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ABSTRACT 1 

A well-defined set of regulatory pathways control entry into the reproductive phase in flowering 2 

plants. Conversely, little is known about the mechanisms that control the end of the reproductive 3 

phase (‘floral arrest’), despite this being a critical process for optimising fruit and seed production. 4 

Complete fruit removal, or lack of fertile fruit-set in male sterile mutants, prevents timely floral 5 

arrest in the model plant Arabidopsis, leading to a previous proposal that floral arrest results from a 6 

cumulative fruit/seed-derived signal that causes simultaneous ‘global proliferative arrest’ (GPA). 7 

Recent studies have suggested that floral arrest involves gene expression changes in the 8 

inflorescence meristem that are at least in part controlled by the FRUITFULL-APETALA2 pathway, 9 

however there is limited understanding of how this process is controlled and the communication 10 

needed at the whole plant level. Here, we provide a framework for the communication previously 11 

inferred in the GPA model. We show that floral arrest in Arabidopsis is not ‘global’ and does not 12 

occur synchronously between branches, but rather that the arrest of each inflorescence is a local 13 

process, driven by auxin export from fruit proximal to the inflorescence apex. Furthermore, we 14 

show that inflorescences are only competent for floral arrest once they reach a certain 15 

developmental age. Understanding the regulation of floral arrest is of major importance for the 16 

future manipulation of flowering to extend and maximise crop yields. 17 

  18 



INTRODUCTION 19 

A complex series of regulatory pathways that integrate both internal and environmental signals 20 

regulate entry into the reproductive phase (the ‘floral transition’) in flowering plants [1]. These 21 

initiation pathways have received much attention, but relatively little is known about the 22 

mechanisms that control the end of the reproductive phase (‘floral arrest’). This is somewhat 23 

surprising, since the correct timing of floral arrest is a critical process for optimising fruit and seed 24 

production, and hence reproductive success. In a seminal study from 1994, Hensel et al. examined 25 

floral arrest in the model species Arabidopsis thaliana, and showed that floral arrest normally 26 

occurs through a regulated process in which each inflorescence ceases to open flowers and enters 27 

an arrested state [2]. This process was proposed to be triggered by fruits, since complete fruit 28 

removal, or lack of fertilisation in ms1 male sterile mutants, prevented timely inflorescence arrest 29 

anywhere on the plant. Inflorescences eventually ceased flower production, but only through 30 

terminal differentiation of the inflorescence meristem [2]. Analysis of reduced fertility and embryo-31 

lethal mutants suggested only fruit containing >30% fertile seed are able to trigger arrest, and that 32 

seed are an essential part of the process [2]. Finally, it was observed that post-arrest fruit removal 33 

leads to the re-activation of arrested inflorescences, and the production of new fruit, suggesting 34 

floral arrest is a reversible state [2]. These observations led to a model in which floral arrest was 35 

proposed to result from accumulation of a fruit/seed-derived signal that, at a threshold level, would 36 

trigger simultaneous ‘global proliferative arrest’ (GPA) in all inflorescences [2].  37 

 38 

After a long gap, two recent studies have provided new insights into floral arrest in Arabidopsis. 39 

Wuest et al. showed that, transcriptionally, the arrested inflorescence meristem state strongly 40 

resembles dormancy in axillary inflorescence buds, suggesting that the process of inflorescence 41 

arrest could represent a direct reversal of bud activation [3]. In a second study, Balanza et al. 42 

showed that fruitfull mutants undergo delayed floral arrest, and suggested that inflorescence arrest 43 

requires a FRUITFULL-APETALA2 regulatory module, which may be under the control of the 44 

miR156/miR172 ageing pathway [4]. However, much remains unclear about the mechanistic basis 45 

for both inflorescence arrest itself, and the wider coordination of floral arrest across the plant. We 46 

are especially interested in understanding the mechanism by which fruits bring about inflorescence 47 

arrest, and therefore set out to understand this process in more detail. 48 

  49 



RESULTS 50 

 51 

Floral arrest is not synchronous in Arabidopsis 52 

Our initial observations suggested that in the Col-0 ecotype, floral arrest may not be synchronous 53 

and that inflorescences may arrest at different times. Since synchronous arrest is a key tenet of the 54 

GPA model, we performed a more detailed re-assessment to confirm these observations. By 55 

tracking the duration of flower production (‘inflorescence duration’) in each inflorescence in a 56 

cohort of Col-0 plants, we found that inflorescence arrest across plants is not synchronous, with on 57 

average ~5 days between arrest of the first and last inflorescences (Fig. 1A, Fig. S1, Table S1). 58 

We measured the duration of three orders of inflorescence: primary (PI; the main bolting stem), 59 

secondary (those arising from primary leaves, whether cauline or rosette) and tertiary (those 60 

arising from leaves on the secondary inflorescences) (Fig. S2). The timing of arrest followed a 61 

general basipetal pattern, with the PI and the secondary cauline (C) inflorescences arresting first at 62 

similar times, followed by a wave of arrest across the secondary rosette (R) inflorescences (Fig. 63 

1A, Fig. S1). Tertiary inflorescences arrest at approximately the same time as their parent 64 

inflorescence (Fig. S1). This pattern corresponds to the general pattern of inflorescence activation 65 

observed earlier in the experiment, in which secondary cauline inflorescences activate together, 66 

followed by a basipetal wave of activation across the secondary rosette inflorescences (Fig. 1A, 67 

Fig. S1). Thus, we propose that floral arrest occurs when active inflorescences reach the end of 68 

their lifetime, and its timing is largely a reflection of the timing of inflorescence activation. In 69 

instances where inflorescence activation is synchronous (probably including those in Hensel et al.), 70 

floral arrest may also be near-synchronous, but this is not a key element of floral arrest. 71 

 72 

We also observed an additional phenomenon of ‘re-flowering’ in a number of experiments, 73 

whereby after the arrest of most or all inflorescences, previously dormant axillary buds would 74 

activate, giving rise to new inflorescences (Fig. 1E); although this is observed relatively frequently, 75 

to our knowledge it has not been previously characterised in the literature. The re-initiation of 76 

flowering was not observed in all plants, nor indeed in all experiments, and the number of 77 

additional fruits produced through re-flowering varied between experiments, but was generally 78 

greatest in those experiments with a higher initial fruit production (Fig. 1D). The existence of the 79 

re-flowering phenomenon, and the ability of buds to activate in de novo manner following systemic 80 

floral arrest further highlights the non-global, asynchronous nature of floral arrest. This also implies 81 

that there may be multiple signals that are active at different stages which are driving floral 82 

activation/arrest. 83 

 84 

 85 

 86 



Floral arrest is a temporally-regulated process 87 

In these analyses, we also observed that each order of inflorescence (primary, secondary, tertiary) 88 

had a distinctive duration between activation and arrest. Although the activation and arrest of 89 

individual inflorescences was not synchronous, the duration for inflorescences of the same order 90 

was generally very similar. This was true both when comparing inflorescences within individual 91 

plants, and when comparing IMs between different plants in the same experiment (Fig. 1B). 92 

Furthermore, we observed that, across a wide range of different experiments run under similar 93 

conditions (Table S1), the primary inflorescences in Col-0 had very similar durations, being active 94 

for 22±3 days post bolting (dpb) (Fig. 1C). We observed that the total ‘floral duration’ before floral 95 

arrest was also consistent between experiments, occurring at around 27±3dpb (Fig. 1C). These 96 

data suggest that inflorescence arrest may be a predominantly time-dependent process, requiring 97 

inflorescences to become responsive to floral arrest signals, rather than one purely driven by 98 

cumulative feedback inhibition from fruit-derived signals.  99 

 100 

Timely arrest in response to fruit presence is a local process in each 101 

inflorescence 102 

The absence of synchronous arrest across inflorescences suggested that floral arrest is not 103 

determined by a systemic signal. We confirmed that, as shown by Hensel et al [2], timely 104 

inflorescence arrest requires fertile fruit, since removal of fruit everywhere on the plant was 105 

sufficient to prevent inflorescence arrest anywhere on the plant (Fig. 2A,C). However, when we 106 

performed localised continuous flower removal on secondary cauline inflorescences, we observed 107 

that treated inflorescences did not undergo arrest despite plants having ~90% of their normal fruit-108 

set, whilst timely arrest was observed elsewhere on the plant (Fig. 2D,E). Together with the lack of 109 

synchronicity, these data suggest that floral arrest is not a systemically-regulated process, but 110 

rather consists of the independent, locally-regulated arrest of individual inflorescences.  111 

 112 

Delayed floral arrest in response to fruit absence occurs systemically 113 

Contrary to this model, the results of Hensel et al. clearly demonstrated an extension of PI duration 114 

upon removal of secondary inflorescences, suggesting that systemic feedback from fruits can 115 

modulate the duration of individual inflorescences. We repeated this debranching treatment and 116 

confirmed that in the Ler and Col-0 backgrounds, it does indeed extend inflorescence duration and 117 

fruit production of the PI, relative to untreated plants (Fig. 3A,B). Interestingly, we observed that 118 

the duration of the PI in untreated Ler plants was longer than that in Col-0 by approximately 7-9 119 

days (cf. Fig. 3A and Fig. 2E), suggesting there is variation in Arabidopsis ecotypes for 120 

inflorescence duration. Similarly, when we removed tertiary inflorescences from secondary 121 

inflorescences in Col-0, we observed a small extension to the duration of secondary 122 

inflorescences, and a corresponding increase in the number of fruit they produce (Fig. 3C). Thus, 123 

even though the general presence of fruit across the plant is not sufficient to trigger arrest of 124 



individual fruitless inflorescences, the general absence of fruit is sufficient to extend the duration of 125 

individual fully-fruited inflorescences. Collectively, our data suggest that fruit play two distinct roles 126 

in floral arrest, systemically modulating inflorescence duration, and locally driving inflorescences to 127 

undergo arrest. This likely indicates the existence of multiple fruit-derived signals that are involved 128 

in floral arrest.  129 

 130 

Small numbers of fruit are sufficient to trigger inflorescence arrest 131 

Each of the treatments used by Hensel et al to support the GPA model caused a dramatic global 132 

reduction in fertile fruit, and resulted in systemic delay of floral arrest. However, the intensity of 133 

these treatments precluded more nuanced understanding of the role of fruit in inflorescence arrest, 134 

and we therefore investigated the effect of more subtle treatments. We observed that if we 135 

removed flowers continuously from inflorescences beyond their normal lifetime, and then allowed 136 

plants to recover, each inflorescence arrested within a few days, despite having produced only a 137 

small number of fertile fruits (approximately 6-10 per inflorescence) (Fig. 2B). This suggests that 138 

relatively small numbers of fruit may be sufficient to trigger inflorescence arrest. Similarly, if we 139 

used a dexamethasone-inducible MS1:MS1-GR construct to restore fertile fruit formation to the 140 

ms1-1 mutant (Ler background), from 12 days post anthesis of the first flower (dpa), we observed 141 

regulated inflorescence arrest, unlike in untreated controls (Fig. 4A). However, the number of 142 

fertile fruit per inflorescence was only around 45% of that in wild-type plants (Fig. 4B). To more 143 

clearly delineate the number of fruit needed to trigger arrest, we performed differential flower-144 

removal treatments on secondary cauline inflorescences of the same plant, which if untreated 145 

typically undergo arrest at the same time (Fig 1A and Fig. S1). On each plant, every other flower 146 

was removed from one inflorescence (1/2), three of every four flowers were removed from another 147 

inflorescence (3/4), and four of every five flowers were removed from a third inflorescence (4/5); a 148 

fourth was left untreated (Fig 5F). Despite the resulting dramatic differences in fruit set, the treated 149 

inflorescences on the same plant all underwent normal regulated arrest; although the more severe 150 

treatments delayed inflorescence arrest by 2-3 days (Fig. 5A). The most severely-treated 151 

inflorescences arrested despite only having produced 20% of the fruit produced by untreated 152 

controls (Fig. 5B); the average of 7 fruit needed for arrest in this treatment is highly consistent with 153 

the number produced in the plants shown in Fig. 2B. These data thus do not support a model in 154 

which cumulative fruit-set upon each inflorescence is required for arrest. 155 

 156 

Proximal fruit are needed for temporally-competent inflorescences to arrest 157 

These data also present a paradox: approximately 7 fertile fruit are sufficient in certain 158 

circumstances to trigger arrest, but most inflorescences produce far more than 7 fruit before 159 

arresting. Given our earlier observations of inflorescence duration (Fig. 1A,C) and that 160 

inflorescences on the same plant tend to arrest at approximately the same time despite individually 161 

producing different fruit numbers (Fig. 5A,B), these data reinforce the idea that temporally-162 



acquired responsiveness to a fruit-derived signal is critical, rather than a threshold level of signal 163 

being reached. We therefore tested how the timing of fruit production affects inflorescence arrest. 164 

In a first experiment, we performed two treatments; ‘early’ plants had all flowers removed, until 165 

around 30 flowers had been produced by the PI (12-13dpb), and were then allowed to continue 166 

flowering normally. Despite producing far fewer fruit than control plants (Fig. 5D), the PI of ‘early’ 167 

plants underwent arrest at the same time as untreated plants (approximately 21dpb) (Fig. 5C). 168 

This mirrored the effect seen in the dexamethasone-inducible MS:MS1-GR line (Fig. 4A). 169 

Conversely, ‘late’ plants were allowed to flower as normal until around 30 flowers had opened on 170 

the PI (12-13dpb); subsequently all open flowers were removed from the plant for 20 days. Despite 171 

producing the same number of fruit as ‘early’ plants during the first 21dbp (Fig. 5D), ‘late’ plants did 172 

not undergo timely arrest (Fig. 5C). However, when flower removal treatment was ended in ‘late’ 173 

plants at approximately 30dpb, the inflorescence was active for a further 7 days, producing around 174 

7 fertile fruits before arresting (again consistent with the minimum fruit numbers established in Fig 175 

2B, 4C). These data demonstrate that fruit are only able to trigger arrest when inflorescences have 176 

become temporally competent to arrest, at the end of their normal lifetime. 177 

 178 

To further examine the relationship between timing of fruit production and arrest, we performed an 179 

experiment in which all fruit were removed from three secondary cauline inflorescences on the 180 

same plant at 17dpb. One inflorescence per plant was subsequently allowed to produce fruit 181 

normally until it arrested (X); this approximated the ‘50% early’ treatment (Fig 5F). Another 182 

inflorescence was allowed to produce 10 fruit from 17-20dpb, but then had all subsequent flowers 183 

removed (Y) (Fig 5F). The final inflorescence had additional flowers removed until 20dpb, and was 184 

then allowed to produce 10 fruit from 20-22dpb; all subsequent flowers were also removed (Z) (Fig 185 

5F). The timing of arrest was then compared to the PI on the same plants. Treatment X 186 

inflorescences produced ~24 fertile fruit, and arrested shortly after the PI (26dpb)(Fig 5E). Neither 187 

treatment Y nor Z inflorescences underwent timely arrest, despite having produced sufficient fertile 188 

fruit (Fig. 5E) However, most of the Y and Z inflorescences did eventually undergo a regulated 189 

arrest (with bud cluster)(8/12 inflorescences for Y and 12/13 inflorescences for Z); the Z 190 

inflorescences arresting somewhat earlier (31dbp) than the Y inflorescences (33dpb) (Fig. 5E). 191 

Together with the experiment shown in Fig 5A/B, these data show that a small number of fruit 192 

proximal to the inflorescence apex are sufficient to trigger arrest, once the inflorescence is arrest-193 

competent (Fig 5F). The further away fruit are from the meristem at the point the inflorescence 194 

becomes arrest-competent, the lower the ability of those fruit to trigger arrest (Fig 5F); very distal 195 

fruit are completely unable to trigger arrest. 196 

 197 

Collectively, our data suggest that inflorescence arrest is a time-dependent process, in which 198 

inflorescences become competent to arrest at a certain developmental age post-floral transition, 199 

and then undergo almost immediate arrest, as long as they receive an inhibitory signal from fruit 200 



they have recently produced. This developmental age does not directly reflect the absolute age of 201 

the inflorescence, with the relationship between developmental age and absolute age likely varying 202 

due to environmental influences or differences in growth history, and is reflected in the range of 203 

fruit numbers produced between plants.  204 

 205 

Auxin export from fertile fruit triggers inflorescence arrest 206 

We next questioned how fertile fruit trigger floral arrest. Previous authors tentatively proposed that 207 

fruit communicate with inflorescence apices by a phytohormonal signal, although provided no clear 208 

evidence supporting this [2,3]. A number of phytohormones could be involved in delivering the 209 

floral arrest signal and multiple signals may also be involved at the various developmental stages. 210 

Gibberellin is an important regulatory signal produced during fruit development, and could act as 211 

an arrest-inducing signal. To test this, we examined the quintuple rga-t2 gai-t6 rgl1-1 rgl2-1 rgl3-1 212 

(della) mutant that lacks all DELLA proteins [12], and which as a result has effectively 213 

constitutive gibberellin responses. We saw a dramatic increase in fruit number per inflorescence 214 

in the della mutant, consistent with the known role of gibberellin in controlling meristem size and 215 

activity [13] (Fig. S3A). However, the della mutant had an identical PI duration to the Ler wild-216 

type, suggesting that gibberellin is not a major factor regulating timely floral arrest (Fig. S3B). 217 

However, given the differences in the rate of flower production (‘florochron’) between della and 218 

Ler, we cannot rule out that gibberellin might play a smaller, quantitative role in floral arrest. T he 219 

much higher fruit production in the della mutant does not induce premature floral arrest, which 220 

further indicates that arrest does not occur upon reaching a cumulative fruit-signal threshold. 221 

 222 

Transcriptionally, the switch between activity and arrest in inflorescence meristems mirrors the 223 

switch between activity and dormancy in axillary meristems (AMs) [2]. Since this switch in AMs is 224 

controlled in part by auxin export from the AM into the stem [6,7], we hypothesised that auxin may 225 

also be a key signal in floral arrest,  especially given the high levels of auxin known to be produced 226 

in fruits and seeds in many species [8,9,10,11]. Previous work in Arabidopsis has identified a curve 227 

of hormone production in developing fruit, with a peak in auxin content at 6dpa [11]. To confirm 228 

whether fertilisation increases the auxin content of Arabidopsis fruit, sterile (ms1-1) and fertile (Ler) 229 

fruit were sampled at 6dpa, and auxin levels were quantified using UHPLC-MS/MS. This analysis 230 

showed that auxin levels are much higher in fertile fruit (392pg/mg tissue) than sterile fruit 231 

(16pg/mg tissue) (Fig. 6D), a difference further amplified by their 10-fold greater mass (Fig. S4A). 232 

We next ascertained whether fertile fruit indeed transport auxin into the stem, by collecting auxin 233 

exported from the pedicels of 6dpa fertile fruit from the PI. We found that individual fertile fruit 234 

export ~75pg of auxin in 21 hours, which is 7.5 fold higher than equivalent sterile fruit (Fig. 6E). 235 

Given that the equivalent pool of mobile auxin collected from the associated inflorescence stem is 236 

~100-200pg [7], it is clear that a small number of fertile fruit make a very significant contribution to 237 

auxin levels in the inflorescence stem. 238 



 239 

To directly test this model, we assessed whether exogenous application of auxin to sterile fruits 240 

could restore timely arrest of the PI. We treated sterile fruit in the ams mutant, which like ms1 fails 241 

to undergo normal floral arrest [14], with the auxin analog NAA from 6dpa. This resulted in earlier 242 

inflorescence arrest with the PI producing ~50 fruit, compared to ~80 in mock-treated plants (Fig. 243 

6A). In auxin-treated ams plants, arrested inflorescences have the normal ‘bud cluster’ morphology 244 

associated with the arrest of wild-type inflorescences (Fig. 6C). As expected, although auxin 245 

treatment occurred throughout flowering, it only induced arrest at the time that inflorescences 246 

normally become competent to arrest, at around 20dpa (Fig. 6A). When we applied NAA to the 247 

uppermost 10 sterile fruit of ams individuals at 20dpa (and to any fruit subsequently formed in the 248 

following 3 days), this rapidly induced a normal floral arrest (Fig. 6B) through the treatment of 249 

relatively few (~18) sterile fruit (Fig. 6B), consistent with the role of proximal fruit triggering 250 

inflorescence arrest only when the inflorescence is competent to do so. To rule out the possibility 251 

that auxin application to sterile fruit activates synthesis of a ‘second messenger’ that actually acts 252 

as an arrest signal, we performed NAA application at 23dpa to de-fruited pedicels in ams mutants. 253 

This treatment was completely effective at inducing timely inflorescence arrest, unlike the mock 254 

treatment, similar to the fruit application experiments (Fig S4B). This shows production of a second 255 

messenger in fruit is not required for arrest, although it is possible a second messenger could still 256 

be produced in the stem.  257 

 258 

If auxin exported from fertile fruits triggers floral arrest, treatments affecting the auxin transport 259 

system might be expected to inhibit the ability of fruit to export auxin, and drive arrest. To test this 260 

idea, we analysed arrest in three mutants with reduced auxin transport, namely pin3 pin4 pin7 261 

(pin347) which lacks three members of the PIN auxin efflux carrier family [15], aux1 lax1 lax2 lax3 262 

(aux1 lax123) which lacks all members of the AUX/LAX family of auxin influx carriers [16] and 263 

smxl6 smxl7 smxl8 (smxl678) which has a 60% reduction in PIN1 abundance and auxin transport 264 

in the stem [17]. These mutants have some pleiotropic phenotypes, but are broadly wild-type in 265 

terms of their branching architecture [15,16,17]. Consistent with our hypothesis, two of these lines 266 

had delayed inflorescence arrest; with a clear and lengthy delay in aux1 lax123 and smxl678 (Fig. 267 

S4C). While aux1 lax123 does reduce fruit fertility, smxl678 mutants are normally fertile and set 268 

seed well [17], showing the effect on inflorescence arrest in this line at least is not due to reduced 269 

fertility. We do not believe that the arrest defect in smxl678 mutants is connected to their primary 270 

defect in strigolactone signalling, because mutants completely deficient in strigolactone signalling 271 

and synthesis arrest at essentially the same time as wild-type (Fig. S4E). Taken together, our data 272 

demonstrate that auxin is likely a key signal that triggers floral arrest in temporally-competent 273 

inflorescences.  274 

  275 



DISCUSSION 276 

Our research provides clearer understanding of the process of floral arrest in Arabidopsis, and the 277 

regulatory mechanisms that govern it. We show that floral arrest arises from the uncoordinated 278 

local arrest of inflorescences, rather than a globally coordinated arrest, and that quasi-279 

synchronicity of floral arrest is a natural consequence of the quasi-synchronous inflorescence 280 

activation. We show that inflorescences will only arrest when they become temporally-competent to 281 

do so, which is likely a reflection of the developmental age of the inflorescence meristem. Our work 282 

thus complements the recent work of Balanzà et al [4] who showed that age-related up- and down-283 

regulation of the FRUITFULL and APETALA2 transcription factors in inflorescence meristems was 284 

associated with delayed floral arrest. FRUITFULL and APETALA2 are thus likely to be key factors 285 

determining the competence of inflorescence meristems to arrest, and may integrate external 286 

signals from the fruit [4]. 287 

 288 

We have shown that auxin exported from fruits triggers arrest in competent inflorescences. Auxin 289 

exported from dominant shoot apices is a potent but indirect inhibitor of AM activation [5], 290 

suggesting that auxin exported from fruits might act analogously to indirectly inhibit inflorescence 291 

activity. This is corroborated by data from Wuest et al [3], who showed that arrested inflorescences 292 

meristems have a similar transcriptome to pre-activation AMs in Arabidopsis, supporting the idea 293 

that arrest might represent an inverse of AM/IM activation. Two major, non-mutually exclusive 294 

mechanisms have been proposed for the inhibitory effect of apical auxin on AM activation. In the 295 

‘second messenger’ model, cytokinin and strigolactones are synthesised in the stem, and are 296 

transported into buds where they promote and repress AM activation, respectively. In this model, 297 

apical auxin acts by repressing cytokinin and promoting strigolactone synthesis in the stem. 298 

Conversely, in the ‘canalization’ model of shoot branching, it is proposed that AMs need to create a 299 

‘canalized’ auxin transport link to the stem, in order to export auxin, and thus become active [7,18]. 300 

In this model, the presence of apical auxin reduces the auxin sink strength of the stem, limiting the 301 

number of AMs that can create a canalized link, and therefore grow [7,18]. Building on this model, 302 

we propose that arrest-competent inflorescence apices become inhibited and de-activated 303 

because they are out-competed for auxin sink strength in the stem by the considerable quantity of 304 

auxin exported from proximal fruit. This model in turn suggests that the arrest-competent state may 305 

be associated with a rapid loss of auxin source strength in the inflorescence apex (Fig. 6F). The 306 

result of losing the competition for auxin sink strength is that auxin transport connection between 307 

the apex and the stem is ‘de-canalized’, preventing further apical activity. It is important to note that 308 

in the canalization model it is not auxin accumulation in shoot apices that causes their growth 309 

inhibition, it is the loss (or lack) of a canalized auxin transport link in itself. In support of this model, 310 

we found that sub-apical application of the auxin transport inhibitor NPA, which completely blocks 311 

export of auxin from the PI, was sufficient to trigger regulated arrest in sterile ams inflorescences 312 

following the 20dpa timepoint (Fig S4D).  313 



 314 

Our work thus potentially expands the canalization framework to a new developmental process, but 315 

more work will be needed to test and model these ideas. We have also clearly shown that 316 

gibberellin signalling does not have a role in controlling inflorescence duration despite the fact that 317 

it can affect fruit production. Nonetheless, this does not exclude a role for other phytohormones, as 318 

is seen in AM activation. The potential presence of additional signals is also reflected in the re-319 

initiation of flowering that is observed in previously “dormant” inflorescences (Fig 1E). This occurs 320 

late in the plant life-cycle once the seeds are maturing. At this stage the seeds/pods will have lower 321 

auxin levels, suggesting that additional signals may also be involved in this process. Overall, our 322 

model refines Hensel et al’s GPA model [2], and provides a mechanistic framework which would 323 

potentially allow for the duration of flowering to be extended or reduced to match local climatic 324 

conditions, whilst also containing a key checkpoint so that flowering only ceases if fertile fruit have 325 

recently been made. This paves the way to provide understanding of the end-of-flowering 326 

syndromes in other species, which in turn has potential impact for extending and maximising future 327 

crop yields. 328 

 329 

330 



MATERIALS & METHODS 331 

 332 

Plant growth conditions 333 

Plants for phenotypic and microsurgical experiments were grown on John Innes compost, under a 334 

standard 16h/8h light/dark cycle (20°C) in controlled environment rooms with light provided by 335 

white fluorescent tubes at a light intensity of ~120μmol/m2s-1. Plants for hormone profiling, 336 

dexamethasone application and hormone application experiments were grown on John Innes No.3 337 

compost under the same light/dark cycle but at 22°C/18°C, with light provided by fluorescent tubes 338 

at an intensity of ~150μmol/m2s-1. 339 

 340 

Plant materials 341 

Arabidopsis wild-types Col-0 and Ler were used as indicated. The following lines have previously 342 

been described before; ms1-1 (Ler background) [19]; AMS:AMS-GR ams (used as ams mutants; 343 

Col-0 background, ams is SALK_152147) [12]; MS1:MS1-GR ms1-1 (Ler background) [20]; rga-344 

t2 gai-t6 rgl1-1 rgl2-1 rgl3-1 (della; Ler background) [12], pin3-3 pin4-3, pin7-1 (Col-0 345 

background) [15], aux1 lax1 lax2 lax3 (Col-0 background) [16], smxl6-4 smxl7-3 smxl8-1 (Col-0 346 

background) [17]. 347 

 348 

Phenotypic assessments 349 

We used the following nomenclature (Fig. S4). The primary embryonic shoot apex gives rise to 350 

primary leaves and eventually forms the primary inflorescence. Flowering branches that form from 351 

axillary buds in the axils of primary leaves are secondary inflorescences. Secondary inflorescences 352 

formed from primary cauline leaves are cauline inflorescences (denoted C1 etc.), those from 353 

primary rosette leaves are rosette inflorescences (denoted R1 etc.). Secondary inflorescences are 354 

numbered in the order in which they activate, from the shoot apex downwards through the cauline 355 

nodes, and then into the rosette nodes. Thus, C1 is the apical-most cauline inflorescence, C2 is 356 

the second apical-most inflorescence, and so on. We have separated the numbering of the cauline 357 

and rosette nodes, such that R1 is the apical-most rosette inflorescence. Branches that form from 358 

secondary inflorescences are tertiary inflorescences, etc, and are named after the parental 359 

branching system in rootward fashion (e.g. C2.1 = uppermost tertiary branch on the second cauline 360 

inflorescence).  361 

 362 

For the timing data in Figures 1A, 1B, 1C, 2D, 3A, 3C, 3D, 4C, 5B, 5C, S1, S2B and S3C plants 363 

were assessed daily until visible flower buds were present at the shoot meristem. This date of floral 364 

transition was recorded, and plants were assessed daily as appropriate for IM activation (scored 365 

when buds were longer than 10mm) and IM arrest (scored when there were no more open flowers 366 

on the IM). For fruit counts in Fig. 1D, 3B, 3E, 4C, 5B and S2A the number of inflorescences was 367 



counted, and the number of fruits on each inflorescence recorded (or the number of fruits 368 

removed). Fruit counts were made at final arrest unless otherwise stated. 369 

 370 

For the DEX-induction experiment, MS1:MS1-GR ms1-1 plants were treated with either a solution 371 

consisting of 10ml distilled water, 25M Dexamethasone (from a 25mM stock in ethanol), and 2l 372 

Silwet-77, or a mock containing the same but with only ethanol.  Treatments were carried out at 11 373 

and 12dpa and fruit number was subsequently counted at the time points indicated on the graph. 374 

Following the arrest of the DEX-treated plants, the percent of fertility in all plants was evaluated 375 

counting the number of fruit which had extended. 376 

 377 

Micro-surgical experiments 378 

Flower removal in Fig 2A-D, 4B-C 5A-B and 5C was performed every 1 to 2 days by removing all 379 

open flowers on the plant between the stated time points. Branch removal in Figure 3AB, 3C, 3DE 380 

was performed by cutting off branches at their base at the stated time point. 381 

 382 

IAA metabolite quantification 383 

For quantification of IAA and IAA metabolites, 6dpa fruits were sampled from mature flowering (ca. 384 

15-18dpa) ms1-1 and Ler plants. Fruit age had been tracked by marking their corresponding 385 

flowers with thread at 6 days previously, at anthesis. For the export assay the same strategy was 386 

used, but following excision fruits were placed pedicel-down in closed PCR tubes containing 50µl 387 

2.5mM sodium diethyldithiocarbamate buffer and incubated for 21h in a growth room. The samples 388 

were snap frozen in liquid nitrogen and stored at -80°C until analysis, either by GC-MS/MS as 389 

described in Prusinkiewicz et al 2009 (eluates) or by UHPLC-MS/MS as described in [21], where 390 

prior the UHPLC-MS/MS analysis the fruit tissues were extracted and purified according to [22]. 391 

 392 

Hormone applications 393 

For the 5mg/g NAA lanolin treatments, 50µl of either 100mg/ml stock solution in DMSO or just 394 

DMSO for the mock with 1µl of dye was added to 1g of molten lanolin (heated to 60°C) and 395 

subsequently shaken until completely incorporated. Enough of the paste to create a thin layer was 396 

then applied using a micropipette tip to the fruit. For the early/continual NAA application 397 

experiments, the application regimen began at 6dpa of the first flower. For the late NAA application 398 

experiment, treatment was initiated at 20dpa and only the top (i.e. proximal to the IM) 10 fruits, and 399 

any produced above these in the subsequent 3 days were treated. For NAA removal and 400 

replacement treatments, plants were de-fruited of the top 10 fruit at 23dpa and the resulting cut 401 

pedicel was treated with NAA in lanolin as in the late treatments. For NPA treatments, an 402 

approximately 1cm region directly below the apex of the PI was either treated with NPA (0.1mg/g, 403 

from a 100mg/ml DMSO stock) in lanolin or a mock (1µl DMSO in lanolin) at 12dpa. Treatments 404 



were conducted at the same time as fruit number counts, indicated by the time points on the 405 

graphs. 406 

 407 

Experimental design and statistics 408 

Samples size for each experiment are described in the figure legends. For plant growth 409 

experiments, each sample was a distinct plant. For auxin measurements, each sample was set of 410 

tissue pooled from multiple plants; each sample was distinct. For data analysis, we tested data for 411 

normality to determine the most appropriate statistical test, except when mixed-effects models 412 

were used, where instead sphericity was not assumed and the Greenhouse-Geisser correction 413 

was applied. For Sidak’s multiple comparisons, individual variances were calculated for each 414 

comparison. 415 

 416 
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FIGURES 

 

 

Figure 1. Inflorescence meristem arrest is a temporally-regulated process 488 

(A) Timing of inflorescence activation and arrest across different branches. PI = primary 489 

inflorescence, C1 = secondary cauline inflorescence 1 (the uppermost on the plant) etc., R1 = 490 

secondary rosette inflorescence 1 (the uppermost rosette inflorescence). The mean time after floral 491 

transition (bolting), until the activation of each inflorescence was measured, along with the 492 

subsequent time until its arrest, for a population of Col-0 plants. Each bar is the mean of 3-8 plants, 493 

since not all plants had each type of inflorescence. Any inflorescence type occurring on two or 494 

fewer plants was excluded from analysis. Error bars indicate s.e.m. Bars with the same letter are 495 

not statistically different from each other (ANOVA, Tukey HSD test). 496 

(B) Mean duration, from activation to arrest, of different classes of inflorescences, in a single Col-0 497 

plant, and (B) across a population of Col-0 plants. Bars indicate standard deviation. For the 498 

population, n=8 plants. Asterisks indicate statistically significantly different time of arrest from the 499 

primary inflorescence (ANOVA, Dunnett’s test, n=3-8, * =p<0.05, ** = p<0.01, *** = p<0.001). 500 



(C) Duration of the PI as an individual inflorescence, and total time from floral transition to initial 501 

floral arrest of the whole plant (floral duration), in Col-0 plants grown in long days (16h light/8h 502 

dark) in 12 independent experiments. n=8-24, bars indicate s.e.m. Bars with the same letter are 503 

not significantly different from each other (ANOVA, Tukey HSD test).  504 

(D) Mean total fruit production in long day-grown Col-0 plants across 6 separate experiments when 505 

before re-flowering (light green bars) and after re-flowering (‘second count’, dark green bars), 506 

n=11-18 depending on experiment, bars indicate s.e.m. Bars with the same letter are not 507 

significantly different from each other (ANOVA, Tukey HSD test). 508 

(E) Photograph showing re-flowering in Col-0, with new branches produced after initial floral arrest 509 

highlighted in white boxes. Scale bar = 5cm.  510 

  511 



 

 

Figure 2. Floral arrest is locally regulated by fruit presence  512 

(A-D) Floral arrest is delayed by continuous flower removal. Continuous daily removal of flowers 513 

across all inflorescences delays floral arrest in wild-type Arabidopsis (A, C), but when treatment is 514 

ended fruits develop, and arrest occurs within a few days (B). Local flower removal prevents arrest 515 

of individual inflorescences, but has no systemic effect (D). 516 

(E) Inflorescence duration in response to local flower removal. Open flowers were removed from 517 

secondary cauline inflorescences (C1, C2, C3) every 1-2 days until 17 days post bolting (dpb), 518 

whereupon open flowers were removed daily. Inflorescence duration in secondary cauline 519 

inflorescences was significantly extended where flowers were removed (hatched light blue bars), 520 



relative to secondary cauline inflorescences in untreated plants (dark blue bars). However, the 521 

duration of primary inflorescences (which were not treated) was not different between treated (light 522 

blue) and untreated (dark blue). n=11-12, bars indicate s.e.m. Bars with the same letter are not 523 

statistically different from each other (ANOVA, Tukey HSD test). 524 

  525 



 526 

 527 

Figure 3. Inflorescence duration is extended by global fruit absence  528 

(A, B) Effect of secondary inflorescence removal on the duration of primary inflorescences (PI) in 529 

the Ler ecotype of Arabidopsis. In treated plants, all secondary inflorescences were removed at 7 530 

days post bolting (dpb), and the timing of PI arrest was measured (A), as well as the number of 531 

flowers produced by the PI (B). n=12, bars indicate s.e.m. Bars with the same letter are not 532 

statistically different from each other (T-test, p>0.05). C) Effect of tertiary inflorescence removal on 533 

the duration of secondary inflorescences in the Col-0 ecotype of Arabidopsis. In treated plants, all 534 

tertiary inflorescences were removed at 6 days post anthesis, and the daily rate of flower opening 535 

after anthesis of the first flower on the secondary inflorescence was measured until inflorescence 536 

arrest. n=11-12, bars indicate s.e.m. Asterisks indicate statistically significant difference between 537 

the treatments (T-test with Bonferroni correction, p<0.05).  538 



 

 

Figure 4. Small numbers of fruit are sufficient for local inflorescence arrest  539 

(A,B) Floral arrest is delayed by male sterility. Mock treated MS1:MS1-GR ms1-1 plants are fully 540 

sterile and do not undergo timely primary inflorescence arrest, behaving the same as ms1-1 sterile 541 

plants. However if fertility is restored by 25µm DEX treatment at 11 and 12 days post anthesis 542 

(dpa) of the first flower on the primary inflorescence, timely inflorescence arrest occurs.  n=9-12, 543 

bars indicate s.e.m. Stars indicate significance as determined by Sidak’s multiple comparisons 544 

following fitting of a mixed-effects model (**** = p <0.0001). (B) Application of DEX resulted in 545 

subsequent restoration of fertility, while mock-treated plants exhibited complete sterility. n=9-12, 546 

bars indicate s.e.m. 547 

 



 

 

Figure 5. Proximal fruit drive arrest in competent inflorescence meristems. 548 

(A,B) Effect of fruit removal on inflorescence arrest. Secondary cauline inflorescences on the same 549 

plant were subjected to four different fruit removal treatments, removing either no fruit (untreated), 550 

one out of every two fruit (1/2), two out of every three fruit (3/4) or four out of every five fruit (4/5). 551 

The timing of secondary inflorescence arrest was measured (A), as well as the number of fruit 552 

produced by each inflorescence (B). n=12, bars indicate s.e.m. Bars with the same letter are not 553 

statistically different from each other (ANOVA, Tukey HSD test).  554 

(C, D) Effect of partial and differential fruit removal on inflorescence meristem arrest. In ‘Early’ 555 

plants, open flowers were removed from the whole plant every 1-2 days until approximately 30 556 



flowers had been produced on the primary inflorescence, following which they were allowed to 557 

flower normally. ‘Late’ plants were allowed to flower as normal until around 30 flowers had opened 558 

on the primary inflorescence, then all subsequently-produced flowers were removed daily until 559 

30dpb, when the inflorescence was allowed to produce fruit again. (C) Shows the inflorescence 560 

duration of the PI for these different treatments. (D) Shows the number of flowers produced by the 561 

PI in these treatments, coloured according to whether the flower was produced before (light green) 562 

or after (dark green) treatment, or whether it was removed (grey).  n=11-12, bars indicate s.e.m. 563 

Bars with the same letter are not statistically different from each other (ANOVA, Tukey HSD test). 564 

(E) Effect of timing of fruit production on inflorescence arrest. Secondary cauline inflorescences on 565 

the same plant were subjected to three different treatments (X,Y,Z)(see F). In all treatments, fruit 566 

produced up to 17 days post bolting (dpb) were removed. Treatment X inflorescences were then 567 

allowed to make fruit until arrest. Treatment Y inflorescences were allowed to set 10 fruit from 568 

17dpb, and then were subjected to continuous flower removal until arrest. Treatment Z 569 

inflorescences were subjected to continuous flower removal until 20dpb, at which point they were 570 

allowed to set 10 fruit, before flower removal was restarted until arrest. The primary inflorescences 571 

on the same plant acted as untreated controls. The graph shows the mean time of arrest (days 572 

post bolting) for inflorescences in each of these treatments. n=13-14, bars indicate s.e.m. Bars with 573 

the same letter are not statistically different from each other (ANOVA, Tukey HSD test). 574 

(F) Diagram summarising the effects of fruit removal quantity and timing on floral arrest, based on 575 

experiments in Figure 5. 576 

 



 

 

Figure 6. Auxin export from fruit triggers floral arrest  

A) Temporal production of flowers by the PI of male-sterile ams plants upon application of either 577 

5mg/g NAA in lanolin, or a mock treatment consisting of lanolin and DMSO. Flower counts and 578 

lanolin treatment were performed every 2-3 days, starting from 6 days post anthesis (dpa) of the 579 

first flower on the primary inflorescence.  n=7-12, bars indicate s.e.m. Asterisks indicate 580 

significance as determined by Sidak’s multiple comparisons following fitting of a mixed-effects 581 

model; * = <0.05; ** = <0.01; *** = 0.001; **** = 0.0001. 582 

B) Temporal production of flowers on the PI of male-sterile ams upon application of 5mg/g NAA in 583 

lanolin or mock as in (A). Flower counts and lanolin treatment were performed every day, starting 584 

from 20dpa. n=6-10, bars indicate s.e.m.  585 



C) Representative photos (3 per treatment) showing the inflorescence meristem in ams mutants 586 

after NAA or mock treatment. NAA treated plants have arrested with a classic ‘bud cluster’ 587 

morphology [2], while mock-treated plants do not arrest and continue to open flowers. 588 

D) Quantification of auxin content in 6dpa fertile (Ler) and sterile (ms1) Arabidopsis fruits. n=5, 589 

bars indicate SD. 590 

E) Quantification of auxin eluted from fertile and sterile Arabidopsis fruits. n=5, bars indicate SD. 591 

F) Model for induction of floral arrest. Initially, the apex can freely canalize to the polar auxin 592 

transport stream (PATS, pink). After a temporally-defined period of flowering, inflorescences reach 593 

a critical age and become capable of arrest. In the presence of ca. 6-8 fertile fruit containing seed 594 

(yellow circles), which actively export large quantities of auxin into the PATS, the apex is no longer 595 

able to canalize to the PATS. This induces floral arrest, similar to bud dormancy. If fruit are sterile 596 

(or removed), the auxin export from proximal fruit is significantly reduced. This allows the apex to 597 

continue flowering beyond the point of arrest-competence, as it can still canalize to the PATS. 598 

Fertilisation or auxin application at this point rapidly induces arrest. If no fertilisation occurs, the 599 

meristem ultimately undergoes the terminal differentiation described by Hensel et al [2]. 600 

 601 


