
This is a repository copy of Efficient utilization of DSPs and BRAMs revisited : new AES-
GCM recipes on FPGAs.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/158509/

Version: Accepted Version

Proceedings Paper:
Kavun, E.B. orcid.org/0000-0003-3193-8440, Mentens, N., Vliegen, J. et al. (1 more 
author) (2020) Efficient utilization of DSPs and BRAMs revisited : new AES-GCM recipes 
on FPGAs. In: 2019 International Conference on ReConFigurable Computing and FPGAs 
(ReConFig). 2019 International Conference on ReConFigurable Computing and FPGAs 
(ReConFig), 09-11 Dec 2019, Cancun, Mexico. IEEE . ISBN 9781728119588 

https://doi.org/10.1109/reconfig48160.2019.8994730

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other users, including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale or redistribution to servers 
or lists, or reuse of any copyrighted components of this work in other works. Reproduced 
in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Efficient Utilization of DSPs and BRAMs

Revisited: New AES-GCM Recipes on FPGAs

Elif Bilge Kavun

The University of Sheffield, Sheffield, UK

e.kavun@sheffield.ac.uk

Nele Mentens

imec-COSIC and ES&S, ESAT, KU Leuven, Leuven, Belgium

nele.mentens@kuleuven.be

Jo Vliegen

imec-COSIC and ES&S, ESAT, KU Leuven, Leuven, Belgium

jo.vliegen@kuleuven.be

Tolga Yalçın

Northern Arizona University, Flagstaff, AZ, US

tolga.yalcin@nau.edu

Abstract—In 2008, Drimer et al. proposed different AES
implementations on a Xilinx Virtex-5 FPGA, making efficient use
of the DSP slices and BRAM tiles available on the device. Inspired
by their work, we evaluate the feasibility of extending AES with
the popular GCM mode of operation, still concentrating on the
optimal use of DSP slices and BRAM tiles. We make use of
a Xilinx Zynq UltraScale+ MPSoC FPGA with improved DSP
features. For the AES part, we implement Drimer’s round-based
and unrolled pipelined architectures differently, still using DSPs
and BRAMs efficiently based on the AES Tbox approach. On
top of AES, we append the GCM mode of operation, where we
use DSP slices to support the GCM finite field multiplication.
This allows us to implement AES-GCM with a small amount of
FFs and LUTs. We propose two implementations: a relatively
compact round-based design and a faster unrolled design.

I. INTRODUCTION

FPGA vendors make heterogeneous devices that contain

dedicated cores on the silicon die, next to the traditional re-

configurable gates. Although such a versatile array of different

cores makes that for every application there is a fit, it also

means that some dedicated cores are unused, while others are

intensively used. In order to optimize the occupation of the

dedicated cores, it is a challenge for the hardware designer

to use the dedicated cores for applications that they were not

originally intended for. This paper is inspired by the work of

Drimer et al. [1], which implements the Advanced Encryption

Standard (AES) [2] on a Xilinx Virtex-5 device, mostly using

DSP slices and Block RAM (BRAM) cores. Since symmetric

ciphers are almost always used in combination with a mode

of operation, we extend [1] by implementing both AES and

the Galois/Counter Mode (GCM) [3] on a recent Xilinx Virtex

UltraScale+ FPGA [4], still concentrating on maximizing the

use of DSP slices and BRAM cores while minimizing the use

of flip-flops (FFs) and look-up tables (LUTs).

II. IMPLEMENTATION

Two architectures are implemented: a round-based archi-

tecture, performing both AES and the multiplication in 10

cycles, and a fully unrolled pipelined architecture, executing

both parts in one cycle. The flow of the pipelined unrolled

architecture is the same as the round-based architecture. The

only difference is that all rounds are implemented in an

unrolled pipelined fashion for faster execution with more area

utilization. Since all round constants are fixed in the unrolled

version, there is no need for control logic. Fig. 1 shows the

overall AES-GCM FPGA architecture.
BRAM
(as	FIFO)

AD

BRAM
(as	FIFO)

AE

Len
IV COUNTER BLOCK

CIPHER

ciphertext

tag

MULTI
PLIER

KEY

FSM

Fig. 1. The overall AES-GCM architecture, in which AD and AE stand for
associated data and data for authenticated encryption, respectively. The block
cipher is the AES core and the multiplier is the GCM core.

A. AES Core

Drimer et al. used the AES optimization technique T-

table approach [2]. In the LUT realization of AES Sub-

Bytes step, it is possible to append the MixColumns step

together with ShiftRows to the LUT and re-define the table

as 8-bit input, 32-bit output. T-table is defined as y →

(2S(x), S(x), S(x), 3S(x)) or as its shifted versions due to

ShiftRows as a result of the multiplication with the Mix-

Columns coefficients. Using T-tables, it is possible to use

the existing BRAM resources on an FPGA efficiently while

minimizing LUT and FF utilization. Furthermore, as in the

case of Drimer et al., DSP slices are also used to realize certain

AES steps which again results in less LUT utilization. Our

AES core takes 128-bit data and key as inputs. We define two

types of T-tables for data substitution, T and T ′ (8K each),

where T and T ′ correspond to the concatenation of 2S, S, S,

3S and S, 0, 0, 0, respectively. We do not need decryption

thanks to GCM mode, which enables us to implement the

last round without using any additional logic. AES core block

diagram can be seen in Fig. 2. For the key scheduling part,

additional BRAMs are required due to 4 Sbox calls in the

last 32-bit word of the round key. The rc values for the 8-bit

round constant addition is also stored in BRAM. We also use

BRAMs instead of registers by storing a one-to-one mapping

LUT, which we call “Bbox”.



Fig. 2. Block diagram of the AES core

B. GCM Core

The DSP slices on an UltraScale+ can have the +/-/l operator

in the second stage perform a 3-input XOR. This new feature

is utilized to execute the 3-input addition in the for-loop of the

GCM algorithm’s GF(2128) multiplier. The other operations in

the for-loop are a multiplication with x, i.e. a shift operation

that is handled through the routing outside of the DSP slice,

and multiplications of a GF(2) element with a GF(2128) ele-

ment, namely ai·B(x) and tm·P (x). We use a multiplexer that

has the GF(2) element at its selection input and the GF(2128)

element at one of its data inputs, while the second data input is

fed with zeros. This leads to the DSP slice mapping in the top

part of Fig. 3, showing the two multiplications through two

multiplexers and the addition through a three-input XOR. In

order to map this operation on the 48-bit DSP slices, we need

at least three slices (3∗48 > 128). The bottom DSP slice in the

figure is used to store the value of the irreducible polynomial

P (which is fixed in the GCM specification). This way, the

connection of P makes use of the dedicated routing in between

the DSP slices. This is shown in Fig. 3, in which the register

that stores the bits of P is indicated with a rectangle with a

cross inside. Since P is sparse (P = x128 +x7 +x2 +x+1),

we only need one DSP slice for the most-significant bits. In

total, this leads to 3 DSP slices utilizing multiplexers and an

XOR (as shown in the top part of Fig. 3), and one DSP slice

utilizing a register (as shown in the bottom part of Fig. 3),

thus 4 DSP slices in total for one the GF(2128) multiplication.

To execute a 128-bit wide modular multiplication in a single

clock cycle, 512 (128 × 4) DSP slices are required. When

performing one operation in 10 clock cycles, 52 (13× 4) DSP

slices are required. These two variants are used in the unrolled

and round-based AES-GCM implementations, respectively.

III. RESULTS

We evaluate the implementation properties of our AES-

GCM architectures using Xilinx Vivado 2017.3 suite after

placement and routing. The target platform is the ZCU102

Fig. 3. The mapping of the operations on the DSP slices.

evaluation kit which contains a Zynq UltraScale+ FPGA. The

results are shown in Table I, in which the glue logic represents

the additional registers, multiplexers and FSM.

TABLE I
IMPLEMENTATION RESULTS OF AES-GCM ON ZCU102

LUT FF BRAM DSP Tmin(ns)

unrolled PL 899 1036 139 685 172
AES 192 0 135 173
MULTIPLIER 325 401 0 512
glue 682 635 4 0

round based 785 1043 17.5 72 20
AES 196 4 13.5 20
MULTIPLIER 156 398 0 52
glue 433 641 4 0

With respect to LUT and FF utilization, our design dras-

tically outperforms the smallest AES-GCM implementation

on FPGA, presented by Zhou et al. in [5], which reports

4628 slices on a Virtex-5 FPGA. Knowing that each slice

contains 4 LUTs and 4 FFs, our implementation reduces the

occupation of the LUTs and FFs by a factor 20. With respect

to performance, Table I shows that both designs have a very

large critical path, introducing a performance degradation in

comparison to [5], which reports a maximum clock frequency

of 324 MHz and thus a critical path of 3 ns.

IV. CONCLUSION

We present AES-GCM architectures, tailored towards the

optimal use of DSP slices and BRAM blocks. The imple-

mentation results show that we manage to reduce the oc-

cupied LUTs and FFs by a factor 20 in comparison to the

smallest known AES-GCM implementation on FPGA (to our

knowledge). However, the use of the DSP slices results in a

relatively long critical path in the GF(2128) multiplier, leading

to a significant performance degradation in comparison to

related work. We can therefore conclude that the architectures

proposed in this work are mainly interesting to be added as IP

cores to FPGA applications that already occupy many LUTs

and FFs, but have a lot of free DSP slices and BRAM tiles.

V. ACKNOWLEDGEMENT

This work was partially funded by the DRASTIC project

(CELSA/17/033).
REFERENCES

[1] S. Drimer, T. Güneysu, and C. Paar, “DSPs, BRAMs and a Pinch of
Logic: New Recipes for AES on FPGAs,” in FCCM, pp. 99–108, IEEE,
2008.

[2] J. Daemen and V. Rijmen, The Design of Rijndael. Berlin, Heidelberg:
Springer-Verlag, 2002.

[3] (NIST), “Recommendation for Block Cipher Modes of Operation: Ga-
lois/Counter Mode (GCM) and GMAC,” Tech. Rep. SP800-38D, U.S.
Department of Commerce, 2007.

[4] Xilinx, “UltraScale Architecture DSP Slice User Guide UG473,” 2019.
[5] G. Zhou, H. Michalik, and L. Hinsenkamp, “Improving Throughput of

AES-GCM with Pipelined Karatsuba Multipliers on FPGAs,” in ARC,
pp. 193–203, Springer, 2009.


