sequence of real

numbers, i.e., ti 6 ti+1, i = 0, · · · ,m − 1. The ti are called

knots, T is the knot vector and m+1 denotes the total number

of knots. For brevity, we apply the uniform knot vector †

ti =
i

m
, i = 0, 1, . . . ,m. (7)

†One may also consider to use open uniform and non-uniform knot vector
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TABLE I

COMPARISON OF THE PROS AND CONS OF DIFFERENT SHAPE RECONSTRUCTION METHODS IN EIT.

Name of methods Pros Cons
M

at
h

em
at

ic
al

ly
ju

st
ifi

ed
n

o
n

-i
te

ra
ti

v
e

m
et

h
o

d
s

Factorization

method [20]–[24]

Upper and lower range bound of conductivity

can be treated separately; has a chance to

place fewer demands on the data since it only

locates an embedded inhomogeneity

Need to know the background conductivity in a

priori; size estimation of the inclusion is biased; does

not give the conductivity value inside the inclusion

Linear sampling

method [25], [26]

Able to handle any number of discrete con-

ductivity values provided the anomalies are

separated from each other by the background

Unable to give an indication of the conductivity

level but rather locates the jump discontinuities in

conductivity; Application to experiment data is still

at an early stage

Monotonicity-

based method

[27]–[30]

Good performance for detecting convex

shapes, and it is often possible to separate

inclusions quite well in the presence of noise

For non-convex shapes, one usually gets something

that resembles a convex approximation to the shape,

either because measurement noise and modeling er-

rors or because of the restricted amount of current

patterns; Need to know the background conductivity

as a priori;

Enclosure based

method [31], [32]

Good performance for detecting convex

shapes

Need to know the background conductivity as a

priori; The performance for non-convex shape es-

timation is biased; Application to experiment data is

still at an early stage

D
ir

ec
t

p
ar

am
et

er
iz

at
io

n
m

et
h

o
d

s

Shape perturbation

method [33]

Direct parameterization for interfacial (close)

boundary; Dimension reduction

Need to know the number of inclusions as a pri-

ori, and hard to handle topological changes; With

possibility to be non-convergent; Sensitive to initial

guesses

Fourier series

based methods

[34], [35]

Direct parameterization for interfacial (close)

boundary; Dimension reduction

Need to know the number of inclusions as a pri-

ori, and hard to handle topological changes; For

representing complex shapes, higher order Fourier

series have to be used but the coefficients are very

sensitive to noise therefore affects the reconstruction

performance;

Front points based

method [37], [50],

[51]

Direct parameterization for interfacial (open)

boundary with discrete front points located on

the interface

Only suitable for open interfacial boundary estima-

tion; Need to know the number of phases as a priori

Bézier curve based

method [36]

Direct parameterization for interfacial (open)

boundary with few control points; Dimension

reduction

As a global presentation of shape, it is sensitive to

control point movement and cannot represent very

complicated shapes; Need to know the number of

inclusions/phases as a priori

Geometric

constraint method

[39]

Capability to incorporate geometric con-

straints to regularize the reconstruction prob-

lem and to automatically exclude the mean-

ingless boundary guesses from the candidate

solution

Need to know the number of inclusions as a priori,

and hard to handle topological changes; Showing

strong smoothing effects on sharpness and/or has

locally high curvature in the reconstructed shapes

B-spline curve

based methods

[38], [52]

Easy to represent the boundary shape with

few control points; Capability in preserving

sharp properties; Dimension reduction

Need to know the number of inclusions as a priori,

and hard to handle topological changes;

S
T

D
F

s-
b

as
ed

m
et

h
o

d
s

Traditional level

set methods [40],

[42]

Flexibility in handling topological changes

when phases merges or splits

Need to solve the Hamilton-Jacobi PDE; Need reini-

tialization

Parametric level set

methods [43]–[45]

Inherit the pros from TLS methods; solve

ODEs rather than PDEs;No need for reinitial-

ization; Dimension reduction;

The corresponding weights in RBFs have no physical

meaning and their ranges cannot be determined ex-

plicitly; Showing strong smoothing effects on sharp-

ness and/or has locally high curvature in the recon-

structed shapes

Hyperelliptic

STDF-based MMC

method [46]

Inherit the pros from level set based methods;

Dimension reduction; Flexibility in incorpo-

rating geometric priori information

Shows smoothing effects on sharpness at some ex-

tent; the performance will be largely dominant by

the selection of STDFs;

Proposed method

using Boolean

operations

Inherit the pros from MMC method; Capabil-

ity in preserving sharp properties; Takes full

advantage of B-spline’s parametric form for

the shape design deformability and flexibility

with a few number of design variables, and

its implicit form for Boolean operations of

the shape primitives accounting for any over-

lapping, merging and separation of different

shape primitives.

B-spline curve may intersect with itself when the

control points take some specific values. Cusps will

appear on the curve when intersection happens and

the detected shape may become too irregular; The

calculation of ∂σ
∂P

is based on the perturbation

method, which can introduce inaccuracies in the

Jacobian computation.
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Then, using the Cox-de Boor recursion formula [56], the

ith B-spline basis function of degree k (which is set as 3 in

this work), denoted by Ni,k(t), is recursively defined as

Ni,k(t) =
t− ti

ti+k − ti
Ni,k−1(t) +

ti+k+1 − t

ti+k+1 − ti+1
Ni+1,k−1(t),

(8)

Ni,0(t) =

{
1, ti ≤ t < ti+1,

0, otherwise.
(9)

Here, i = 0, 1, . . . , n, n = m− k − 1 and n+1 represents the

number of B-spline.

Then the B-spline curve can be represented as a linear

combination of control points {pi}
n
i=0, namely,

C(t) =
n∑

i=0

Ni,k(t)pi, (10)

Next, let’s re-write equation (10) in a matrix form

C = NP . (11)

Here, matrix N ∈ R
(M+1)×(n+1) is the matrix composed of

B-spline basis functions

N =




N0,k(q0) N1,k(q0) · · · Nn,k(q0)
N0,k(q1) N1,k(q1) · · · Nn,k(q1)

...
...

. . .
...

N0,k(qM ) N1,k(qM ) · · · Nn,k(qM )


 (12)

where {qi}
M
i=0 is a set of parameter values with 0 ≤ q0 <

q1 < · · · < qM ≤ 1 and M is a positive integer. Matrix

P ∈ R
(n+1)×2 contains the (unknown) control points, i.e.

P =

(
p0,x p1,x · · · pn,x

p0,y p1,y · · · pn,y

)T

. (13)

Since we mainly focus on estimating closed boundary

shapes, we need to construct a closed B-Spline curve. For this,

the most straightforward method to accomplish this is to either

use wrapping knot vectors or wrapping control points. In this

paper, we utilize the latter to construct closed B-spline curves,

i.e., the first k and last k control points need to be wrapped.

To this end, we set p0 = pn−k+1, p1 = pn−k+2, · · · ,pk−2 =
pn−1 and pk−1 = pn.

IV. SHAPE RECONSTRUCTION USING BOOLEAN

OPERATIONS

In this section, we demonstrate how to represent the geom-

etry of a basic shape primitives in an explicit way and how to

perform shape reconstruction and topology optimization using

this representation.

Following the common assumption in shape-based recon-

struction methods, we begin by assuming that the domain

Ω ⊂ R
2 contains different regions F and Ω\F . Then, we

can use a LSF, f(x), to represent the shape and topology




f(x) > 0 ∀x ∈ F ,

f(x) = 0 ∀x ∈ ∂F ,

f(x) < 0 ∀x ∈ Ω\F .

(14)

In this representation, the zero level-set (f(x) = 0) refers to

the region/inclusion interface. In general terms, the LSF of a

topologically complicated region can be constructed through

Boolean operations of all LSFs, {fj , j = 1, · · · , Nc}, using

the basic shape primitives [47]. In this work, the shape primi-

tives are used for construction of the (unknown) inclusion, and

Nc denotes its total number. For example, the Boolean union

or intersection of basic shape primitives represented by LSFs

can be, respectively, attained by computing their maximum or

minimum: 



Nc⋃

j=1

fj = max
j

fj ,

Nc⋂

j=1

fj = min
j

fj .

(15)

We remark that other Boolean operations, such as subtrac-

tion or difference, can also be used to construct complicated

shapes. For the sake of simplicity in presenting the Boolean-

based approach proposed in this work, we primarily consider

Boolean union in this paper. However, a discussion related to

other operations will be addressed in Section VII.

Next, we describe how to use B-spline curves for modeling

the shape primitives. For this, we express the basic shape

primitives Dj by closed parametric curves, i.e., B-spline based

curves Cj(P
j), as shown in Fig. 1. For illustration purposes,

we further assume that the background conductivity is σ0 and

there are Nc = 4 candidate primitives Dj , j = 1, · · · , Nc

with conductivity profiles as σ(x) = σ1 for x ∈ D1 ∪D2 and

σ(x) = σ2 for x ∈ D3 ∪ D4 in Ω. Note that the candidate

primitives can also be referred to as subregions when they are

all disjoint and simply connected. Fig. 1 provides a schematic

illustration of the shape and topology modeling realized by

means of Boolean operations and B-splines.

Fig. 1. Shape and topology modeling of the inclusions through Boolean
union and B-splines. Top left: initial candidate primitives; Top right: shape
and topology modeling with the evolved primitives through Boolean
union (dashed lines denote part of the boundary merged into the other
primitive); Bottom: one example of conductivity distributions based on
the shape and topology shown in top right.

We now recall model (11), where we observe that perturbing

the control point vector P j will result in a change of the

closed parametric curve Cj . Since the candidate primitives

D = (D1, D2, · · · , DNc
)T are determined by the closed

parametric curves C = (C1,C2, · · · ,CNc
)T , the shape and
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topology of unknown inclusions are mapped to the space of

unknown control points vector P = (P 1,P 2, · · · ,PNc)T . As

a result, the observation model in (6) can be expressed as

V = U(σ(x,P)) + ǫ. (16)

For sake of straightforwardness, we mainly consider two

phase problems in this work, i.e., σ1 = σ2. Now, the

problem of detecting the unknown inclusions’ boundaries and

estimating the piecewise constant conductivities σ0 and σ1 is

equivalent to solving the following minimization problem

[P̂ , σ̂0, σ̂1] = argmin
{
‖Lǫ(V − U(σ))‖

2
+ ‖LP(P −P

∗)‖
2

+ ‖σ0 − σ∗
0‖

2
+ ‖σ1 − σ∗

1‖
2
}
.

(17)

Here, Lǫ is the Cholesky factor of the inverted noise co-

variance matrix Γ−1
ǫ (i.e., LT

ǫ Lǫ = Γ−1
ǫ ), the regularization

matrix LP is the Cholesky factorization of the matrix Γ−1
P

(i.e., LT
P
LP = Γ−1

p ). P∗ is an a priori best estimate of P ,

σ∗
0 and σ∗

1 are predetermined constant values, see details in

Section V-C.

In solving the minimization problem in (17), iterative meth-

ods are usually applied. Here, we employ a Gauss-Newton

regime equipped with a line-search to compute the optimal

step size λ in the solution

[P̂ , σ̂0, σ̂1]i+1 = [P̂ , σ̂0, σ̂1]i + λ∆[P , σ0, σ1], (18)

where [P̂ , σ̂0, σ̂1]i+1 denotes the current estimate at iteration

i+ 1 and ∆[P , σ0, σ1] is the least squares update.

During the iteration, Jacobian term J = [JP Jσ0
Jσ1

] is

required. Applying the chain rule, we have

JP =
∂U

∂σ

∂σ

∂P
, (19)

Jσ0
=

∂U

∂σ

∂σ

∂σ0
, (20)

and

Jσ1
=

∂U

∂σ

∂σ

∂σ1
. (21)

Here, we apply the standard method [12] to compute ∂U
∂σ

and

the perturbation method [57] to compute ∂σ
∂P

.

In summary, the pseudo code for solving the minimization

problem in (17) is given in Algorithm 1.

V. METHODS

We begin this section by first describing the construction

of LSF and finite element (FE) node characterization, i.e.,

determining whether a FE node is inside or outside of a

primitive. Following, we describe the EIT measurements.

Lastly, we address the practical aspects on implementation.

A. Node characterization

In using the proposed approach, a key point is to implicitly

characterize the region occupied by the unknown inclusions,

which can be easily achieved with the following strategy. Since

the boundaries of primitive Dj are explicitly expressed by B-

spline curves Cj , we can easily use the Inpolygon function in

Algorithm 1 Pseudo code for shape estimation using Boolean

operations coupled with B-spline shape primitives.

Initial setting:

1. Set the number of candidate primitives Nc;

2. Set the number of control points Np = n + 1 for each

candidate primitives;

3. Set the initial control points vector P =
(P 1,P 2, · · · ,PNc)T ;

4. Find the initial candidate primitives D =
(D1, D2, · · · , DNc

)T with the use of B-spline curves

C = (C1,C2, · · · ,CNc
)T determined by P and the

Inpolygon function in Matlab;

Reconstruction:

While Stopping condition not meet Do

1.Compute Least square update ∆[P , σ0, σ1] =
(JTLT

ǫ LǫJ + blkdiag(LT
P
LP , 1, 1))−1JT (V − U(σ(x));

2. Determining the step-size λ using line search and updat-

ing [P̂ , σ̂0, σ̂1]i+1 = [P̂ , σ̂0, σ̂1]i + λ∆[P , σ0, σ1];
3. Find the updated primitives D = (D1, D2, · · · , DNc

)T

with the use of B-spline curves C determined by the updated

P̂ i+1 and the Inpolygon function in Matlab;

4. Update the conductivity distribution based on updated

primitives D and variables [σ̂0, σ̂1]i+1;

5. Calculate the forward problem using the updated σ(x);
6. Calculate the Jacobian term J = [JP Jσ0

Jσ1
];

End

MATLAB to test if a FE node (e.g., Nσ) is inside or outside

the primitive (see Fig. 2 for reference). If FE node Nσ is

inside Dj , then return IN(Nσ) = 1 and assign fj(Nσ) = 1,

otherwise return IN(Nσ) = 0 and assign fj(Nσ) = −1.

Fig. 2. A schematic illustration of testing whether the FE nodes are
inside or outside a primitive.

B. EIT measurements

To demonstrate the efficiency of the proposed approach, we

simulated EIT measurements on a circular domain and utilized

the experimental data from [43], [46]. In both simulated and

experimental studies, L = 16 electrodes were equidistantly

placed on the target boundary and were applied for use in EIT

measurements. Currents with 1 mA amplitude were injected

between electrodes i and j, i = 1, 5, 9, 13 and j = 1, ., 16\i,
leading to a total number of 54 current patterns. Corresponding
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to these current injections, 54×16 adjacent electrode potentials

were measured. For simulated studies (Cases 1-3), to emulate

real-world situations, we added Gaussian noise with the stan-

dard deviation 0.1% of the difference between maximum and

minimum value of the simulated noiseless voltages to the data.

The corresponding signal-noise-ratio is 43 dB.

In the simulations, the conductivity was set as 0.5 mS/cm

for inclusions and 2 mS/cm for background, respectively.

The inclusions were identified with nested structures, rather

than using B-spline curves to represent the boundary of the

inclusions. That is, the true values of control points vector P

is not available. In the FEM discretization, due to the presence

of different structured inclusions, the numbers of nodes (Nn)

and elements (Ne) of the forward meshes in Cases 1-3 were

varied, approximately 11500 and 5600, respectively. For the

inverse discretization, the numbers of nodes and elements of

inverse mesh were fixed at Nn = 6309 and Ne = 3090. In the

experimental studies, the inverse discretization had Nn = 6309
and Ne = 3082 for Cases 4-6 and Nn = 7076 and Ne = 3413
for Cases 7&8.

C. Numerical solution aspects

As we mentioned in Section IV, to apply the proposed

approach, we need to set the number of control points (Np =
n+1) and number of initial candidate primitives (Nc). For this,

we set Np = 15, for all the test cases, except the robustness

study of the proposed approach w.r.t different number of

control points in Fig. 7. We remark that the number of

duplicated points in the B-spline curve was not included in the

number of control points, as mentioned in Section III. Further,

we empirically select Nc = 2 for Cases 1, 2, 4 & 5. Nc = 4
for Cases 3&6 and Nc = 6 for Cases 7&8, respectively. For

the initial distribution of candidate primitives, see Section VI.

We note that the dimension of unknown parameter P is

proportional to both Np and Nc, i.e., P ∈ R
2×Nc×Np .

When selecting Np and Nc, one should consider the trade-

off between ‘reconstruction complexity’ and ‘B-spline’s ap-

pearance’. This is because increasing Np or/and Nc results

in an increasingly ill-posed and computationally demanding

problem – also, the size of the solution space increases.

It is worth remarking that, the selection of B-spline control

points (Np) and initial candidate primitives (Nc) was done by

trial and error and is therefore not optimal. Better selection of

both parameters may be conducted by 1) taking into account

the relative trade offs with the data discrepancy norm, con-

vergence rate of the minimization problem; 2) incorporating

geometric prior information on the target to be reconstructed

(e.g., the lung size, shape and location, etc.) and 3) solving

the iterative EIT reconstruction problem with a normal pixel-

based reconstruction technique and then the (interim) solution

could be used to guide the parameter selection to better match

the target shape.

Next, the expected value of P∗ was set as the initial guesses,

which were selected as 15 equal-angle spaced points along

the boundary of initial primitives (simple ellipses used in this

paper), since the true value of P
∗ is unavailable. Moreover,

the regularization matrix LP was set as the identity matrix.

Further, the expected values σ∗
0 and σ∗

1 were obtained by

determining the best homogeneous estimate for σ.

In the reference hyperelliptic STDFs-based reconstruction

approach, we follow the implementation details used in [46],

i.e., hyperelliptic STDFs with quadratically varying thick-

nesses were used for expressing the candidate primitives,

see details in [46]. Note that, for each test case, to allow

an ‘apples-to-apples’ comparison, we use simple ellipses for

setting the initial parameters in both proposed and reference

methods. That is, the shape and location of initial candidate

primitives are the same for both methods.

VI. RESULTS

We begin this section by first showing the results of sim-

ulated test Cases 1-3. Following, high-contrast (Cases 4-6)

and low-contrast (Cases 7&8) experimental data are used to

further investigate the performance of the proposed approach.

Lastly, we demonstrate the primitives’ evolution and provide

robustness studies of the proposed approach w.r.t different

number of control points and modeling errors caused by

background inhomogeneity.

The results for different cases are shown in Figs. 3, 4 & 6.

In each of these figures, the layouts are the same; meanwhile,

the first column shows the ground truth and the second column

depicts the initial candidate primitives. Reconstructions based

on the refereed hyperelliptic STDFs based approach (marked

as ’Hyper ellipse’) and the proposed B-spline approach using

Boolean operation (marked as ’Boolean’) are shown in the

third and last columns, respectively. Note that, in each of these

figures, in order to see the final distribution of primitives, we

show the distribution of combined primitives (i.e., the Boolean

union of primitives) – in lieu of showing the full conductivity

distribution.

Next, to quantitatively access the recovery of piece-wise

constant conductivity values and the area of inclusions, we

calculated two criteria: the relative contrast (RCo) and the

relative coverage ratio (RCR), defined as

RCoσj =
σ̂j

σTrue
j

, j = 0, 1, (22)

and

RCR =
Estimated inclusion area

True inclusion area
. (23)

For both criteria, value 1 would indicate exact match of the

true and estimated binary conductivity values or inclusion

area, while a value greater or less than 1 would indicate

overestimation or underestimation, respectively.

Note that for computing the RCR, half the value of the es-

timated background conductivity was applied as the threshold

for detecting the inclusions, and ImageJ was used to obtain

the approximated true areas of the lung-shaped inclusions in

Cases 7&8. Also, the RCo values for the inclusions in the

experiments were not calculated, since the plastic inclusions

in Cases 4-6 are almost non-conductive and the conductivity of

lung-shaped inclusions in Cases 7&8 was not measured, given

the fact that the conductivity value of agar after solidification

cannot be measured using a conductivity meter.
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In addition, for the simulated test cases, to analyze the

correlation and similarity between the reconstructed image

(i.e., the conductivity distribution) and the true image, we also

compute the Correlation Coefficient (CC) and the Structural

Similarity Index (SSIM) [58]. For reference, the best CC and

SSIM values are 1.0 and are achieved when the images are

identical, whereby the CC is defined as

CC =
(σTrue − σ̄True)

T(T (σ(x)− σ̄(x)))√
||σTrue − σ̄True||2||σ(x)− σ̄(x)||2

× 100%. (24)

where T is a matrix that interpolates the conductivity σ(x)
from the inverse mesh to the conductivity σTrue in the forward

mesh and σ̄True and σ̄(x) are the mean values of σTrue and

σ(x), respectively.

A. Reconstructions from simulated data

Fig. 3 depicts the reconstructions of Cases 1-3 using simu-

lated data. We observe that both methods successfully tracked

the inclusion positions, size and the basic shape information,

leading the criteria close to the true value 1, as tabulated in

Table. II. However, by visual inspection, the sharp corners

were tracked better with the proposed Boolean-based proposed

approach, e.g., the sharp corners of letters ‘I’ and ‘L’-shaped

inclusions with the proposed approach were visibly superior to

quality of the reference approach. This is an expected result,

since the B-spline curves offer an improved ability to preserve

sharp properties of the inclusion boundary [38]. On the other

hand, the hyperelliptic STDFs in the reference approach lead

to smoothed boundaries of the inclusions, which was also

observed in [46].

We remark that there is a notable difference between the

Boolean-based estimations of the ‘T’-shaped inclusion in

Cases 2&3. This difference likely results from (a) the increase

of ill-posedness in the reconstruction problem, e.g., P ∈ R
60

in Case 2 relative to P ∈ R
120 in Case 3, and (b) the presence

of ‘I’-shaped low conductivity inclusion affected the sensitivity

around the ‘T’-shaped inclusion.

Fig. 3. Cases 1-3: Reconstructions with simulated data.

B. Reconstructions from high-contrast experimental data

In this subsection, we proceed to reconstruct the plastic

inclusions in the water tank. Upon immediate visual inspection

and comparison of the proposed and reference approaches

in Fig. 4, the proposed approach shows better corner recon-

struction in the triangle and rectangular-shaped inclusions. On

the other hand, the reference approach better reconstructs the

circle-shaped inclusion. This is also confirmed by the RCRs

shown in Table. III. Once again, this is expected due to the

fact that (a) cubic B-spline is known to be unable to exactly

represent a circle shape and (b) hyperelliptic STDF has better

capability to represent a smoothed boundary.

To illustrate how the primitives evolve during the shape

reconstruction process and how the sharp corners/edges of

the inclusions form with the Boolean-based approach, we take

an example (Case 6) and show the corresponding primitives

evolution against the iteration steps, see Fig. 5. For this, we

initially applied four primitives (which are more than the

number of unknown inclusions in the domain), and let the

reconstruction approach automatically morph the shape and

topology changes. For example: during the evolution, the two

primitives located at the left side of the domain form the

shape of rectangle automatically while the other two primitives

move to the locations of the triangular and circular inclusion

locations. From this figure, we can observe that the proposed

approach did not prior information regarding the number of

inclusions. This is pragmatically important, since in practical

applications we do not always know the number of inclusions

(to be estimated) and the shape of unknown inclusion.

Fig. 4. Cases 4-6: Experimental studies with circular water tank. All the
inclusions placed into the water tank are made of plastic materials.

Fig. 5. Primitives evolution during the shape reconstruction in Case 6.
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TABLE II

EVALUATION CRITERIA IN SIMULATED TEST CASES: RCOS, RCRS, SSIM AND CC.

Case 1 Case 2 Case 3

RCR RCoσ0 RCoσ1 SSIM CC RCR RCoσ0 RCoσ1 SSIM CC RCR
†
L RCR

†
R RCoσ0 RCoσ1 SSIM CC

True 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Hyper ellipse 0.91 0.99 0.94 0.93 0.92 0.97 0.99 0.98 0.93 0.92 1.00 0.93 0.99 0.99 0.90 0.90

Boolean 1.04 0.99 1.00 0.96 0.95 1.08 0.99 1.03 0.95 0.95 1.07 1.04 0.99 1.03 0.91 0.91

† The subscript letters ‘L’ and ‘R’ denote the left and right side inclusions in the measurement domain, respectively.

TABLE III

EVALUATION CRITERIA FOR EXPERIMENTAL STUDIES: RCOS AND RCRS.

Case 4 Case 5 Case 6 Case 7 Case 8

RCR RCoσ0 RCRL RCRR RCoσ0 RCR
†
r RCR

†
t RCR

†
c RCoσ0 RCRL RCRR RCoσ0 RCRL RCRR RCoσ0

True 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Hyper ellipse 1.03 0.99 0.92 1.02 1.01 0.95 0.74 0.91 0.99 0.96 0.89 1.00 0.91 0.77 0.99

Boolean 1.03 0.99 1.08 1.00 1.00 1.15 0.97 0.83 0.99 0.87 0.86 0.95 0.90 0.80 0.95
† The subscript letters ‘r’, ‘t’ and ‘c’ under the parameter RCR denote rectangle, triangle and circle-shaped inclusions in the tank, respectively.

C. Reconstructions from low-contrast experimental data

Next, we present the results of Cases 7&8: low-contrast

examples within a human thorax-shaped tank, where the lung-

shaped inclusions are made of agar. Reconstructions in Fig. 6

clearly show that both approaches generally recover the shapes

and locations of the lung-shaped inclusions. However, the lobe

parts of both lung-shaped inclusions are better reconstructed

by the Boolean-based approach. This behavior reflects the fact

that B-spline has the propensity to produce cusps due to a local

maximum of curvature produced away from the control points.

Intuitively, upon immediate comparison of Cases 7&8

shown in Fig. 6, the largest visual difference is the disappear-

ance of the heart-shaped inclusion in the reconstructed images

of Case 8. This observation is explained by the fact that, (a)

comparing to the lung-shaped inclusions, more salt was added

into the agar gel for making the heart-shaped inclusion in Case

8, thereby leading a completely different phase compared to

the phase of lung-shaped inclusions. (b) as we mentioned in

Section IV, we consider two phases problem in this work,

so the additional phase will be treated as inhomogeneity in

the background, inducing modeling error in the reconstruction.

In principle, Case 8 could be considered a robustness study

of the proposed approach against the inhomogeneity in the

background. Inasmuch, a three phase study with the proposed

approach will be discussed in Section VII.

Fig. 6. Cases 7&8: Experimental studies with thorax-shaped tank.

D. Robustness study of the proposed approach against

different number of control points

To investigate the robustness of the Boolean-based approach

in the presence of varying numbers of control points (Np) for

each primitive, we computed a set of reconstructions for Case

1 with Np varying from 5 to 20. As shown in Fig. 7, we

clearly see that the proposed approach is quite robust to the

number of control points, producing reliable reconstructions

to the ‘L’-shaped inclusion for most cases. The criteria shown

in Fig. 8 supports the feasibility of the proposed approach

with varying numbers of control points. However, since the

B-spline’s appearance is largely determined by the control

points, and consequently its complexity is determined by the

number of control points, we suggest not to select too few or

too many points, given the reasons in the following (a) when

there are too few control points, the B-spline curve may not

have enough flexibility to approximate a target curve (i.e., the

boundary of complex shape), (b) too many control points may

cause redundancy (over-fitting) problem to the approximated

target curve, and (c) increasing the number of control points

results in an increasingly ill-posed reconstruction problem as

the unknowns increase.

Fig. 7. Robustness study of the proposed approach with respect to
different number of control points Np.

It is worth commenting that, in this paper, the initial loca-

tions of control points were evenly distributed and the selection

of the number of control points was done by trial-and-error

and is therefore not optimal. Except the potential strategies

mentioned in Section V-C, some other selection methods may

be viable by considering automatically adjusting both the

locations and number of the initial control points of the B-
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spline curve [59]. For example, through adding additional new

control points or removing redundant control points, one may

obtain a B-spline curve with as few control points as possible

that approximates a target curve.

Fig. 8. Evaluation criteria of the robustness study with respect to dif-
ferent number of control points Np. Dashed line denotes the parameter
(Np = 15) used in this paper.

VII. DISCUSSION: MULTIPHASE, CURRENT LIMITATIONS

AND FUTURE WORK

To this point, the paper has investigated rather simple two

phase examples and shown the effectiveness of the Boolean-

based approach for recovering inclusions with sharp proper-

ties. But, one may ask: can the algorithm handle multiphase

and to what extent is the proposed approach still viable?

We begin investigating this query by considering Case 9

in Fig. 9 where the ‘T’-shaped inclusion with conductivity

σ1 = 0.5mS/cm and ‘I’-shaped inclusion with conductivity

σ2 = 1mS/cm, respectively. To do this, we simply extend the

formula in (17) as a multiphase estimation problem

[P̂ , σ̂0, σ̂1, σ̂2] = argmin

{
‖Lǫ(V − U(σ))‖

2
+ ‖LP(P −P

∗)‖
2

+

2∑

j=0

∥∥σj − σ∗
j

∥∥2
}
.

As demonstrated in Fig. 9, we find that multiple inclusions

were accurately localized and the shapes were recognizably

reconstructed, which is also evident from the recovery criteria

shown on the right hand side. Comparing Case 9 to the test

with two phases in Case 3 (see Fig. 3), we clearly see that,

in Fig. 9, there is some shape deformation near the boundary

occupied by the union of primitives, which is related to (a)

the issue of the intersection of two B-spline curves, and (b)

comparatively more ill-conditioned multiphase system. For (a),

one potential solution is to set the control points located in

the other primitives to be inactive (but not removing them)

and only retain the control points outside these combined

primitives to construct a new B-spline curve [48].

What remains to be discussed is the broader efficacy

and limitations of the Boolean-based approach. The present

framework is limited by the fact that it is based in the

context of absolute imaging, which is known to be sensitive

RCRL = 0.98

RCRR = 1.07

RCoσ0 = 0.99

RCoσ1 = 0.97

RCoσ2 = 0.99

SSIM = 0.89

CC = 0.82

Fig. 9. Multiphase estimation with the proposed approach and the
corresponding criteria.

to modeling errors such as inaccuracy in the assumed model

geometry. Moreover, absolute imaging is iterative and there-

fore time consuming. For example, the final reconstructions

of ‘Boolean’ and ‘Hyper ellipse’ shown in Case 3 were

respectively achieved within 10 iterations at average speed

of 25 seconds/iteration and 12 iterations at average speed of

20 seconds/iteration, using a desktop PC with an Intel Xeon

E3-1231 processor, WD 240 GB SSD and 16GB memory.

As such, this framework is not presently intended for on-

line monitoring processes. However, two possible solutions for

improving the modeling error tolerance ability and speeding

up the reconstruction are to (a) formulate the approach in

the context of difference imaging, which usually tolerates

modeling errors better than traditional absolute imaging and

computes reconstructions quickly due to linearization of the

forward model, or (b) apply the so-called approximation error

method (AEM) [60] to statistically model the errors between

an accurate model and a reduced model. These improvements

would be crucial for practical medical applications, but less

necessary for, e.g., engineering applications that do not require

rapid imaging [8].

Lastly, it is intuitively interesting to investigate other types

of Boolean operations for shape reconstruction – which can

be readily incorporated within the proposed framework. Take,

for example, shape reconstruction using a Boolean intersection

operation as shown in Fig. 10. In this example, the B-spline

curves and the Boolean intersection of two primitives are

shown, which form the final reconstruction illustrating the

shape and topology of the inclusion. Obviously, the proposed

approach with Boolean intersection also works well, producing

a very good shape reconstruction of the crescent (confirmed

by the reconstruction criteria shown in Fig. 10).

RCR = 1.06

RCoσ0 = 0.99

RCoσ1 = 1.00

SSIM = 0.97

CC = 0.94

Fig. 10. Shape reconstruction with the proposed approach and Boolean
intersection. Solid lines denote the B-spline curves, green patches
denote the initial shape (middle) and reconstructed shape (right), re-
spectively, through Boolean intersection of two primitives.

It is worth to remarking here, the article has considered

examples with only single Boolean operation. However, in

principle, one may consider applying compound Boolean op-

erations, e.g., Boolean union and Boolean subtraction, to form

more complicated shapes. For example, when reconstructing
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lungs with pulmonary nodules, one may use Boolean Union

to form the lung shape, and then use Boolean subtraction to

locate the pulmonary nodules. Also, similar strategy could be

applied to other applications with nested inclusions, e.g., air

bubble(s) inside tissue.

In future, we look forward to (i) applying the proposed

approach using real medical data, (ii) the broader incorpora-

tion of other Boolean operations in the proposed framework,

(iii) incooperating the well known active contour model [61]

for removing the artifacts on the shape primitives, and (iv)

applying tensor product spline surface [56], [62] to track

more complicated or multidimensional inclusions. Some re-

maining challenges to address are centered around mitigating

the stringent requirement for accurate knowledge of the do-

main boundary shape ever-present in absolute imaging and

improving the robustness to more complicated conductivity

distributions. For this, we look forward to integrating the

AEM to the current approach, taking full advantage of shape

and topology optimization using Boolean operations and the

use of multiple B-spline curves in modeling the conductivity

distribution. In addition, we anticipate the proposed framework

to be highly applicable to 3D shape reconstruction where the

contrast between the number of voxels and the number of

control points in the proposed approach is more significant.

VIII. CONCLUSIONS

In this paper, we proposed a Boolean-based shape recon-

struction framework utilizing B-splines to explicitly describe

the evolving boundaries of basic shape primitives. The effec-

tiveness of the proposed approach was demonstrated in a suite

of EIT simulation and phantom studies. In the testing cam-

paign, it was shown that sharp features were better preserved

when employing the Boolean-based approach than when using

the hyperelliptic STDFs-based approach. Moreover, it was

found that the proposed approach is tolerant to modeling errors

caused by background inhomogeneity and is also quite robust

to the selection of differing numbers of control points used to

represent the B-spline curves.
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[25] M. Brühl, “Explicit Characterization of Inclusions in Electrical

Impedance Tomography,” SIAM Journal on Mathematical Analysis,
vol. 32, no. 6, pp. 1327–1341, Jan. 2001.

[26] M. Hanke and M. Brühl, “Recent progress in electrical impedance
tomography,” Inverse Problems, vol. 19, no. 6, p. S65, 2003.

[27] B. Harrach and M. Ullrich, “Monotonicity-based shape reconstruction
in electrical impedance tomography,” SIAM Journal on Mathematical

Analysis, vol. 45, no. 6, pp. 3382–3403, 2013.



LIU et al.: SHAPE RECONSTRUCTION USING BOOLEAN OPERATIONS IN EIT 11

[28] H. Garde and S. Staboulis, “Convergence and regularization for
monotonicity-based shape reconstruction in electrical impedance tomog-
raphy,” Numerische Mathematik, vol. 135, no. 4, pp. 1–31, 2017.

[29] H. Garde, “Comparison of linear and non-linear monotonicity-based
shape reconstruction using exact matrix characterizations,” Inverse Prob-

lems in Science and Engineering, vol. 26, no. 1, pp. 33–50, Jan. 2018.

[30] L. Zhou, B. Harrach, and J. K. Seo, “Monotonicity-based electrical
impedance tomography for lung imaging,” Inverse Problems, vol. 34,
no. 4, p. 045005, 2018.

[31] M. Ikehata, “Enclosing a polygonal cavity in a two-dimensional bounded
domain from cauchy data,” Inverse Problems, vol. 15, no. 5, p. 1231,
1999.

[32] ——, “Reconstruction of the support function for inclusion from bound-
ary measurements,” Journal of Inverse and Ill-Posed Problems, vol. 8,
no. 4, pp. 367–378, 2000.

[33] S. Ren, M. Soleimani, Y. Xu, and F. Dong, “Inclusion boundary recon-
struction and sensitivity analysis in electrical impedance tomography,”
Inverse Problems in Science and Engineering, vol. 26, no. 7, pp. 1037–
1061, 2018.

[34] V. Kolehmainen, S. Arridge, W. Lionheart, M. Vauhkonen, and J. Kaipio,
“Recovery of region boundaries of piecewise constant coefficients of an
elliptic pde from boundary data,” Inverse Problems, vol. 15, no. 5, p.
1375, 1999.

[35] A. Rashid, S. Kim, D. Liu, and K. Kim, “A dynamic oppositional
biogeography-based optimization approach for time-varying electrical
impedance tomography,” Physiological measurement, vol. 37, no. 6, p.
820, 2016.

[36] O.-P. Tossavainen, M. Vauhkonen, L. Heikkinen, and T. Savolainen,
“Estimating shapes and free surfaces with electrical impedance tomog-
raphy,” Measurement Science and Technology, vol. 15, no. 7, p. 1402,
2004.

[37] S. Kim, U. Z. Ijaz, A. K. Khambampati, K. Y. Kim, M. C. Kim, and S. I.
Chung, “Moving interfacial boundary estimation in stratified flow of two
immiscible liquids using electrical resistance tomography,” Measurement

Science and Technology, vol. 18, no. 5, pp. 1257–1269, 2007.

[38] D. Liu, D. Gu, D. Smyl, J. Deng, and J. Du, “B-spline-based sharp fea-
ture preserving shape reconstruction approach for electrical impedance
tomography,” IEEE transactions on medical imaging, vol. 38, pp. 2533–
2544, 2019.

[39] S. Ren, Y. Wang, G. Liang, and F. Dong, “A robust inclusion bound-
ary reconstructor for electrical impedance tomography with geometric
constraints,” IEEE Transactions on Instrumentation and Measurement,
vol. 68, no. 3, pp. 762–773, 2018.

[40] M. Soleimani, W. Lionheart, and O. Dorn, “Level set reconstruction
of conductivity and permittivity from boundary electrical measurements
using experimental data,” Inverse problems in science and engineering,
vol. 14, no. 2, pp. 193–210, 2006.

[41] P. Rahmati, M. Soleimani, S. Pulletz, I. Frerichs, and A. Adler, “Level-
set-based reconstruction algorithm for eit lung images: first clinical
results,” Physiological measurement, vol. 33, no. 5, p. 739, 2012.

[42] D. Liu, A. K. Khambampati, S. Kim, and K. Y. Kim, “Multi-phase flow
monitoring with electrical impedance tomography using level set based
method,” Nuclear Engineering and Design, vol. 289, pp. 108–116, 2015.

[43] D. Liu, A. K. Khambampati, and J. Du, “A parametric level set method
for electrical impedance tomography,” IEEE Transactions on Medical

Imaging, vol. 37, no. 2, pp. 451–460, 2018.

[44] D. Liu, D. Smyl, and J. Du, “A parametric level set based approach to
difference imaging in electrical impedance tomography,” IEEE transac-

tions on medical imaging, vol. 38, no. 1, pp. 145–155, 2019.

[45] D. Liu, Y. Zhao, A. K. Khambampati, A. Seppanen, and J. Du, “A
parametric level set method for imaging multi-phase conductivity using
electrical impedance tomography,” IEEE Transactions on Computational

Imaging, vol. 4, no. 4, pp. 552–561, 2018.

[46] D. Liu and J. Du, “A moving morphable components based shape
reconstruction framework for electrical impedance tomography,” IEEE

transactions on medical imaging, vol. 38, no. 12, pp. 2937–2948, 2019.

[47] W. Zhang, L. Zhao, T. Gao, and S. Cai, “Topology optimization with
closed B-splines and Boolean operations,” Computer Methods in Applied

Mechanics and Engineering, vol. 315, pp. 652–670, Mar. 2017.

[48] W. Zhang, W. Yang, J. Zhou, D. Li, and X. Guo, “Structural topology
optimization through explicit boundary evolution,” Journal of Applied

Mechanics, vol. 84, no. 1, p. 011011, 2017.

[49] W. J. Gordon and R. F. Riesenfeld, “B-spline curves and surfaces,” in
Computer aided geometric design. Elsevier, 1974, pp. 95–126.

[50] A. K. Khambampati, Y. J. Hong, K. Y. Kim, and S. Kim, “A boundary
element method to estimate the interfacial boundary of two immisci-

ble stratified liquids using electrical resistance tomography,” Chemical

Engineering Science, vol. 95, pp. 161–173, 2013.
[51] A. K. Khambampati, K. Y. Kim, Y.-G. Lee, and S. Kim, “Boundary

element method to estimate the time-varying interfacial boundary in
horizontal immiscible liquids flow using electrical resistance tomogra-
phy,” Applied Mathematical Modelling, vol. 40, no. 2, pp. 1052–1068,
2016.

[52] S. Babaeizadeh and D. H. Brooks, “Electrical impedance tomography for
piecewise constant domains using boundary element shape-based inverse
solutions,” IEEE transactions on medical imaging, vol. 26, no. 5, pp.
637–647, 2007.

[53] E. Somersalo, M. Cheney, and D. Isaacson, “Existence and uniqueness
for electrode models for electric current computed tomography,” SIAM

Journal on Applied Mathematics, vol. 52, no. 4, pp. 1023–1040, 1992.
[54] P. Vauhkonen, M. Vauhkonen, T. Savolainen, and J. Kaipio, “Three-

dimensional electrical impedance tomography based on the complete
electrode model,” IEEE Trans. Biomed. Eng, vol. 46, pp. 1150–1160,
1999.

[55] L. M. Heikkinen, T. Vilhunen, R. M. West, and M. Vauhkonen, “Si-
multaneous reconstruction of electrode contact impedances and internal
electrical properties: Ii. laboratory experiments,” Measurement Science

and Technology, vol. 13, no. 12, p. 1855, 2002.
[56] C. de Boor, A practical guide to splines. Springer-verlag New York,

1978, vol. 27.
[57] T. J. Yorkey, J. G. Webster, and W. J. Tompkins, “Comparing re-

construction algorithms for electrical impedance tomography,” IEEE

Transactions on Biomedical Engineering, no. 11, pp. 843–852, 1987.
[58] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image

quality assessment: from error visibility to structural similarity,” IEEE

transactions on image processing, vol. 13, no. 4, pp. 600–612, 2004.
[59] H. Yang, W. Wang, and J. Sun, “Control point adjustment for b-spline

curve approximation,” Computer-Aided Design, vol. 36, no. 7, pp. 639–
652, 2004.

[60] A. Nissinen, V. P. Kolehmainen, and J. P. Kaipio, “Compensation
of modelling errors due to unknown domain boundary in electri-
cal impedance tomography,” IEEE Transactions on Medical Imaging,
vol. 30, no. 2, pp. 231–242, 2011.

[61] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active
contour models,” International Journal of Computer Vision,
vol. 1, no. 4, pp. 321–331, 1988. [Online]. Available:
https://doi.org/10.1007/BF00133570

[62] D. Liu, D. Gu, D. Smyl, J. Deng, and J. Du, “B-spline level set method
for shape reconstruction in electrical impedance tomography,” to be
published. [Online]. Available: doi:10.1109/TMI.2019.2961938


