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Mathematical Logic Quarterly, 20 January 2020

Evolving Shelah-Spencer Graphs

Richard Elwes

We define an evolving Shelah-Spencer process as one by which a random graph grows, with at each
time τ ∈ N a new node incorporated and attached to each previous node with probability τ

−α, where
α ∈ (0, 1) \ Q is fixed. We analyse the graphs that result from this process, including the infinite
limit, in comparison to Shelah-Spencer sparse random graphs discussed in [21] and throughout
the model-theoretic literature. The first order axiomatisation for classical Shelah-Spencer graphs
comprises a Generic Extension axiom scheme and a No Dense Subgraphs axiom scheme. We show
that in our context Generic Extension continues to hold. While No Dense Subgraphs fails, a weaker
Few Rigid Subgraphs property holds.

Copyright line will be provided by the publisher

1 Introduction

Random graphs or networks are increasingly important objects of study, in both pure and applied
mathematical settings. Such models can be classified into two broad categories: static and evolving,
as observed by (among others) Kumar et al. in their influential work [16] on stochastic models of the
world wide web1. Models of both types take as input a collection of parameters including the number
of nodes n, and output a random network of size n. The difference is in the role played by n. In a static
model, n is central throughout the process, and the output is produced directly without proceeding via
graphs of smaller size. The famous Watts-Strogatz model from [24] is an example of such a process; in
this case the inputs are n, the mean-degree k, and the rewiring probability β.

In an evolving model, in contrast, the parameter n (assuming it is sufficiently large) plays no role at
the start of the process, and the network is constructed one node (or in some models more) at a time.
The parameter n provides only a stopping point for the algorithm. Preferential attachment processes,
including the celebrated Barabási-Albert model [1], are inherently evolving processes in which nodes are
added one at a time and connected to pre-existing nodes with probabilities depending on those nodes’
current degrees.

Models of both types are of considerable interest to scientists modelling a wide variety of real-world
phenomena, including the structure of the web ([16]), or biological networks of various kinds ([20]) along
with dynamical processes on such networks (a long list of examples could be provided here, including
models of disease epidemics ([19]), racial segregation ([7]), opinion-formation ([23]), memes within social
networks ([13]), biological evolution ([18])). However, in many situations evolving models have a clear
advantage. After all, very few real-world networks are static.

With this dichotomy in mind, consider the classic Erdős-Rényi model G(n, p), in which each pair of
nodes is connected with an edge with probability p. This model (unusually) can be viewed as either
static or evolving, depending on whether the nodes are all set in place and wired up simultaneously, or
inserted in turn with each new node being wired to each previous node with probability p.

However, the mathematical properties of the resulting graphs typically hinge on the relationship
between n and p. For example, if p ≫ 1

n then G(n, p) will contain a triangle, while if p ≪ 1
n then

G(n, p) will contain no triangle, each with probability → 1 as n → ∞. This is just one of many
threshold functions discovered by Erdős and Rényi in [10] for properties of G(n, p).

It therefore makes sense, indeed is implicit in the preceding paragraph, to consider the properties of
random graphs G(n, p(n)) where p(n) is a function of n rather than a fixed constant. Following Shelah
and Spencer (see [22]), we shall be particularly interested in functions of the form p(n) = n−α where
α ∈ (0, 1) \Q. Furthermore, as per the preceding paragraph, it is illuminating to allow n → ∞ in this

1 As observed in [16], there is a regrettable clash in terminology with the work of Erdős and Rényi who in [10] discuss
the evolution of edge density in a different but related sense.
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setting. However, (G(n, p(n)))n∈N
is unavoidably a sequence of static random graphs. Although one

can consider a process to derive G(n+1, p(n+1)) from G(n, p(n)), it necessarily involves deleting some
edges (while adding other). This non-monotonicity is somewhat artificial and undesirable. The purpose
of the current work is to investigate the following evolving process, which we claim to be more natural:

Definition 1.1.

• An evolving graph process with monotonically weakly decreasing function p : N → [0, 1] begins with
a graph Gp(1) comprising a single node u1. At each time τ ≥ 2 create a new graph Gp(τ) by adding
one new node uτ to Gp(τ − 1). Attach uτ to each previous node uj for j < τ , independently, with
probability p(τ).

• An evolving Shelah-Spencer process is an evolving graph process with function p(τ) = τ−α for some
α > 0.

Remark 1.2. The main results in this paper apply to evolving Shelah-Spencer processes with α ∈
(0, 1)\Q, and the results continue to apply if the initial node u1 is replaced with any initial finite graph.
We shall write G(τ) for Gp(τ) when the meaning is obvious from context.

One technique that is possible with evolving processes, and not usually with static ones, is to analyse
the graph that emerges by running the process to infinity. Returning to the Erdős-Rényi process G(n, p)
with p a fixed constant, the infinite limit G(ℵ0, p) is, with probability 1, the famous Rado graph (also
known as the the Erdős-Rényi graph and simply as the random graph). The infinite limits of certain
preferential attachment processes have also been analysed, for example in [17] Kleinberg & Kleinberg
and in [8], [9] by the author.

By definition, it is not possible directly to take the infinite limit of a static process. However, in [22]
Shelah and Spencer deploy the machinery of first order logic (in the language of graphs, which is to say a
single irreflexive, symmetric binary relation) to analyse the structures G(n, n−α) for fixed α ∈ (0, 1)\Q.
In a breakthrough result, they prove that a zero-one law applies, that is to say every first order sentence
will hold in G (n, n−α) with probability tending either to 0 or 1 as n → ∞. They then denote by Tα the
collection of those sentences which hold with probability approaching 1. A Shelah-Spencer graph (with
parameter α) is then defined to be a (necessarily infinite) graph which satisfies all the sentences in Tα.

Their result fails for α ∈ Q, which is also the reason for our restriction. We will say slightly more
about this in Remark 1.4 below.

Shelah-Spencer graphs have proved to be important mathematical structures in a number of respects.
Network-theoretically, they provide compelling examples of sparse random graphs. Naturally-occurring
networks rarely grow with the consistent density exhibited by G(n, p)n∈N for fixed p. For example, the
probability that two randomly selected webpages are connected by a hyperlink clearly → 0 as n → ∞.
Likewise, in an infinite Shelah-Spencer graph, a randomly selected pair of nodes will almost certainly
not be joined with an edge.

Shelah-Spencer graphs, and assorted closely related structures, have also occupied a central place
in model-theoretic discussion in recent decades. The zero-one law described above implies that Tα is
a complete first order theory. This is the first of many deep logical discoveries about these structures.
They are also known to be strictly stable, not finitely axiomatizable, and nearly model complete. They
are also closely related to the famous Hrushovski constructions discovered in [14] which have provided
counterexamples to a number of deep model-theoretic conjectures. We shall not delve further into these
matters but refer to [3] for further discussion.

Shelah-Spencer graphs are inherently infinitary in that they are not the limits of any known natural
evolving procedure. In particular, the outcome of running to infinity the evolving model described in
Definition 1.1 is likely to deviate from Tα. The purpose of the current work is to establish the extent of
that deviation. However, our results are not purely infinitary, but can equally be read as applying at
all sufficiently large finite stages of the process.
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1.3 Notation and Preliminaries

First, we regard α ∈ (0, 1) \Q as fixed for all that follows. Many of the concepts to be defined shortly
are dependent on α, but in the interests of simplicity we will not make this explicit in the notation.

Given finite subgraphs A and B of some ambient graph G, we write AB or A∪B to mean the induced
subgraph of G whose vertex set is the union of those of A and B (i.e including any edges joining A to
B). If A and B are abstract graphs (i.e. not embedded in some common G) then AB or A∪B is simply
the disjoint union of A and B. It will be clear from context which is intended.

Given finite graphs A and B (of either type) we write V(B/A) for the number of vertices in AB \A
(i.e. vertices of A∪B less those in A), and E(B/A) for the number of edges in AB \A (i.e. the number
of edges in A ∪ B less those having both endpoints in A), and δ(B/A) := V(B/A) − αE(B/A). We
refer to B/A as a graph extension with V(B/A) many vertices, E(B/A) many edges, and predimension
δ(B/A).

The purpose of this notational set-up is that it allows us to consider simultaneously the cases A ⊆ B
and where the vertex sets of A and B are disjoint.

We will write B/A ∼= K/H to mean that they are isomorphic as graph extensions. Writing v(G) for
the vertex set of a graph G, we have B/A ∼= K/H if there is a bijection f : v(AB) → v(KH) such
that f(v(A)) = v(H) and whenever b1, b2 ∈ v(AB) are not both in v(A) then b1b2 is an edge in AB
if and only if f(b1)f(b2) is an edge in KH. (The point being that we are unconcerned about the edge
relationship strictly within A and H.)

We will often be interested in the number of occurrences of a small graph extension B/A within a
large (or infinite) graph G. We will typically write B/A for a specific isomorphic copy of B/A where
A,B ⊆ G.

We will write V(B), E(B), and δ(B) for V(B/∅), E(B/∅), and δ(B/∅). Note that δ is additive:
δ(ABC/A) = δ(ABC/AB) + δ(AB/A). We will also write

d(B/A) := max{δ(B/I) : A ⊆ I ⊂ AB}.

Recall from [21] that a finite extension B/A is sparse if δ(B/A) > 0 and dense if δ(B/A) < 0. It is
safe if δ(I/A) ≥ 0 for all A ⊆ I ⊆ AB, and rigid if δ(B/I) ≤ 0 for all A ⊆ I ⊆ AB (i.e. if d(B/A) < 0).
(Of course these concepts are all dependent on α.)

Remark 1.4. The rough intuition, both in the classical Shelah-Spencer graphs of [21] and here, is
that as n → ∞, safe subgraphs (or graph-extensions) can expected to appear in ever greater numbers,
while rigid subgraphs (or graph-extensions) appear increasingly rarely. This observation explains the
requirement that α ∈ Q. For rational α, one can have subgraphs or graph-extensions which are neither
sparse nor rigid but are strictly balanced: they have a predimension of exactly 0. In these cases the
asymptotics are much less well-behaved, and the zero-one law fails badly. See, for instance, chapter 8
of [21]. Nevertheless, for rational α some closely related structures have been studied fruitfully from a
model-theoretic perspective. See [2] for example.

We collect from [21] some useful elementary results:

Proposition 1.5. (a) Every non-safe extension H/R contains a rigid subextension S/R.

(b) If H/R is neither safe nor rigid, there exists S ⊆ H so that S/R is rigid and H/S is safe.

(c) If H/R is rigid and HX 6= RX then HX/RX is rigid.

P r o o f. These are nice exercises, or see Properties 4.1.7, 4.1.15, and 4.1.12 of [21].

Lemma 1.6. The extension B/A is safe if and only if d(B/A) = δ(B/A).

P r o o f. This is also essentially contained in [21], however the notation of δ and d are not used there,
so we shall spell it out. Suppose first B/A is safe. It is always true that δ(B/A) ≤ d(B/A), so we need
to establish the reverse inequality. Whenever A ⊆ I ⊆ AB, we have δ(B/A) = δ(B/I) + δ(I/A), and
by safeness δ(I/A) ≥ 0, so δ(B/I) ≤ δ(B/A) and thus d(B/A) ≤ δ(B/A) as required.
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Conversely, δ(I/A) = δ(B/A) − δ(B/I) and δ(B/I) ≤ d(B/A) = δ(B/A) by assumption. Thus
δ(I/A) ≥ 0.

The final definition of this section (also taken from [22]) describes a graph-extension B/A being
embedded in larger graph G in a particularly nice way:

Definition 1.7. Given finite subgraphs A and B of some ambient graph G, and t ∈ N, the extension
B/A is t-generic, if whenever C ⊆ G and V(C/AB) ≤ t and C/AB is rigid, then E(C/AB) = E(C/A).

2 Statement of Results

In the current work, we describe both the infinite limit G(∞) and all sufficiently large finite graphs
formed by the evolving Shelah-Spencer process from Definition 1.1. Recall from 7.1.1 of [21] that the
first order axioms of the Shelah-Spencer theory Tα come in two schema No Dense Subgraphs and Generic
Extension, which we take in turn. Let S |= Tα be a Shelah-Spencer graph.

No Dense Subgraphs: For every dense finite graph H there exists no isomorphically embedded copy
of H in S.

Note that by Proposition 1.5(a), the No Dense Subgraphs axiom is equivalent to:

No Rigid Subgraphs: For every rigid finite graph H there exists no isomorphically embedded copy
of H in S.

This axiom fails in our setting. However, we obtain the weaker result that with probability 1 there
will only be finitely many copies of each finite rigid graph in G(∞). To put this another way:

Definition 2.1. Given r ≥ 1, a vertex is r-irregular if it is contained in a rigid subgraph of size ≤ r.

Theorem 1 (Few Rigid Subgraphs). For each r ≥ 1, with probability one there exists Cr > 0 so that
for all T ≤ ∞ there are at most Cr many r-irregular vertices in G(T ).

We turn to the second axiom-schema Generic Extension for a Shelah-Spencer graph S, which trans-
fers directly to our G(∞):

Theorem 2 (Generic Extension). Suppose H/R is safe and t ≥ 1. Almost surely, for every R̄ where
V
(

R̄
)

= V (R), for all large enough T ≤ ∞ there exists a t-generic copy H̄/R̄ of H/R in G(T ).

Remark 2.2. The natural Few Dense Subgraphs axiom scheme dramatically fails in our setting. Con-
sider a dense non-rigid graph X. By Proposition 1.5(b) above, this may decomposed as a maximal rigid
graph Y with a safe extension X/Y . If there is at least one copy of Y in G(∞) (which is permitted by
Few Rigid Subgraphs), then by Proposition 3.1 below, there will be infinitely many copies of X/Y (and
thus of X) within G(∞).

3 Few Rigid Subgraphs

The following is the main technical ingredient for our results:

Proposition 3.1. Suppose H/R is a finite graph extension with d = d(H/R) and δ = δ(H/R). Suppose
R̄ is a subgraph of some G (τ0) with V

(

R̄
)

= V (R).

(a) If H/R is not rigid the expected number of instances of H/R̄ contained in G(T ) \G(τ0) (or equiva-
lently in G(T )) is Θ

(

T d
)

, where d > 0.

(b) If H/R is rigid, the expected number of instances of H/R̄ contained entirely in G(∞) \ G(τ0) is
Θ
(

τ δ0
)

(where δ < 0).
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(c) If H/R is rigid, the expected total number of instances of H/R̄ contained in G(∞) is positive and
finite, with a value depending on H/R and G (τ0).

P r o o f. We shall compute the expected number of copies of H/R completely contained in G(T )\G(τ0).
We shall deal separately with the case where R = ∅, that is to say we count occurrences of a graph

H. First suppose R 6= ∅. Fix, temporarily, an enumeration v1, . . . , vn of the vertices of H/R and write
ej+1 for the number of edges connecting vj+1 to {v1, . . . , vj} ∪R.

Given fixed v1 . . . vn−1R in some G (τn−1), the probability that a new node uτ where τ > τn−1 forms
a copy of vn/v1 . . . vn−1R is

τ−αen ·
(

1− τ−α
)r+n−1−en

. (1)

Setting, for example, C := (1− 2−α)
r+n−1−en , this probability exceeds C · τ−αen for all τ . Thus,

changing the name of the variable to τn, the expected number of copies of vn/v1 . . . vn−1R in G(T ) \

G (τn−1) is Θ





T
∑

τn=τn−1+1

τ−αen
n



.

We proceed by iterating this argument. The second step is as follows: Given fixed v1 . . . vn−2R in
some G (τn−2), the expected number of pairs

(

uτn , uτn−1

)

, where τn > τn−1 > τn−2, forming a copy of

vnvn−1/v1 . . . vn−2R is Θ





T
∑

τn>τn−1>τn−2

τ
−αen−1

n−1 · τ−αen
n



.

Noting that whenever β > 0 it will hold that

∫ S

j

s−βds ≥
S
∑

s=j+1

s−β ≥

∫ S+1

j+1

s−βds ≥ 2−β

∫ S

j

s−βds

we can see that the expectation we are seeking is asymptotically

Θ

(

∑

v1,...,vn

∫ T

τ0

∫ T

τ1

. . .

∫ T

τn−1

τ−αe1
1 τ−αe2

2 . . . τ−αen
n dτn . . . dτ2dτ1

)

(2)

where the sum is over all enumerations v1, . . . , vn of H/R.
In the case R = ∅, similar reasoning gives:

Θ

(

∑

v1,...,vn

∫ T

τ0

∫ T

τ1

. . .

∫ T

τn−1

1 · τ−αe2
2 . . . τ−αen

n dτn . . . dτ2dτ1

)

. (3)

We consign the analysis of these integrals to Appendix A where it is established that both expressions
above are

Θ





∑

R⊆S⊆H

CS · T δ(H/S) · τ
δ(S/R)
0



 (4)

where CS are constants with in particular CSd
> 0 where δ (H/Sd) is maximal, and in the rigid case

CH > 0.

In the rigid case, since δ (H/S) < 0 for all S, this is therefore Θ
(

τ
δ(H/R)
0

)

as T → ∞ giving part

(b). Otherwise, it is Θ
(

T d
)

.

We also need to consider copies of H/R which are split across G(τ0) and G(T ) \ G(τ0). This is
bounded above by the number of copies of H/S in G(T ) \G(τ0), summed across the constant number
of isomorphism types of S/R where R ⊂ S ⊂ H and the bounded number of S̄/R̄ in G(τ0). In the case
where H/R is not rigid, this number will in any case be O

(

T d
)

, giving part (a). Thus we only worry
about the rigid case. Here, it is sufficient to observe that this number is non-negative and bounded in
terms of τ0, giving part (c).
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Remark 3.2. Assuming that H/R is safe, Proposition 3.1(a) continues to hold if we count extensions
H/R which avoid any finite set of vertices. This amounts to removing boundedly many points from the
range of the integral in Expression (2) or (3).

We may now recall and prove

Theorem 1 (Few Rigid Subgraphs). For each r ≥ 1, with probability one there exists Cr > 0 so that
for all T ≤ ∞ there are at most Cr many r-irregular vertices in G(T ).

P r o o f. This follows from Proposition 3.1(c) since there are finitely many isomorphism types of rigid
graphs of size ≤ r, and with probability 1 finitely many copies of each in G(∞). Of course, also, the
number of r-irregular vertices in any G(T ) is at most that in G(∞).

4 Generic Extensions

Unless otherwise stated, the context for the all the following is the infinite graph G(∞). In [21], (a) in
the following definition is an important concept. However, we shall work with the weaker notion (b):

Definition 4.1. Given t ≥ 1 and a finite set of vertices X

(a) the t-closure of X, denoted clt(X), is the minimal set Y ⊇ X such that there exists no rigid extension
Z/Y where V(Z/Y ) ≤ t.

(b) the weak t-closure of X, denoted wclt(X), is the union of all rigid extensions Z/X where V(Z/X) ≤ t
(with all induced edges included).

Theorem 4.3.2 from [21] states that in their setting, given r, t ≥ 1, there exists K so that with
probability 1, for all X̄ = (x1, . . . , xr) we have

∣

∣clt(X̄)
∣

∣ ≤ K.
This is not apparently attainable in our context. The argument from [21] identifies K so that if

clt(X̄) > K then clt(X̄) is necessarily a dense graph, contradicting the No Dense Subgraphs axiom. As
discussed in Remark 2.2), this axiom fails badly in our setting, and we see no way around this obstacle.
However, the following much weaker result will be sufficient:

Lemma 4.2. Given X̄ = (x1, . . . , xr), with probability 1, wclt
(

X̄
)

is finite.

P r o o f. There are only finitely many isomorphism types of relevant extensions Z/X, and thus the result
follows immediately from Proposition 3.1(c).

Next we need the following strengthening of Proposition 3.1(a) for safe extensions:

Proposition 4.3. Suppose that H/R is a safe graph extension with d = d(H/R) and R̄ is a tuple of
size |R| in G (τ0). Write N(T ) = NH/R̄(T ) for the number of distinct copies of H/R̄ in G(T ). The

probability 1, as T → ∞, N(T ) = Θ
(

T d
)

.

P r o o f. We have seen in Proposition 3.1 that E (N(T )) = Θ
(

T d
)

. Thus we need to show that N(T )
is concentrated around its mean, for which we use the machinery developed by Kim and Vu in [15]. In
particular, we shall apply Corollary 4.1.3 of that paper.

We need to verify that there exist K, γ > 0 so that for all subextensions I/R and all instances Ī of
I/R̄, we have

E
(

NH/Ī(T )
)

E
(

NH/R̄(T )
) < K · T−γ .

Well, E
(

NH/Ī(T )
)

= Θ
(

T d(H/I)
)

= Θ
(

T δ(H/J)
)

for some I ⊆ J ⊂ H and E
(

NH/R̄(T )
)

= Θ
(

T δ(H/R)
)

by Lemma 1.6, so
E
(

NH/Ī(T )
)

E
(

NH/R̄(T )
) = Θ

(

T δ(H/J)−δ(H/R)
)

= Θ
(

T−δ(J/R)
)

by the additivity of δ. Since H/R is safe, δ(J/R) > γ > 0 where γ := 1
2 ·minR⊂J ′⊆H {δ(J ′/R)}, giving

the result.
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Remark 4.4. Proposition 4.3 fails if H/R is non-safe. For instance, take R = ∅ and H = A∪B where
A is rigid and B/A is safe, and 0 < −d(A) < d(B/A). Then the expected number of occurrences of H
is Θ

(

T d(B/A)+d(A)
)

→ ∞ but there is a non-vanishing probability that all G(T ) will contain zero copies
of A and thus of H. This fact somewhat complicates the proof of Theorem 2 below.

Our final goal is to establish the existence of generic extensions. The following will be useful.

Definition 4.5. Suppose H/R is safe. A minimally rigid extension K/HR is loose over R if KH/R
is safe. It is tight over R otherwise.

We are now in a position to recall and prove

Theorem 2 (Generic Extension). Suppose H/R is safe and t ≥ 1. Almost surely, for every R̄ where
V
(

R̄
)

= V (R), for all large enough T ≤ ∞ there exists a t-generic copy H̄/R̄ of H/R in G(T ).

P r o o f. Suppose H/R has associated parameters v, e, δ. By Lemma 4.2 almost certainly, wclt+v

(

R̄
)

is finite. Thus by Lemma 1.6, Remark 3.2), and Proposition 4.3 for all large enough finite T , almost
surely there will be Θ

(

T δ
)

many extensions H/R̄ avoiding wclt+v

(

R̄
)

. We limit our consideration to
these semi-generic copies of H.

Now fix R̄ and suppose K/HR is a minimally rigid extension of size ≤ t and that K witnesses
non-t-genericity in that K/HR includes at least one edge between K and H. Our goal is to show that
almost surely in all large enough T , there will be o

(

T δ
)

many copies of H/R̄ admitting an extension to
K. Since there are boundedly many isomorphism types of such K/HR, this will establish that almost
surely for all large enough T , there are o

(

T δ
)

many non-generic copies of H/R̄.
First we consider the case where K/HR is tight, that is to say KH/R is not safe. We shall show

that for all such tight extensions K/R is rigid, meaning K ⊆ wclt
(

R
)

. By Proposition 1.5(a), KH/R

has a rigid subextension K1/R. Then any K1 ⊆ wclt+v

(

R̄
)

, and thus all semi-generic copies of H are

disjoint from all such K1. Combining this with the fact that K1/R is rigid, by Proposition 1.5(c), we
see that K1/HR is rigid. But K/HR is minimally rigid, so it follows that K1 = K, and in particular
K/R is rigid as claimed.

Thus with probability 1, there will be finitely many copies of K/R in G(∞), so we analyse now those
copies of H which grow entirely after all such K are completed.

Consider the extension H/KR. Notice that this is safe, for if not it has a rigid sub-extension and
therefore meets wclt+v

(

R̄
)

, contradicting our assumption of semi-genericity. Under the assumption that
we are considering H/R which fail to be t-generic, there is at least one edge connecting H to K. Thus
H/KR has parameters v, e′, δ′ where e′ ≥ e+ 1 and δ′ ≤ δ − α.

Thus by Proposition 4.3, almost surely there are O
(

T δ−α
)

many copies of H/KR in G(T ) and thus

Θ
(

T δ
)

many copies of H/R which are not which are not instances of H/KR. Combining this with the

fact that there are boundedly many isomorphism types H/KR and finitely many copies of K/R, and
since a completed unjoined copy cannot become joined subsequently, this establishes the almost sure
existence of Θ

(

T δ
)

many copies of H in all G(T ) where T ≤ ∞, which are both semi-generic and for

which there is no tightK/HR to witness non-genericity. We restrict our attention to these copies ofH/R.

We move onto the case is where K/HR is loose, that is KH/R is safe. Call I/HR a partial extension
if HR ⊆ IHR ⊂ KHR where K/HR is minimally rigid and loose. Notice for all such I, both I/HR
and IH/R are safe.

By Proposition 4.3 again, for anyR, the number of copies ofH/R inG(T ) is almost surely Θ
(

T δ(H/R)
)

.

At the same time, the number of copies of KH/R in G (T ) is almost surely Θ
(

T δ(KH/R)
)

= o
(

T δ(H/R)
)

.

Thus the number of copies of H/R in G (T ) which have no complete extension to K in G (T ) is almost
surely Θ

(

T δ(H/R)
)

.
Furthermore, for each isomorphism type of a partial extension I/HR, the number of instances of

IH/R in G (T ) is almost surely Θ
(

T δ(IH/R)
)

, and thus for each H, the number of instances of I/HR

in G (T ) is almost surely Θ
(

T δ(I/HR)
)

.
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For each such partial extension IHR, the expected number of completions to minimally rigid loose
K in G (∞) is Θ

(

T δ(K/IHR)
)

→ 0 as T → ∞. Thus the probability that IHR fails to complete to any

K exceeds 1− CT δ(K/IHR) → 1 for some C > 0.
The probability, given HR in G(T ), that all instances of I/HR in G(T ) subsequently fail to complete

in G(∞) exceeds, for some D > 0:

(

1− CT δ(K/IHR)
)DT δ(I/HR)

∼ 1−O
(

T δ(K/HR)
)

→ 1.

Taking the product of finitely many expressions of this type to take into account different isomorphism
types of K and I, we find that the probability that any HR fails to complete to any minimally rigid
loose K/HR tends to 1, and hence the probability that at least one doesn’t is, in the limit, 1.

5 Further Questions

To our knowledge, this paper represents the first time the graphs G = Gα(∞) have been studied, and
Theorems 1 and 2 represent only a starting point for investigation. So we close by mentioning some
directions for further enquiry.

1. Writing cl(A) :=
⋃∞

i=1 clt(A), it is natural to investigate the probability that cl(∅) is infinite, that
is to ask whether the total number of irregular vertices (t-irregular for any t) is infinite. We expect
that this will hold with probability 1. This is certainly not trivial, but some finessing of the esti-
mates in Appendix A may be enough to provide a proof of this.

2. A stronger result would be to establish that cl(∅) is cofinite in G, or even that cl(∅) = G. That is
to say, it is conceivable that with probability 1 every vertex is t-irregular for some t, although we
expect new tools will be required to answer this question in either direction.

3. It is important to stress that while No Rigid Subgraphs and Generic Extension provide a
complete first order axiomatisation of the theory of Shelah-Spencer graphs, it is certainly not the
case that Few Rigid Subgraphs and Generic Extension do so in our context. There surely
cannot be any simple axiomatisation, given the variety of finite rigid graphs which may or may not
arise. However, one might ask whether incorporating Diag (cl(∅)) and stipulating No Rigid Sub-
graphs outside cl(∅) would provide a (non-first order) axiomatisation, or whether there are other
important properties to be found.

4. Relatedly, and as indicated in the introduction to this paper, Shelah-Spencer graphs are important
in first order model theory, as examples of stable graphs. That is to say, there is a natural notion of
two finite sets of vertices being independent over a third set, which satisfies some natural and pow-
erful axioms. The Erdős-Rényi random graph, meanwhile, satisfies the related property of being
supersimple. It is natural to ask then, whether anything can be said about forking independence
within our graphs G.

5. The theory of Shelah-Spencer graphs had essentially two separate beginnings: the work of Shelah
and Spencer ([22]) as briefly described earlier, and separately the work of Baldwin and Shi [4],
following the seminal work of Hrushovski [14]. The latter authors constructed these graphs as the
limits of a variant of Fräıssé amalgamation on the class of finite sparse graphs. It was in [3] that
Baldwin and Shelah established the equivalence of the two approaches. One might therefore won-
der whether some variant of amalgamation “over cl (∅))” (in some sense to be determined) might
function similarly in our context.
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6. Shelah-Spencer graphs fit into the broader theory of threshold functions of graphs G(n, p(n)). Here
a celebrated theorem Bollobás and Thomason in [5] states that every monotonic increasing graph
property P has a threshold function. Recall that a property of graphs P is monotonic increasing
if whenever G and G∗ are graphs where V(G) = V(G∗) and E(G) ⊆ E(G∗), if G ∈ P then also
G∗ ∈ P . Given a graph property P, and a function p∗ : N → [0, 1] we say that p∗ is an threshold
function for P if for all p : N → [0, 1]

lim
n→∞

P (G(n, p(n)) ∈ P) =

{

0 if p(n)
p∗(n) → 0

1 if p(n)
p∗(n) → ∞

So long as p(n) is a monotonically decreasing function of n, it is immediate by monotonicity of P
that the second part of the definition of a threshold function transfers into the evolving context.
The first does not. For instance, p∗(n) = n− 2

3 is the threshold function for containing a clique of
size 4. However, consider the evolving process with parameter 3

4 > 2
3 . The first four nodes already

determine that the probability that G 3
4
(∞) contains a 4-clique exceeds

(

2 · 32 · 43
)− 3

4 > 0.

Nevertheless, we expect that the theory of threshold functions will continue to apply with the
weaker condition “< 1” replacing “= 0”. If so, one might investigate under what circumstances
the stronger condition of “= 0” applies (one might expect it to hold, for instance, in the case of
connectedness, with a threshold of lnn

n ).
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[12] Frieze, A., & Karoński, M. (2015). Introduction to random graphs. Cambridge University Press.
[13] Gleeson, J. P., Ward, J. A., O’Sullivan, K. P., & Lee, W. T. (2013). Competition-induced criticality in a

model of meme popularity. arXiv preprint arXiv:1305.4328.
[14] Hrushovski, E. (1993). A new strongly minimal set, Annals of Pure and Applied Logic 62, 147-166
[15] Kim, J. H., & Vu, V. H. (2000). Concentration of multivariate polynomials and its applications. Combina-

torica, 20(3), 417-434.
[16] Kumar, R., Raghavan, P., Rajagopalan, S., Sivakumar, D., Tomkins, A., & Upfal, E. (2000). Stochastic

models for the web graph. In Proceedings 41st Annual Symposium on Foundations of Computer Science
(pp. 57-65). IEEE.

[17] Kleinberg, R. & Kleinberg, J. Isomorphism and embedding problems for infinite limits of scale-free graphs.
In Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms (SODA) (pp. 277-
286). Society for Industrial and Applied Mathematics. (2005)



Evolving Shelah-Spencer Graphs 10

[18] Lieberman, E., Hauert, C., & Nowak, M. A. (2005). Evolutionary dynamics on graphs. Nature, 433(7023),
312.

[19] Pastor-Satorras, R., & Vespignani, A. (2001). Epidemic spreading in scale-free networks. Physical review
letters, 86(14), 3200.

[20] Proulx, S. R., Promislow, D. E., & Phillips, P. C. (2005). Network thinking in ecology and evolution. Trends
in ecology & evolution, 20(6), 345-353.

[21] Spencer, J. (2001). The strange logic of random graphs (Vol. 22). Springer Science & Business Media

[22] Shelah, S., & Spencer, J. (1988). Zero-one laws for sparse random graphs. Journal of the American Math-
ematical Society, 1(1), 97-115.

[23] Sood, V., & Redner, S. (2005). Voter model on heterogeneous graphs. Physical review letters, 94(17),
178701.

[24] Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. nature, 393(6684),
440.

Appendix A

Here we analyse the integral (2) from the proof of Proposition 3.1:

In (τ0, α1, . . . , αn) :=

∫ T

τ0

∫ T

τ1

. . .

∫ T

τn−1

τ−α1
1 τ−α2

2 . . . τ−αn
n dτn . . . dτ2dτ1

aiming to show that it satisfies condition (4):

Θ





∑

R⊆S⊆H

CS · T δ(H/S) · τ
δ(S/R)
0



 (5)

where CS are constants with in particular CSd
> 0 where δ (H/Sd) is maximal, and in the rigid case

CH > 0. We shall then show that the conclusion applies to integral (3).

We treat T as fixed and write αi := αei. The base case is

I1 [τ0, α1] =
T 1−α1

1− α1
−

τ1−α1
0

1− α1
. (6)

The relevant recurrence relation is:

In+1 [τ0, α1, . . . , αn+1] =

∫ T

τ0

τ−α1
1 × In [τ1, α2, . . . , αn+1] dτ1. (7)

We shall abbreviate In (τ0, α1, . . . , αn) as In (and similarly for Cn
j in the following), i.e. we suppress

the variables when (and only when) they are the canonical ones.

Lemma 5.1. For all n ≥ 1 and 0 ≤ j ≤ n there are constants Cn
j = Cn

j [α1, . . . αn] ∈ R such that :

In =

n
∑

j=0

Cn
j × T (n−j)−(αj+1+...+αn) × τ

j−(α1+...+αj)
0 . (8)

Furthermore the following recurrence relation holds:

Cn+1
j+1 [α1, . . . αn+1] =

−Cn
j [α2, . . . αn+1]

(j + 1)− (α1 + . . .+ αj+1)
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P r o o f. Suppose inductively for some n ≥ 1 and all 0 ≤ j ≤ n that there are suitable constants Cn
j .

Then, writing
(

Cn
j

)′
for Cn

j [α2, . . . αn+1], by the recurrence relation (7) we get

In+1 =

∫ T

τ0

τα1
1 ×

n
∑

j=0

(

Cn
j

)′
× T (n−j)−(αj+2+...+αn+1) × τ

j−(α2+...+αj+1)
1 dτ1

=

n
∑

j=0

(

Cn
j

)′
× T (n−j)−(αj+2+...+αn+1) ×

∫ T

τ0

τ
j−(α1+α2+...+αj+1)
1 dτ1

=
n
∑

j=0

(

Cn
j

)′
× T (n+1)−(α1+...+αn+1)

(j + 1)− (α1 + α2 + . . .+ αj+1)

−
n
∑

j=0

(

Cn
j

)′
× T (n−j)−(αj+2+...+αn+1) × τ

(j+1)−(α1+...αj+1)
0

(j + 1)− (α1 + α2 + . . .+ αj+1)

This establishes inductively that Equation 8 is indeed the correct form, and the second sum provides
the required recurrence relation for Cn

j .

Remark 5.2. The first sum in the expression above reflects the fact that

Cn+1
0 = −

n+1
∑

j=1

Cn+1
j

which is what we expect from considering the case τ0 = T , where clearly In = 0.

Proposition 5.3. For all n ≥ 1 and 0 ≤ j ≤ n:

Cn
j =

(−1)
j

(

∏n−j
k=1 (k − (αj+1 + . . .+ αj+k))

)(

∏j
i=1 (i− (αj+1−i + . . .+ αj))

) .

P r o o f. The base case of n = 1 and 0 ≤ j ≤ 1 is established in Equation (6) above. Suppose now that
the result holds for some particular n and all 0 ≤ j ≤ n. Then

(

Cn
j

)′
=

(−1)
j

(

∏n−j
k=1 (k − (αj+2 + . . .+ αj+1+k))

)(

∏j
i=1 (i− (αj+2−i + . . .+ αj+1))

) .

and so

Cn+1
j+1 =

(−1)
j+1

(

∏(n+1)−(j+1)
k=1 (k − (αj+2 + . . .+ αj+1+k))

)(

∏j+1
i=1 (i− (αj+2−i + . . .+ αj+1))

)

as required.

Thus we are left with the case of Cn
0 , which we approach from a different angle. Notice that

Cn
0 × Tn−(α1+...+αn) = In+1 [0, α1, . . . , αn+1]

=

∫ T

0

∫ T

τ1

. . .

∫ T

τn−1

τ−α1
1 τ−α2

2 . . . τ−αn
n dτn . . . dτ2dτ1

=

∫ T

0

∫ τn

0

. . .

∫ τ2

0

τ−α1
1 τ−α2

2 . . . τ−αn
n dτ1dτ2 . . . dτn
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since in both cases the function τ−α1
1 τ−α2

2 . . . τ−αn
n is being integrated over all tuples (τ1, τ2, . . . , τn)

where 0 ≤ τ1 ≤ τ2 ≤ . . . ≤ τn ≤ T .

From this formulation, it is an easy exercise to show that

Cn
0 =

1

(1− α1) · (2− (α1 + α2)) · . . . · (n− (α1 + . . .+ αn))

as required.

We note in passing that combining this result with the sum for Cn+1
0 observed in Remark 5.2 above

yields an interesting and non-obvious identity.

There is one further step to complete the analysis of (2) and conclude that when we permute the
vertices v1, . . . , vn and sum, its output satisfies condition (4). We need to establish that (in the notation
of (4)), the term CSd

> 0 where Sd is such that R ⊆ Sd ⊂ H and δ (H/Sd) = d(H/R). Happily this
is easy to see. The term CSd

arises as a sum (over different permutations of v1, . . . , vn) of constants of
the form

Cn
j =

(−1)
j

(

∏n−j
k=1 δ (Ak/Sd)

)(

∏j
i=1 δ (Sd/Bi)

)

for certain Sd ⊂ Ak ⊆ H and R ⊆ Bi ⊂ Sd. Since δ (H/Sd) = δ (H/Ak) + δ (Ak/Sd), by hypothesis on
Sd it follows that δ (Ak/Sd) > 0. Likewise δ (H/Bi) = δ (H/Sd)+δ (Sd/Bi) meaning that δ (Sd/Bi) < 0
and Cn

j > 0.

By the same reasoning, in the rigid case Cn
n > 0, meaning that after summing over permutations

v1, . . . , vn we have CH > 0 as required.

Finally we return to integral 3:

Jn [τ0, α2, . . . , αn] =

∫ T

τ0

∫ T

τ1

. . .

∫ T

τn−1

1 · τ−α2
2 . . . τ−αn

n dτn . . . dτ2dτ1.

We can analyse this as follows (keeping the notation from above):

Jn [τ0, α2, . . . , αn+1] =

∫ T

τ0

In−1 (τ1, α2, . . . , αn) dτ1

=





(

Cn−1
0

)′
+

n−1
∑

j=1

(

Cn−1
j

)′

(j + 1)− (α2 + . . .+ αj+1)



Tn−(α2+...+αn)

−
(

Cn−1
0

)′
· T (n−1)−(α2+...+αn) · τ0

−
n−1
∑

j=1

(

Cn−1
j

)′
· T (n−1−j)−(αj+2+...+αn) · τ

(j+1)−(α2+...+αj+1)
0

(j + 1)− (α2 + . . .+ αj+1)
.

So we may write

Jn [τ0, α2, . . . , αn] =Dn
0 · Tn−(α2+...+αn) +Dn

1 · T (n−1)−(α2+...+αn) · τ0

+
n
∑

j=2

Dn
j · T (n−j)−(αj+1+...+αn) · τ

j−(α2+...+αj)
0

where

Dn
1 = −

(

Cn−1
0

)′
=

−1
∏n−1

k=1 (k − (α2 + . . .+ αk+1))



Evolving Shelah-Spencer Graphs 13

and for 2 ≤ j ≤ n,

Dn
j =

−
(

Cn−1
j−1

)′

j − (α2 + . . .+ αj)

=
(−1)

j

(

∏n−j
k=1 (k − (αj+1 + . . .+ αj+k))

)(

∏j−1
i=1 (i− (αj+1−i + . . .+ αj))

)

(j − (α2 + . . .+ αj))

and

Dn
0 =

(

Cn−1
0

)′
+

n−1
∑

j=1

(

Cn−1
j

)′

(j + 1)− (α2 + . . .+ αj+1)

=
1

∏n−1
k=1 (k − (α2 + . . .+ αk+1))

+
n−1
∑

j=1

(−1)
j

(

∏n−1−j
k=1 (k − (αj+2 + . . .+ αj+1+k))

)(

∏j
i=1 (i− (αj+2−i + . . .+ αj+1))

)

((j + 1)− (α2 + . . .+ αj+1))
.

Again, we need to establish that CSd
> 0 (in the notation of (4), reinterpreted to our new context)

where Sd is such that Sd ⊂ H and δ (H/Sd) = d(H). This time, the term CSd
arises as a sum (over

different permutations of v1, . . . , vn) of constants of the form

Dn
j =

(−1)
j

(

∏n−j
k=1 δ (Ak/Sd)

)(

∏j−1
i=0 δ (Sd/Bi)

)

for some Sd ⊂ Ak ⊆ H and Bi ⊂ Sd, where B0 = ∅. Just as before, δ (Ak/Sd) > 0 and δ (Sd/Bi) < 0,
meaning that Dn

j > 0.
Again, in the rigid case the same reasoning gives that Dn

n > 0, meaning that after summing over
permutations v1, . . . , vn we have CH > 0.

This completes our analysis of integrals (2) and (3), establishing that both satisfy condition (4).
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