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Abstract 

Bulk specimen containing Ti3SiC2, TiSi2 and TiC was prepared through an in situ spark 

plasma sintering/solid-liquid reaction powder metallurgy method using the Maxthal 312 

(nominally-Ti3SiC2) powder as starting material.  The reaction mechanism, phase constituents 

and evolution of microstructure were systematically investigated by X-ray diffraction (XRD), 

optical microscopy, scanning electron microscopy (SEM) equipped with energy dispersive 

spectroscopy (EDS) system, transmission electron microscopy (TEM), Raman spectroscopy, 

differential scanning calorimetry (DSC) and Vickers microhardness testing. Phase analysis 

and microstructural characterization revealed that the bulk sample contained binary ancillary 

phases possibly due to incomplete reaction and/or Si evaporation. The deformed 

microstructure around the indents revealed evidence of plasticity, intrinsic lubricity and 

toughening. The Microstructural and orientation relationships between the phases contained 

in the bulk sample are reported.  

Keywords: Ti3SiC2; metalloceramic; spark plasma sintering; reaction mechanism; microstructure  

1. Introduction 

Upon the discovery that the ternary metalloceramic compounds with Mn+1AXn (MAX) 

chemistry (where n = 1 – 5, M is an early transition metal, A is an A-group and X is C or N) 

possess and unusual, and sometimes unique set of properties, they have been extensively 



studied [1-3]. The fact that the 2-D materials known as MXenes, which cannot be synthesized 

directly due to their thermodynamic metastability [4-6] can be synthesized directly from 3-D 

MAX phases by taking advantage of the significant difference in strength between the 

metallic M–A bonding and covalent M–X bonding, which aids in selectively etching out the 

A-layer to form two-dimensional MXenes have further attracted extensive interest in MAX 

phases [7]. Well over 100 MAX phases have now been successfully synthesised, and in some 

cases ‘hybrid’ MAX phases, consisting of a partial substitution of the M or A elements have 

also been found to be stable [1-3, 8].   

MAX phases typically exhibit properties between those of metals and conventional ceramics 

[1]. They have high electrical and thermal conductivity while also showing creep resistance, 

high temperature strength, and good resistance to thermal shock and oxidation [9]. They are 

stiff (Ti3SiC2 has around three times the stiffness of titanium with a comparable density [10]) 

and relatively soft compared to their binary carbide equivalents, so much so that MAX phases 

are easily machinable with common metalworking tools such as hacksaws or lathes [11]. Due 

to their layered structure, MAX phases are surprisingly damage tolerant; the layers slide, kink 

and delaminate to absorb the deformation, causing local hardening at the damage site [12-14]. 

Currently, MAX phases find applications as furnace tubes and high temperature burner 

nozzles, as well as electric furnace elements [10]. They have been proposed for use as latex 

glove formers [10], and, due to some favourable radiation tolerance studies [15-18] MAX 

phases are also being considered as a potential material for use within current and future 

designs of nuclear fission reactor [19, 20]. Their layered nature and self-lubricating properties 

make them a candidate for bearings and other sliding applications [21-24]. 

Titanium silicon carbide (Ti3SiC2) is a member of the Mn+1AXn layered compound belonging 

to the Tin+1SiCn system. It is the most stable ternary phase in Ti–Si–C ternary phase system 

and crystallizes in the space group of P63/mmc [25]. However, its formation is compromised 



by more stable binary phases (TiC, SiC and TiSi2) due to its narrow formation region in the 

Ti–Si–C phase diagram [25]. The bonding in Ti3SiC2 is anisotropic as well as metallic-

covalent-ionic in nature [26]. This unusual bonding characteristics and special crystal 

structure render MAX phases with unique and sometimes unusual properties [27]. Ti3SiC2, 

just like other members of the MAX phases does not melt but instead decomposes into its 

respective binary phases via the dissociation of Si at specific temperature in various 

atmosphere [28]. It is reported to be stable under vacuum or argon atmosphere up to 1600 °C 

[29]. All these exciting properties make MAX phases a promising next generation material 

suitable in a range of structural applications as a monolithic phase and/or composite [30]. 

Some authors have reported that the composite form, Ti3SiC2–TiC and Ti3SiC2–SiC for 

example, possesses superior mechanical properties than monolithic Ti3SiC2 [31, 32]. 

There are several synthesis routes to produce Ti3SiC2. Hot Pressing/Hot Isostatic Pressing 

(HIP) [33, 34], as used by Barsoum and El-Raghy in their initial paper on Ti3SiC2 [35], and 

Spark Plasma Sintering [36-39] are common methods, which produce bulk samples. Self-

propagating High-temperature Synthesis (SHS) is also employed to produce a low density 

product, which is commonly crushed to a powder for secondary densification [40-43]. 

Ancillary phases such as TiC, TiSi2 and SiC are often reported to coexist with Ti3SiC2 during 

synthesis [24, 44, 45]. However, the addition of aluminium [36, 46] in controlled amount in 

the starting powder mixture and/or over-stoichiometric starting powder mixture containing 

excess silicon [47] has been shown to reduce the ancillary phases produced. 

The scope of this study is to investigate the formation of Ti3SiC2 via the prealloyed powder 

route and elucidate the reaction mechanism and the resulting microstructural evolution. 

Synthesizing high purity Ti3SiC2 is not the aim of this work but instead we seek to further 

contribute to the metallurgy of Ti3SiC2. Spark plasma sintering (SPS) is a synthesis and 

densification sintering process with the advantage of rapid heating rate and short sintering 



time. Importantly, the short sintering time is advantageous in suppressing grain growth [48] 

and the range of controllability of sintering parameters enables tailoring of the evolved 

microstructure. 

2. Material and Methods 

Pre-reacted commercially available Ti3SiC2 powder (Maxthal 312 (nominally-Ti3SiC2; 

particle size 2 µm, Kanthal AB, Sweden) was used as starting powder. The composition of 

the as-received Maxthal 312 powder were 92 wt.% Ti3SiC2 and 8 wt.% TiC, respectively. 

The powder was initially cold-pressed in a graphite die (Ø = 20 mm) in between two graphite 

punches with the inner wall of the die and surface of the punch covered with graphite paper 

to isolate the powder from the die and punches. The die-powder-punch assembly was then 

wrapped with graphite felt to minimize possible heat dissipation during the synthesis and 

subsequently loaded into the SPS furnace unit (HP D 25; FCT Systeme GmbH, Rauenstein, 

Germany) as shown in Fig. 1. The consolidation was carried out at a sintering temperature 

1400 °C with a hold time of 5 min. The heating rate was 100 °C/min whilst the load (54 

MPa) was applied at room temperature and removed at the end of the dwell time. During the 

synthesis, the chamber was maintained under vacuum (10-2 Pa) and the temperature was 

controlled by a thermocouple that measured the temperature in the interior of the graphite 

punch. The sintering temperature was selected based on a preliminary test which ensures the 

bulk composition falls within a three-phase region as purity of the bulk sample is not the 

scope of this work. 



 

Fig. 1. (a) punch-powder- die assembly and (b) SPS furnace unit and associated sintering parameters. 

2.1. Characterization 

X-ray diffraction (XRD) patterns were obtained with a θ − 2θ diffractometer (Bruker D2 

Phaser, Germany) using Cu Kα radiation source in steps of 0.02° at 1 s/step. The surface 



layer of the as-sintered disc was removed by grinding prior to XRD analysis. Phase 

identification was performed using DIFFRAC EVA software suite whilst the phase 

quantification was obtained by Rietveld refinement (TOPAS) from the diffraction pattern 

collected in the 5–80° (2Ө) range using X’pert3 diffractometer (Malvern Panalytical, UK). 

Microstructural evolution was investigated using scanning electron microscopy (SEM; 

Inspect F50, FEI The Netherlands) equipped with an EDS detector (Oxford Instruments X-

Max/Aztec Nanoanalysis, UK) and transmission electron microscopy (TEM; Philips 

EM420/120 kV and JEOL JEM-F200/200 kV). TEM electron transparent samples from 

selected areas were prepared using a focused ion beam (FIB; FEI Helios NanoLab G3 UC, 

FEI company, The Netherlands). The Vickers hardness (HV) of bulk sample was measured 

using an indentation load of 19.6 N for 15 s (DuraScan G5 emcoTEST, Austria). The density 

of the bulk sample was measured following mirror-like metallographic polishing down to 0.5 

µm diamond paste by the Archimedes’ method in water at ambient conditions. Raman 

analysis was carried out ex-situ on the polished surface by employing a Si-calibrated inVia 

Raman spectrometer (Renishaw plc, UK) with an Ar laser (λ = 514.5 nm, laser output power 

20 mW) and a 50x objective lens (spot size of 2 µm). In order to further understand the phase 

transformations and reaction mechanisms during synthesis, simultaneous thermal gravimetric 

analysis (TGA)-differential scanning calorimetry (DSC) experiment was conducted on the 

Maxthal 312 powder (Q600, TA Instruments) from 25 to 1500 °C in a high purity dynamic 

nitrogen atmosphere using Al2O3 crucible. 

3. Results and Discussion 

3.1.  Morphology of Maxthal 312 powder 

The morphology of the as-received Maxthal 312 powder is shown in Figs. (2) and (3). Fig. 2 

shows the characteristic lamellar nature of the Ti3SiC2 MAX phase compound, whilst Fig. 3 



is an EDS elemental map which reveals the coexistence of TiC particle in the as-received 

prealloyed powder in the form of an ancillary. 

 



 

Fig. 2. SEM (SE–BSE) micrographs showing the morphology of the as-received Maxthal 312 

(nominally-Ti3SiC2) powder. 



 

Fig. 3. EDS elemental mapping of the as-received Maxthal 312 (nominally-Ti3SiC2) prealloyed 

powder. 

3.2.  Phase analysis and densification 

X-ray diffraction (XRD) from the as-received prealloyed Maxthal 312 powder confirmed 

Ti3SiC2 as a major phase and some minor TiC intermetallic phase is shown in Fig. 4. 

 



 

Fig. 4.  XRD pattern of the as-received Maxthal 312 (nominally-Ti3SiC2) powder. 

The XRD patterns showing the phase evolution of the bulk sample following spark plasma 

sintering of the prealloyed Maxthal 312 powder is given in Fig. 5. It can be seen from the 

diffraction pattern that the bulk sample consists of three phases: Ti3SiC2, TiC and TiSi2, 

respectively. In comparison to the as-received prealloyed powder X-ray diffraction pattern, 

additional peaks were observed, especially two strong peaks at 2Ө = 39° and 43.2°, which 

correspond to TiSi2 peaks evolved after synthesis. 



 

Fig. 5. XRD pattern of the synthesized sample disc after polishing. Inset shows the polished disc. 

Fig. 6 shows X-ray diffraction (XRD) pattern of the bulk sample (2Ө = 5°- 80°) alongside 

Rietveld refinement of the pattern. The Rietveld refined parameters are Rwp = 6.532 and χ2 = 

3.146, respectively. The bulk sample contained 51.8 wt.% Ti3SiC2, 36.4 wt.% TiC and 11.8 

wt.% TiSi2, respectively. The refinement data showed strong preferred orientation in the 002 

direction. This is in agreement with our earlier work which indicated preferred orientation of 

Ti3SiC2 along the pressing direction during the SPS synthesis [24]. The relative density of the 

polished disc was 99 % upon taking into account the phase fraction of the constituent phases 

and their corresponding theoretical densities, respectively. 

 



 

Fig. 6. Rietveld refinement of the XRD pattern of the Bulk sample in 2Ө range from 5 to 80°. 

3.3. Microstructural evolution and EDS analysis 

SEM backscattered electron (BSE) micrographs of the polished unetched bulk sample is 

shown in Fig. 7. According to the EDS analysis (Fig. 8) the bright phase is the Ti3SiC2 phase 

whilst the dark contrast is the TiC phase. Those with the  medium contrast are the TiSi2 phase 

(white arrow in Fig. 8 map spectrum) - an intermediate eutectic liquid phase leading to the 

formation of Ti3SiC2 that has not been fully consumed [49]. According to Refs. [50, 51], the 

reaction mechanism leading to the formation of Ti3SiC2 is a solid-liquid reaction partly due to 

the formation of Ti–Si eutectic liquid (eutectic temperature 1332 °C) and/or liquid Si 

formation (Tm of Si = 1414 °C). 



 

Fig. 7. Backscattered electron (BSE) images of the bulk sample produced by SPS using the Maxthal 

312 powder. Note the homogenous dispersion of the in situ formed TiC in the Ti3SiC2 matrix.  



 

Fig. 8. Identification of particular phases in the bulk sample by EDS elemental map analysis. 

Fig. 9 shows TEM images obtained from the bulk sample revealing an area containing the 

Ti3SiC2 grains. The plate-like morphology (Fig. 9(a)) typical of MAX phases can be seen 

alongside with evidence of basal plane dislocation (Fig. 9(b-d)) as reported elsewhere [52]. 

Basal plane dislocations play a key role during room-temperature deformation of MAX 

phases as they possess fewer than five slip systems needed for polycrystalline ductility [52, 

53]. The steps along the grain boundary (red arrow in Fig. 9(b)) is an evidence of slip along 

the basal planes [10]. 



 

Fig.  9. (a) BF-TEM micrograph showing the plate-like morphology of the Ti3SiC2 grains, (b) BF-

TEM micrograph showing evidence of basal plane slip (red arrow) and basal plane dislocation (white 

arrow), (c) BF-TEM image obtained from a Ti3SiC2 grain along the [101] direction and (d) DF-TEM 

image of dislocation shown in (c) imaging with 𝑔 = 2̅12 (white arrows show edge-on basal plane 

dislocations). 

3.4. Thermal behaviour of the Maxthal 312 powder 

Fig. 10 shows the simultaneous DSC/TGA thermogram recorded during the heating of the 

Maxthal 312 powder at 20 °C/min from 40 to 1500 °C in flowing Ni. Exothermic peaks (518, 

602 and 735 °C) corresponding to anatase and/or rutile TiO2 layers were detected up to 900 

°C. The observed mass increase in this temperature range is linked to the oxidation of 



titanium in agreement with a previous report [54]. The DSC curve further exhibited three 

broad overlapped exothermic peaks (1052, 1137 and 1232 °C) as the temperature is further 

increased. Considering the temperature of these exothermic peaks and the SEM-EDS analysis 

of the phases in the bulk sample sintered to 1250 °C (Fig. 11), it can be concluded that these 

peaks correspond to the evolution of TiSi2 and Ti3SiC2 phases. In particular the Ti–Si eutectic 

liquid will provide a direct route for the formation of Ti3SiC2 once the pre-existing TiC 

particles reacts with the Ti–Si liquid phase as proposed by Sato et al. [55] and Zhang et al. 

[56]. This conclusion is also in agreement with the thermogravimetric results obtained by 

Kero et al. [49, 57], as well as observations in this work revealing the growth of Ti3SiC2 takes 

place within the Ti–Si liquid phase (electron image in Fig. 11).  The last exothermic peak at 

1478 °C may be attributed to TiCx formation due to Si evaporation induced Ti3SiC2 

decomposition as the temperature exceeds the melting point of Si (1414 °C). Fig. 12 shows 

the XRD pattern obtained from the decomposed Maxthal 312 powder following the 

thermogravimetric analysis. The phases in the decomposed powder (i.e., TiCx, TiO2 and Si) 

are in good agreement with the exothermic peaks during the thermal analysis.  



 

Fig. 10. TGA/DSC plot of the thermogravimetry analysis of Maxthal 312 (nominally-Ti3SiC2) 

powder. 

 

 

 



 

Fig. 11. EDS elemental map showing the evolution of phases in the bulk sample synthesized by SPS 

to 1250 °C. The highlighted section in electron image (red rectangle) shows the growth of the Ti3SiC2 

grains. 



 

Fig. 12. X-ray (XRD) diffraction pattern of the decomposed powder after TGA/DSC thermal analysis. 

3.5. Pore formation in Ti3SiC2 

The pores formed during the synthesis of Ti3SiC2 such as those shown in Fig. 13 are derived 

from the following aspects: the original particle gap; interstitial pores left during the pressing 

procedure; lack of densification; generation of new phase in the sintering process; Si 

deintercalation linked to the high vacuum pressure during the SPS and/or vapourization 

during high temperature sintering (i.e., above the melting point of Si). The high vacuum 

pressure (about 10-3Pa) during the SPS coupled with the high vapour pressure of silicon may 

have led to decomposition of Ti3SiC2 thus promoting pore formation via the outward 

diffusion of Si from the Ti3SiC2 grains. This is supported by observation reported elsewhere 



[58, 59] and the hypothetical deintercalation reaction leading to pore formation given as 

follows [60]: 

Ti3SiC2 → 3TiCX=0.67 + Si(vap. ) 
This proposed loss of Si by deintercalation even at sintering temperature below the melting 

point of silicon (Tm = 1414℃) contributes significantly to the loss of purity in the 

synthesized sample during the SPS. Investigators have often compensated for the loss of Si 

during vacuum sintering by silicon over-stoichiometry [47, 61-63] (that is, deviation from 

3:1:2 stoichiometric ratio for Ti:Si:C) in the starting mixtures to increase the conversion into 

Ti3SiC2. Another method involves the systematic addition of a small amount Al in the 

starting powder mixture [64-66]. The increase in purity with aluminium addition is as 

follows: as aluminium has a relatively low melting point (660 °C), molten Al will promote 

the diffusion of both Ti and Si atoms thus expediting the formation of Ti3SiC2 via solid-liquid 

reaction at low temperature [67]; molten Al also acts as a deoxidation agent which promotes 

the synthesis of Ti3SiC2 [65]. However, excessive Al may dilute the reactants or react with Ti 

to form Ti3Al, thus compromising the phase-purity of Ti3SiC2. 

 

Fig. 13. Pore formation in Ti3SiC2 matrix owing to deintercalation of Si under high vacuum pressure. 



On the other hand, pore formation may also result from possible carbon uptake from the 

graphite tooling (graphite paper/die/punch set-up) and its subsequent reaction with Ti3SiC2 

which will result in bulk compositional shift into a three-phase Ti3SiC2-TiC-TiSi2 

compositional triangle (Fig. 14) following the decomposition reaction thus [68]: 

2Ti3SiC2 + C → 5TiCX + TiSi2 

 

Fig. 14. Compositional diagram in the Ti–Si–C system. The three phases of interest in this 

work are highlighted using a triangle. 

3.6.  Vickers-induced deformation microstructure 

Vickers microhardness measured from the polished surface of the SPSed disc was ~ 5.8 GPa. 

This value is somewhat higher as compared to the intrinsic hardness of Ti3SiC2 reported to be 

about 4 GPa [12]. The higher hardness as compared to monolithic phase Ti3SiC2 may be 

associated to the finer microstructure introduced by SPS [61] as well as the presence of TiC 



ancillary in the synthesized sample. Optical micrographs (Fig. 15) obtained from the indents 

showed no sign of lateral cracks emanating from the indention diagonals as extensive grain 

pileups around the indents was operative. The ability of Ti3SiC2 to contain damage in limited 

area around the indents is a signature property of the damage tolerance capability reported in 

MAX phases [12, 13, 69, 70]. Nonetheless, the extent of grain pileup – a microscale 

deformation mechanism owing to room-temperature plasticity [12] – varied as shown in Fig. 

15(a-c) using the same indentation load. According Li et al.[71] asymmetry in the damage 

zone around indentation is linked to the anisotropic behaviour of Ti3SiC2. This is because 

favourably oriented grains parallel to the surface will deform by the glide of basal plane 

dislocations [72] to bring about grain push-outs in the vicinity of the indentation once the 

compressive stresses are released [12, 71].  

 



Fig. 15. Optical micrographs showing anisotropic deformation morphology following Vickers 

indentation. 

Fig. 16(a) shows the SEM micrographs obtained from the damage zones around the 

indentation prints on the bulk sample. No indentation-induced cracks were observed around 

the indentation diagonals as microdamage appears to be confined in the immediate vicinity of 

the indents - indicating that Ti3SiC2 is damage tolerant. However, the morphology of the 

grains around the indent further revealed evidence of additional micro-scale deformation 

mechanisms as shown in Fig. 16(b-d). The energy of an advancing crack appeared to have 

been consumed due to the plate-like nature of the Ti3SiC2 grains leading to diffuse 

microcracking as shown in Fig. 16(b). In addition to crack deflection, other micro-scale 

plasticity events occur such as, grain pull-out, delamination (Fig. 16(c)), grain buckling and 

cavitation (Fig. 16(d)), which renders Ti3SiC2 damage tolerant [12, 13]. The observed 

cavitation after deformation is due to the lack of five independent slip systems needed for 

polycrystalline ductility in MAX phases [72, 73]. 



 

Fig. 16. (a) Scanning electron (SEM) micrographs revealing the morphology around the indent, (b) 

diffuse microcracking, (c-d) deformation micro-mechanisms in Ti3SiC2. 

An intriguing observation during the indentation is the evolution of amorphous-carbon films 

as shown by EDS elemental map analysis (Fig. 17) and Raman spectroscopy (Fig. 18). The 

evolution of amorphous carbon layer [74, 75] following indentation scratch, as well as rutile 

phase of TiO2 tribofilm [76] further highlights the intrinsic lubricity of Ti3SiC2 as reported 

elsewhere during tribological studies [21] and machining with cutting tools [9].  



 

Fig. 17. EDS elemental map of the Vickers indentation print revealing evidence of amorphous carbon 

around the indent. 



 

Fig. 18. Raman spectrum collected from the tribofilm region (white arrow) next to the indentation 

print revealing evidence of tribofilms (rutile (TiO2) and D & G amorphous carbon Raman vibrational 

modes). 

In order to clarify that the amorphous carbon films are indeed indentation-induced and not as 

a result of carburization from the graphite tooling employed during the SPS (even though the 

surface of the bulk sample was polished down to 0.5 µm diamond paste), Raman spectra were 

collected from the as-synthesized surface (Fig. 19) and polished surface (Fig. 20). For the as-

synthesized surface, the Raman spectrum collected from the carburized surface corresponded 

to vibration mode of crystalline graphite [75]. The D/G intensity ratio (ID/IG) used as a 

graphitization index to monitor the deviation from the crystallinity further differentiates the 

graphitized layer to the amorphous carbon layer [75]. On the other hand, the Raman spectrum 



collected from the polished surface revealed vibrational corresponding to essentially Ti3SiC2 

[77]. No evidence of non-stoichiometric TiCX which possesses a Raman active mode which 

might have formed on the surface due to carburization was detected. 

 

 

Fig. 19. Raman spectrum collected from the as-synthesized bulk sample surface after SPS. Inset 

shows the carburized surface where Raman spectrum was collected.  



 

Fig. 20. Raman spectrum collected from the polished surface of the bulk sample. Inset shows the 

polished surface where the Raman spectrum was collected. Note stoichiometric TiC does not possess 

Raman active mode. 

4. Microstructural and Orientation Relationship  

An area from the bulk sample analysed by STEM-EDS is shown in Figs. 21(a-e). The EDS 

data confirmed the presence of all the three phases i.e. Ti3SiC2, TiC and TiSi2. The Ti3SiC2 

phase typically appear as elongated plate-like grains. The TiC and TiSi2 phases are essentially 

defect-free, also, no cracking were observed at the Ti3SiC2–TiC interface due to coefficient of 

thermal expansion (CTE) mismatch between the two phases as reported elsewhere [78]. The 

lowest interfacial energy between TiC and Ti3SiC2 occurs when (111)TiC is parallel to 

001(Ti3SiC2), therefore, there is an orientation relationship between TiC and Ti3SiC2 in the 

Ti-Si-C system [79, 80]. Here, we observed similar orientation relationship between TiC and 



Ti3SiC2 grains. As illustrated in Fig. 21(f), (111)TiC is parallel to (001)Ti3SiC2 at the 

Ti3SiC2–TiC interface. 

 

Fig. 21. (a) ADF STEM micrograph obtained from the bulk sample, (b) Si, (c) C and (d) Ti EDS 

elemental maps from (a). (e) Shows overlay maps of Ti, Si, and C. (f) SAD pattern obtained from the 

interface of TiC and Ti3SiC2 grains where [110]TiC and [100]Ti3SiC2 are parallel to the electron beam 

direction (SAD has been rotated ~ 22° counter-clockwise with regard to (a)). Diffraction spots related 

to the TiC grain are marked by yellow circles. 

.5.  Conclusions 

In this work, Ti3SiC2 was successfully fabricated in-situ by powder metallurgy spark plasma 

sintering using the MAX phase prealloyed starting powder. The reaction mechanism leading 

to the formation, decomposition and microstructural evolution of Ti3SiC2 was discussed, and 

the main conclusions are as follows: 



1. The starting composition, carbon uptake and vacuum pressure during SPS plays a 

crucial role in high Ti3SiC2 conversion. 

2. A starting powder mixture with excess silicon and deficient carbon 

(3Ti/(1+x)Si/(1x)C) is needed to compensate for simultaneous Si-loss and carbon 

uptake, thus leading to high-purity Ti3SiC2. 

3. Energy absorbing diffuse microcracking and deformation-induced micromechanisms 

via basal plane slip renders Ti3SiC2 tough and damage tolerant. 

4. Ti3SiC2 is self-lubricating due to intrinsic rutile and amorphous carbon tribofilm 

formation. 

5. The Maxthal 312 prealloyed starting powder route is suitable in the synthesis of 

Ti3SiC2 if purity of the bulk sample is not of interest such as in the synthesis of MAX 

phase composites. This is because Si-evaporation will push the overall bulk 

composition into a two-phase (Ti3SiC2-TiC) or three-phase (Ti3SiC2-TiSi2-TiC) 

region with ancillary phases homogeneously distributed in the Ti3SiC2 matrix as they 

formed in-situ and not added as a second phase, thus a reinforcement the MAX phase 

compound is expected.    
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