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Abstract  

Formulators do not naturally turn to statistical thermodynamics for experimental inspiration. 

However, with the newer, intuitive approach to statistical thermodynamics the formulator gains 

deep insights into the hitherto confusing effects of “cosolvents”, “hydrotropes”, “solubilizers” 

that affect properties such as solubility, gelation or conformational stability. The historical 

confusion has arisen from classical approaches which simply cannot disentangle causes and 

effects. The aim of this review is to demonstrate how a formulator can work with statistical 

thermodynamics towards a rational design of experiments and an unambiguous interpretation 

of the driving forces behind cosolvent effects.  

 

1. Formulation via solvation control by additives (cosolvents)  

 

This review deals with an important question in formulation science (Figure 1), namely to 

understand how   

A. transition, solubility, stability, denaturation, sol-gel transition, aggregation, self-

association, binding, dispersion,   

can be controlled by adding  

B. cosolvents, hydrotropes, micelles, surfactants, Hofmeister salts, chaotropes, 

kosmotropes, osmolytes, crowders, inert polymers, denaturants, stabilizers, gelling 

agents, excipients.  

For convenience, let us use “transition” as a general term for A, and “cosolvents” for B 

throughout this review. The molecule that goes through transition is referred to as “solute”.  

 

How general and wide the scope of this question is can be felt by the diversity in the types of 

transition (list A, Figure 1(a)) and the wide-ranging solute size scales (Figure 1(b)). Moreover, 

the multiplicity of synonyms for cosolvents, covering different degrees of self-association (list 

B, Figure 1(c)), led to the long-standing misconceptions and confusions that the different class 

of cosolvents should obey different theories and explanations. The purpose of this review is to 
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persuade the reader that one universal theory can be used to explain all these transitions and 

cosolvents.    

   

All the combinations above rely on the control of solvation by cosolvents. Hence, the first point 

of recourse for a formulator is the solubility prediction software, such as the Hansen solubility 

parameters (HSP) [1] or COSMO-RS [2], that can be used to quantify solvation phenomena in 

general. If they work perfectly there is no need for this review. However, systems like water 

and aqueous solutions pose notorious difficulties to such methods [3] which renders them 

unable to deal with the subtle ordering that drives the effects. In the absence of solubility 

theories, a formulator is forced to carry out  

1. computer simulation, such as molecular dynamics,  

2. measurements of physical properties.  

For the reason to be discussed in detail in Section 7, option 1 is not yet mature enough 

completely to replace the current de-facto standards like HSP or COSMO-RS. Hence, here we 

focus on what can be known from the measurements of basic physical properties.  

 

2. Why solvation is so confusing  

 

Measuring physical properties to understand transition processes (option 2) has two uses: to 

validate the option 1, above, and to gain molecular insight itself.  But a formulator is soon faced 

with a need to make decisions (Figure 1), namely to choose  

(a) the suitable experimental approach(es) out of multitude of candidates that claim to give 

insight into solution-phase interactions,  

(b) the appropriate theory or model – from several options – to quantify solution-phase 

interactions, and even  

(c) the correct explanation from mutually-contradicting hypotheses that may or may not 

come with numbers or quantifiable models. 

 

Conundrum in (a) is particularly serious when different experimental techniques proposed to 

measure the same phenomena give contradictory results. For example, the “osmotic pressure” 

dependence and hydrostatic pressure dependence of a biomolecular process can be in opposite 

directions and differs by a few orders of magnitude [4,5], even though they are claimed to probe 

the same thing: biomolecular hydration change. (This will be resolved in Section 4.)   
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The problem of (b) is that there are assumptions made in developing these models. One 

example is the partitioning model approach to preferential (competitive) solvation (Figure 2(b)), 

which has to introduce a boundary that divides the solvation shell from the bulk solution, 

without which the partition coefficient cannot be defined [6]. But where should such a 

boundary be? Instead of an answer there is an assumption. (See Section 4 for a statistical 

thermodynamic alternative). We shall examine the binding model (Figure 2(b)), which caused 

much confusion and controversy, in more detail in later sections.  

 

Regarding (b), there is a tradition in solution chemistry that the study of “solution structure” 

(i.e., structure of bulk solvent-cosolvent mixture in our focus on two-component solutions) can 

somehow explain solvation of any solute. The “water structure” hypothesis and the hydrotrope 

self-association hypothesis belong to this category. According to the most articulate advocate 

of the water structure hypothesis [7], urea (as an example here) enhances the hydrophobic effect 

not through direct binding; the possibility was eliminated by the positive urea-hydrophobe 

interaction enthalpy. Hence, urea must act indirectly to the hydrophobe by breaking the 

structure of its hydration water [7]. The hydrotrope (i.e., a class of strongly self-associating 

cosolvents, Figure 1(c)) self-association hypothesis comes from the observation that a 

sigmoidal onset of solubilization is observed along the increasing hydrotrope concentration; 

and a loose analogy with critical micelle concentration has led to the proposal that hydrotrope 

self-association is the driving force (see [8–11] for review). The problem with these hypotheses 

is that they are dependent on questionable assumptions or unquantifiable premises. Statistical 

thermodynamics can judge their validity (see Section 6).  

 

Therefore, the questions remain: which experiment(s) should be carried out? How should the 

experiment(s) be analysed to yield information on interactions taking place in solution? What 

are the driving forces for solubilization, aggregation, stabilization, and conformational 

changes?  

 

3. Experiments without a statistical thermodynamic foundation is a recipe for confusion  

 

Here, we briefly illustrate that any attempt to understand the cosolvent effect, despite its long 

history [12–14], is prone to confusion when approached without the rigour of statistical 

thermodynamics. (For a fuller account, see Ref [15]). Let us consider a transition of a solute 

(referred to as species 𝑢) as listed in Figure 1(a). Let 𝐾 be the accompanying equilibrium 
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constant. According to the classical canon [4,16], how 𝐾 changes with water activity 𝑎1 (or the 

activity of principal solvent in general) can be expressed as a competition   

(
𝜕 ln 𝐾

𝜕 ln 𝑎1
)

𝑇,𝑃,𝑐𝑢→0
= Δ𝑁𝑢1 −

𝑐1

𝑐2
Δ𝑁𝑢2        (1) 

between Δ𝑁𝑢1 (the change in number of bound water to the solute 𝑢) and Δ𝑁𝑢2  (of cosolvent 

molecules) [4,16–18]. (Note that 𝑐1  and 𝑐2  represent the bulk water and cosolvent 

concentrations, respectively.) Eq. (1) was derived assuming (i) the existence of solvent binding 

sites on solutes and (ii) solvation as competitive stoichiometric binding of solvent and 

cosolvent.  

 

There is lack of clarity in Eq. (1) as to (i) what, where, and how many are the solvent binding 

sites and (ii) how to account for the solvent-cosolvent size disparity. But the most serious 

problem is its inability to deal with sugars, polyols, and “kosmotropic” salts, that are strongly 

and preferentially excluded from biomolecular surfaces [4,16–18]. Since they are not bound to 

biomolecules, the number of bound cosolvents is zero. This renders Eq. (1), when used 

alongside with Δ𝑁𝑢2 = 0, a powerful tool to evaluate hydration changes, by modulating water 

activity with “inert” or strongly excluded cosolvents [18,19]. Subsequent controversy, fuelled 

by grossly overestimated hydration via this method, has even questioned  

(a) whether Δ𝑁𝑢1 and Δ𝑁𝑢2 have any real physical meanings [5,19,20], and  

(b) whether two interaction parameters can in principle be determined from a single 

relationship (Eq. (1)) [5,19,20].   

 

Only with rigorous statistical thermodynamics can such a controversy resolved [21,22].  

 

3. Clarifying what we want from experiments via statistical thermodynamics  

 

Clarity comes from rigorous statistical thermodynamics. By “rigorous” we do not mean “pages 

of impenetrable derivations”. Rather, we mean nothing other than the use of its basic principles 

without any models or assumptions. By “clarity” we mean with regards to   

i. the definition of solute-solvent and solute-cosolvent interactions (Figures 3 and 4), and   

ii. how i. can be determined from experiments (Figure 5).  

which the classical canon could not attain.  
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For a complete understanding of (i.), Δ𝑁𝑢1 and Δ𝑁𝑢2 must clearly be defined (Figure 3) [21,23]. 

By statistical thermodynamics a given conformation of a solute (or when there is no need to 

consider conformational transition), 𝑁𝑢1  and 𝑁𝑢2  are defined as excess numbers, i.e., the 

difference between the number of solvents (or cosolvents) in the vicinity of the solute and in 

the bulk solution of the same volume (Figure 3(a)) [21,23]. The boundary must be taken large 

enough, and after a certain size 𝑁𝑢1 and 𝑁𝑢2 ceases to depend on the volume encompassed by 

the boundary. Δ𝑁𝑢1 and Δ𝑁𝑢2 have thus been given a clear meaning as the change of excess 

number between the two conformational states (Figure 3(b)).   

 

Having resolved i., we can apply the insight from it to tackle ii. When divided by the bulk phase 

concentrations,  Δ𝑁𝑢1 and Δ𝑁𝑢2  become Δ𝐺𝑢1 and Δ𝐺𝑢2 (Figures 3 and 4) and are called the 

Kirkwood-Buff integrals (KBI). Introduced originally in 1951 [24], they have been applied to 

study the structure of solution mixtures via thermodynamic measurements [25–27], small angle 

scattering [28,29] and simulations [30,31]. KBI are the spatial integration of the increment of 

radial distribution function (RDF) from its bulk value (Figure 4). Besides its close relationship 

to scattering and simulation, the adoption of RDF is beneficial as it makes an arbitrary shell-

bulk boundary  redundant (see Figure 2(b)). Moreover, it encompasses both strong and specific 

binding (see Figure 2(b)); such binding corresponds to a very high first peak of RDF.  

 

Consequently, using KBIs, Eq. (1) can be rewritten as  

(
𝜕 ln 𝐾

𝜕 ln 𝑎1
)

𝑇,𝑃,𝑐𝑢→0
= 𝑐1(Δ𝐺𝑢1 − Δ𝐺𝑢2)       (2) 

which is simpler in form, hence easier for interpretation.  

  

Thus, statistical thermodynamics has clarified what must be obtained from the experimental 

data – namely, the KBIs, the KBIs, which are the universal measure of solution structure and 

interaction strength  [21–23].   

 

 

4. Guiding experimental design by statistical thermodynamics  

 

Statistical thermodynamics has identified the KBIs as the key descriptors of preferential 

solvation, thereby achieving the objectives of Section 3. Here, we show how KBIs can be 

determined from experimental data.  
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For a dilute solute in a binary mixture, the two KBIs (Δ𝐺𝑢1 and Δ𝐺𝑢2) are responsible for 

solute-solvent and solute-cosolvent mixture. Linear algebra tells us that in order to determine 

two independent KBIs, two independent relationships (equations) are necessary, which led the 

resolution of the controversy (point (b) of section 2) [21]. For example, the change of volume 

accompanying the transition Δ𝑉𝑢 , which is thermodynamically equivalent to the pressure-

dependence of 𝐾,  is 

Δ𝑉𝑢 = −𝑅𝑇 (
𝜕 ln 𝐾

𝜕𝑃
)

𝑇,𝑥2,𝑐𝑢→0
= −𝑐1𝑉1Δ𝐺𝑢1 − 𝑐2𝑉2Δ𝐺𝑢2     (3) 

can be solved together with Eq. (2) as a pair of simultaneous equations (Figure 6).  

 

An insight into experimental design comes from a realization that Eqs. (2) and (3) are a pair of 

simultaneous equations. This gives a resolution to the mysterious discrepancy between 

“osmotic pressure” dependence (Eq. (2)) and hydrostatic pressure dependence (Eq. (3)) of a 

transition [4,5]. While the “osmotic pressure” dependence can be expressed from Eq. (2) in 

terms of the KBIs as [22] 

−𝑅𝑇 (
𝜕 ln 𝐾

𝜕Π
)

𝑇,𝑃,𝑐𝑢→0
= Δ𝐺𝑢1

0 − Δ𝐺𝑢2
0        (4)  

the hydrostatic pressure dependence comes from Eq. (3) as [22] 

−𝑅𝑇 (
𝜕 ln 𝐾

𝜕𝑃
)

𝑇,𝑥2,𝑐𝑢→0
= −Δ𝐺𝑢1

0         (5) 

where the superscript 0 denote the 𝑐2 → 0 limit at which these two pressure dependencies were 

discussed.  The conclusion is that the two experiments play a complementary role for the 

determination of the two KBIs and that hydration Δ𝐺𝑢1 should be estimated via hydrostatic 

pressure [21,22].  

 

So far, we have focused on a dilute solute in the presence of solvent and cosolvent for the sake 

of simplicity. Nonetheless, the theory presented above can readily be extended to multiple 

components [11,22,32]. Although the following may sound like a small print, it may be of 

fundamental importance for mesoscale particles. Let us now consider a dilute solute in 𝑛 

component solutions, which involve 𝑛  solute-solvent KBIs, for which 𝑛  independent 

experimental measurements are required to determine them all, by changing 𝑛 thermodynamic 

variables [11,22,32]. According to the Gibbs phase rule, 𝑛 component system in a single phase 

has 𝑛 + 1 independent thermodynamic variables, hence all 𝑛 KBIs can be determined at a 

given temperature (which corresponds to one thermodynamic variable) [11,22,32]. Yet, when 
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𝑢 is no longer considered to be the part of solution, the system is considered to be biphasic, 

thereby reducing the number of independent KBIs by one [11,22,32]. 

 

Thus, statistical thermodynamics clarifies the needs and problems of measurements. Firstly, 

how to complement different experimental techniques to quantify all the necessary interactions. 

Secondly, how many experiments are necessary in principle, which is essential to know for the 

efficiency of experimental design. As a practical note, it is often straightforward to make 

estimates of bulk thermodynamic parameters (such as density, volume and activity) or to 

identify parameters that make minor contribution, thereby decreasing the need for experimental 

work. The present author has used this technique many times when analysing valuable 

historical data that lacked the ideal range of experimental information [3,33–37].  

 

5. Judging the validity of classical hypotheses by statistical thermodynamics  

 

Statistical thermodynamics can judge the validity of classical hypotheses that have been 

invoked for a long time. As examples, let us examine the validity of the water structure (Section 

2), solvent binding, “osmolyte exclusion = zero binding” hypotheses (Section 3), as well as the 

textbook canon of preferential solvation (Section 3).  

 

Water structure hypothesis. If this hypothesis were true, then (
𝜕 ln 𝐾

𝜕 ln 𝑎1
)

𝑇,𝑃,𝑐𝑢→0
 in Eq. (2) 

would be dominated by Δ𝐺𝑢1 while Δ𝐺𝑢2 is negligibly small. This is contrary to the majority 

of transitions, such as protein stability [38], allosteric transition [22], aggregation and gelation 

[15,39], hydrotrope solubilization of small solutes [8,9,34], where Δ𝐺𝑢2 is much larger than 

Δ𝐺𝑢1. For example,  

• Protein stability [38]: Δ𝐺𝑢2 for ribonuclease thermal denaturation is 2643 cm3 mol-1 in 

the presence of dilute guanidine hydrochloride, and is −2617 cm3 mol-1 in the presence 

of trehalose, both much larger than Δ𝐺𝑢1 = −16 cm3 mol-1.  

• Gel stability [39]: Δ𝐺𝑢2  for the melting of agarose gel is −2530 cm3 mol-1 in the 

presence of dilute sucrose, much larger than Δ𝐺𝑢1 = −16 cm3 mol-1. 

• Solubilization [34]: Δ𝐺𝑢2 for model drugs in the presence of hydrotropes are much 

larger than Δ𝐺𝑢2 , especially in the hydrotrope concentration range where solubility 

increase takes place.  
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This is underscored further by the widespread observation that protein transitions are so far 

more sensitive to the “osmotic pressure” than to the hydrostatic pressure [40,41]. This, 

according to Eqs. (4) and (5), signifies |Δ𝐺𝑢1
0 − Δ𝐺𝑢2

0 | ≫ |−Δ𝐺𝑢1
0 |, namely |Δ𝐺𝑢2

0 | ≫ |Δ𝐺𝑢1
0 |, 

which underscores our previous conclusion on the dominance of Δ𝐺𝑢2  over Δ𝐺𝑢1  which is 

contradictory to the water structure hypothesis.  

 

Osmolyte exclusion = zero binding hypothesis. The dominance of Δ𝐺𝑢2  over Δ𝐺𝑢1  is a 

universal observation, applicable to strongly-excluded osmolytes, which is contradictory to the 

statement that the osmolyte binding is zero, namely,  Δ𝑁𝑢2 = Δ𝐺𝑢2 = 0 [18,19]. Indeed,    

• Protein stability [38]: Δ𝐺𝑢2 for ribonuclease thermal denaturation is −2617 cm3 mol-1 

in the presence of trehalose.  

• Gel melting [39]: Δ𝐺𝑢2  for the melting of agarose gel is −2530 cm3 mol-1 in the 

presence of dilute sucrose. 

There are many other counterexamples to this hypothesis.  

 

Solvent binding hypothesis. Contrary to this hypothesis, the excess number of cosolvents to 

a solute (or a conformational state) may not be positive. 𝐺𝑢2 takes a negative value when the 

local number of cosolvents are lower around the solute than in the bulk (Figure 7(a)). That 

cosolvent depletion [42] or exclusion (i.e., crowding [43]) plays a major role to chemical 

processes was beyond the reach of the solvent binding perspective [21,22]. (Note that there is 

always a large, negative contribution for macromolecules to 𝐺𝑢1 and 𝐺𝑢2 arising the excluded 

volume effect. Indeed, Δ𝐺𝑢2 of ribonuclease in aqueous urea and trehalose solutions both take 

negative values; the less negative Δ𝐺𝑢2  in urea comes from urea accumulation around the 

protein [44]). 

 

Preferential solvation paradigm.  Δ𝐺𝑢1 and Δ𝐺𝑢2 can be calculated independently, contrary 

to the expectation of the classical hypothesis. In addition, it is Δ𝐺𝑢2 that contributes dominantly 

to many transitions. Hence, we focus on the distribution of cosolvents based on the following 

approximation for Eq. (3):  

− (
𝜕 ln 𝐾

𝜕 ln 𝑎1
)

𝑇,𝑃,𝑐𝑢→0
≃ 𝑐1Δ𝐺𝑢2        (6) 

There is no longer any need to consider the “preferential” solvation, namely the difference 

Δ𝐺𝑢2 − Δ𝐺𝑢1, except for a few cases (see below).  
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Cosolvent accumulation and exclusion as the true driving force. As the simultaneous 

equations (Eqs. (2) and (3)) have established the negligibility of Δ𝐺𝑢1, we can focus on Δ𝐺𝑢2 

as the driving fore (Figure 6(b)). When cosolvents are excluded from the solutes, aggregation 

of the solute pair reduces the solute surface from which cosolvent are excluded, hence Δ𝐺𝑢2 >

0. This, according to Eq. (6), leads to the enhancement of aggregation. When cosolvents tend 

to be accumulated around the solutes, the aggregation of the solute pair makes them less 

exposed to cosolvents, thereby reducing the number of cosolvents around them, leading to 

Δ𝐺𝑢2 < 0.  This, according to Eq. (6), leads to the suppression of aggregation [15].  

 

Thus, we have shown that most of the classical hypotheses cannot be supported by simple 

experimental observations. We have replaced them with the KBI-based interpretation. 

 

6. Minor role of bulk solution structure revealed by statistical thermodynamics 

 

As discussed in Section 2, bulk solution structure has long been expected to provide an 

explanation for solvation and solvation-induced equilibrium shifts in the presence of cosolvents. 

Now, we test an alternative hypothesis: hydrotrope self-association is responsible for 

solubilization (see Section 2).  

 

To evaluate this hypothesis, it is important to bear in mind that solubilization is measured along 

the molarity of hydrotrope concentration. Hence, it is useful to express the following molar 

solubilization gradient (l.h.s.) in terms of KBIs  

(
𝜕 ln 𝑠𝑢

𝜕𝑐2
) =

𝐺𝑢2−𝐺𝑢1

1+𝑐2(𝐺22−𝐺21)
         (7)  

where 𝐺22 and 𝐺21 are the hydrotrope-hydrotrope and hydrotrope-water KBIs [8,9].  

 

Hydrotrope self-association, according to Eq. (7), is in the denominator. The larger 𝐺22 the 

more the denominator. Therefore, the hydrotrope self-association reduces the per-molar 

solubilization efficiency, contrary to this hypothesis [8,9]. Moreover, the driving force of 

solubilization is still the positive 𝐺𝑢2 − 𝐺𝑢1. (Note, in this case, that it is convenient to consider 

the KBI difference, because both 𝐺𝑢1  and 𝐺𝑢2  contain a large negative, yet cancelling, 

contributions from solute’s excluded volume [8,9].   
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For example, let us compare the cases of solubilization of p-aminobenzoic acid with urea and 

nicotinamide as hydrotropes [9,34]. Solubilization by urea driven by positive 𝐺𝑢2,  peaking at 

around 760 cm3 mol-1. In addition, the low self-association of urea (𝐺22 ≃−40 cm3 mol-1) does 

not contribute to the solubilization inefficiency, because the denominator of Eq. (7) hardly 

deviate from 1. With nicotinamide, 𝐺𝑢2  is much higher, peaking around 1450 cm3 mol-1. 

However, a larger 𝐺22 around 1200 cm3 mol-1, which can make the denominator of Eq. (7) 

reach 2 when 𝑐2 is around 1 M, which means that nicotinamide self-association halves the 

solubilization efficiency [9,34]. Further examples can be found in Refs [9] and [34].   

 

Thus, we have shown that the hydrotrope self-association hypothesis is incorrect based on our 

quantitative calculations on KBIs, which the readers are encouraged to go through interactively 

through the web-based apps [34].  

 

7. A meeting point between experiments and simulations is provided by statistical 

thermodynamics  

 

There are reasons as to why the ever-accelerating CPU speed and some potentially game-

changing innovations in free-energy calculations [45] still have not made solubility prediction 

a relic of the past. Simulations of the liquid state still have to rely on classical molecular 

dynamics requiring force field parameterization, which is still a matter of active research even 

for the most common cosolvents (such as urea) for aqueous solutions [46,47].  

 

What makes force field parameterization difficult is that not only the basic physical properties 

of a solution (such as density, activity, compressibility, enthalpy, or heat capacity) should be 

reproduced over a wide range of temperature and pressure, but also the simulated solution 

structure must be accurate. Hence, the accurate reproduction of  KBIs has been adopted as the 

guiding principle of parameterization [46], as well as the important benchmark [47].  

 

Hence, the calculation of KBIs from experimental data is useful not only in rationalizing how 

cosolvents work but also as a benchmark for molecular dynamics simulations that must be 

carried out to elucidate the cosolvent action in more microscopic detail.  

 

8. Conclusions with a pointer to practical manuals   
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Our goal was to understand and explain why certain cosolvents (additives) affect solubility, 

conformational stability, aggregation, or gelation. To answer this question quantitatively and 

with clarity, we need statistical thermodynamics (i) to define interactions between component 

species via the Kirkwood-Buff integrals (KBIs) that have a definite microscopic meaning, (ii) 

to guide experimental data acquisition and analysis by efficiently choosing a set of experiments 

that yields KBIs, and (iii) to judge the classical hypotheses on cosolvent action by 

quantitatively validating  each hypothesis via KBIs.  

 

The present article was written with an emphasis, i.e., to persuade the reader that statistical 

thermodynamics should underpin all three steps as summarised above. For a more hands-on 

guide to start calculating KBIs for particular applications, I would like to point the readers to 

the following recent reviews of ours that are more focused in scope:  

• the use of headspace analysis to quantify flavour and fragrance stabilization [35];  

• solubilization by cosolvents, and hydrotropes [11,34];  

• biomolecular stability, food gel formation and gelatinization via calorimetry [15,48];  

• green solvents and supercritical extraction [33];   

• chromatographic determination of KBIs [37] 

Some of the articles are accompanied by interactive web-based apps (see 

https://www.stevenabbott.co.uk/practical-solubility/kb.php which includes a general tutorial) 

to assist the readers to analyse their own experimental data. In addition, the review by Abbott 

in the present issue contains references to many useful interactive tools to make models and 

theories useful and accessible for the practitioners of formulation.  

 

Not only can statistical thermodynamics guide us through experimental design, analysis and 

interpretation but also helps us keep confusion at bay. Statistical thermodynamics is not 

confined inside the ivory tower. It is a branch of practical science.  

 

Acknowledgements  

I would like to express gratitude to my collaborators, especially to Steven Abbott, Noriyuki 

Isobe, Nobuyuki Matubayasi, Tom Nicol, Josh Reid and Adam Walker for their inspiration, 

expertise and patience. I am indebted to Steven Abbott and Kaja Harton for their careful and 

critical reading of the manuscript.  



12 
 

 

References  

 

[1] C.M. Hansen, Hansen solubility parameters : a user’s handbook, CRC Press, Boca 

Raton, FL, 2007. 

[2] A. Klamt, Conductor-like Screening Model for Real Solvents: A New Approach to the 

Quantitative Calculation of Solvation Phenomena, J. Phys. Chem. 99 (1995) 2224–

2235. doi:10.1021/j100007a062. 

[3] S. Abbott, S. Shimizu, CHAPTER 2: Green Solubility for Coatings and Adhesives, in: 

RSC Green Chem., Royal Society of Chemistry, 2019: pp. 18–48. 

doi:10.1039/9781788012997-00018. 

[4] S.N. Timasheff, Control of protein stability and reactions by weakly interacting 

cosolvents: the simplicity of the complicated., Adv. Protein Chem. 51 (1998) 355–432. 

doi:9615174. 

[5] S.N. Timasheff, Protein-solvent preferential interactions, protein hydration, and the 

modulation of biochemical reactions by solvent components., Proc. Natl. Acad. Sci. U. 

S. A. 99 (2002) 9721–6. doi:10.1073/pnas.122225399. 

[6] D.J. Felitsky, J.G. Cannon, M.W. Capp, J. Hong, A.W. Van Wynsberghe, C.F. 

Anderson, M.T. Record, The exclusion of glycine betaine from anionic biopolymer 

surface: Why glycine betaine is an effective osmoprotectant but also a compatible 

solute, Biochemistry. 43 (2004) 14732–14743. doi:10.1021/bi049115w. 

[7] H.S. Frank, F. Franks, Structural Approach to the Solvent Power of Water for 

Hydrocarbons; Urea as a Structure Breaker, J. Chem. Phys. 48 (1968) 4746–4757. 

doi:10.1063/1.1668057. 

[8] J.J. Booth, S. Abbott, S. Shimizu, Mechanism of hydrophobic drug solubilization by 

small molecule hydrotropes, J. Phys. Chem. B. 116 (2012) 14915–14921. 

doi:10.1021/jp309819r. 

[9] J.J. Booth, M. Omar, S. Abbott, S. Shimizu, Hydrotrope accumulation around the 

drug: the driving force for solubilization and minimum hydrotrope concentration for 

nicotinamide and urea, Phys Chem Chem Phys. 17 (2015) 8028–8037. 

doi:10.1039/C4CP05414H. 

How hydrotropes solubilize hydrophobic solutes was clarified via statistical thermodynamics. 

[10] S. Shimizu, N. Matubayasi, Hydrotropy: Monomer-micelle equilibrium and minimum 

hydrotrope concentration, J. Phys. Chem. B. 118 (2014) 10515–10524. 



13 
 

doi:10.1021/jp505869m. 

A rapid sudden onset of solubilization enhancement was attributed to the hydrotrope self-

association enhanced around the solute. 

[11] S. Shimizu, N. Matubayasi, Unifying hydrotropy under Gibbs phase rule, Phys. Chem. 

Chem. Phys. 19 (2017) 23597–23605. doi:10.1039/c7cp02132a. 

[12] J. Wyman, Heme proteins, Adv. Protein Chem. 4 (1948) 407–531. doi:10.1016/S0065-

3233(08)60011-X. 

[13] J. Wyman, Linked functions and reciprocal effects in hemoglobin: A second look, 

Adv. Protein Chem. 19 (1964) 223–286. doi:10.1016/S0065-3233(08)60190-4. 

[14] E.F. Casassa, H. Eisenberg, Thermodynamic analysis of multicomponent solutions, 

Adv. Protein Chem. 19 (1964) 287–395. doi:10.1016/S0065-3233(08)60191-6. 

[15] S. Shimizu, R. Stenner, N. Matubayasi, Gastrophysics: Statistical thermodynamics of 

biomolecular denaturation and gelation from the Kirkwood-Buff theory towards the 

understanding of tofu, Food Hydrocoll. 62 (2017) 128–139. 

doi:10.1016/j.foodhyd.2016.07.022. 

[16] S.N. Timasheff, Protein hydration, thermodynamic binding, and preferential hydration, 

Biochemistry. 41 (2002) 13473–13482. doi:10.1021/bi020316e. 

[17] J.A. Schellman, Selective binding and solvent denaturation, Biopolymers. 26 (1987) 

549–559. doi:10.1002/bip.360260408. 

[18] V.A. Parsegian, R.P. Rand, D.C. Rau, Macromolecules and Water: Probing with 

Osmotic Stress, Methods Enzymol. 259 (1995). 

[19] V.A. Parsegian, R.P. Rand, D.C. Rau, Osmotic stress, crowding, preferential 

hydration, and binding: A comparison of perspectives., Proc. Natl. Acad. Sci. U. S. A. 

97 (2000) 3987–3992. doi:10.1073/pnas.97.8.3987. 

[20] S.N. Timasheff, In disperse solution, “osmotic stress” is a restricted case of 

preferential interactions, Proc. Natl. Acad. Sci. U. S. A. 95 (1998) 7363–7367. 

doi:10.1073/pnas.95.13.7363. 

[21] S. Shimizu, Estimating hydration changes upon biomolecular reactions from osmotic 

stress, high pressure, and preferential hydration experiments, Proc. Natl. Acad. Sci. 

101 (2004) 1195–1199. doi:10.1073/pnas.0305836101. 

Resolution of the controversy over the osmolyte action came from statistical 

thermodynamics.  

[22] S. Shimizu, N. Matubayasi, Preferential solvation: Dividing surface vs excess 

numbers, J. Phys. Chem. B. 118 (2014) 3922–3930. doi:10.1021/jp410567c. 



14 
 

Similarities and differences between solvation and adsorption were clarified. 

[23] S. Shimizu, C.L. Boon, The Kirkwood-Buff theory and the effect of cosolvents on 

biochemical reactions, J. Chem. Phys. 121 (2004) 9147–9155. doi:10.1063/1.1806402. 

[24] J.G. Kirkwood, F.P. Buff, The statistical mechanical theory of solutions, J. Chem. 

Phys. 19 (1951) 774–777. doi:10.1063/1.1748352. 

[25] D.G. Hall, Kirkwood-Buff theory of solutions. An alternative derivation of part of it 

and some applications, Trans. Faraday Soc. 67 (1971) 2516–2524. 

doi:10.1039/TF9716702516. 

[26] A. Ben-Naim, Inversion of the Kirkwood–Buff theory of solutions: Application to the 

water–ethanol system, J. Chem. Phys. 67 (1977) 4884–4890. doi:10.1063/1.434669. 

[27] P.E. Smith, E. Matteoli, J.P. O’Connell, Fluctuation theory of solutions : Applications 

in chemistry, chemical engineering, and biophysics, CRC Press, Boca Raton, FL, 

2013. 

[28] K. Nishikawa, Simple relationship between the Kirkwood-Buff parameters and the 

fluctuations in the particle number and concentration obtained by small-angle X-ray 

scattering: Application to tert-butyl alcohol and water mixtures, Chem. Phys. Lett. 132 

(1986) 50–54. 

[29] H. Hayashi, K. Nishikawa, T. Iijima, Easy derivation of the formula relating the 

fluctuations of a binary system to the X-ray scattering intensity extrapolated to s = 0, J. 

Appl. Crystallogr. 23 (1990) 134–135. doi:10.1107/S0021889889012331. 

[30] R. Chitra, P.E. Smith, Molecular association in solution: A Kirkwood-Buff analysis of 

sodium chloride, ammonium sulfate, guanidinium chloride, urea, and 2,2,2-

trifluoroethanol in water, J. Phys. Chem. B. 106 (2002) 1491–1500. 

[31] V. Pierce, M. Kang, M. Aburi, S. Weerasinghe, P.E. Smith, Recent applications of 

Kirkwood–Buff theory to biological systems, Cell Biochem. Biophys. 50 (2008) 1–22. 

doi:10.1007/s12013-007-9005-0. 

[32] S. Shimizu, N. Matubayasi, A unified perspective on preferential solvation and 

adsorption based on inhomogeneous solvation theory, Phys. A Stat. Mech. Its Appl. 

492 (2018) 1988–1996. doi:10.1016/j.physa.2017.11.113. 

[33] S. Shimizu, S. Abbott, How entrainers enhance solubility in supercritical carbon 

dioxide, J. Phys. Chem. B. 120 (2016) 3713–3723. doi:10.1021/acs.jpcb.6b01380. 

[34] S. Abbott, J.J. Booth, S. Shimizu, Practical molecular thermodynamics for greener 

solution chemistry, Green Chem. 19 (2017) 68–75. doi:10.1039/C6GC03002E. 

A user's guide for solubilization with interactive web-based apps.  



15 
 

 

[35] S. Shimizu, S. Abbott, N. Matubayasi, Quantifying non-specific interactions between 

flavour and food biomolecules, Food Funct. 8 (2017) 2999–3009. 

doi:10.1039/C7FO00313G. 

[36] S. Abbott, S. Shimizu, CHAPTER 2. Understanding Entrainer Effects in Supercritical 

CO2, (n.d.) 14–39. doi:10.1039/9781788013543-00014. 

[37] S. Shimizu, S. Abbott, K. Adamska, A. Voelkel, Quantifying non-specific interactions: 

via liquid chromatography, Analyst. 144 (2019) 1632–1641. doi:10.1039/c8an02244e. 

[38] S. Shimizu, Molecular origin of the cosolvent-induced changes in the thermal stability 

of proteins, Chem. Phys. Lett. 514 (2011) 156–158. doi:10.1016/j.cplett.2011.08.038. 

[39] S. Shimizu, N. Matubayasi, Gelation: The role of sugars and polyols on gelatin and 

agarose, J. Phys. Chem. B. 118 (2014) 13210–13216. doi:10.1021/jp509099h. 

[40] J.A. Kornblatt, M.J. Kornblatt, The effects of osmotic and hydrostatic pressures on 

macromolecular systems, Biochim. Biophys. Acta - Protein Struct. Mol. Enzymol. 

1595 (2002) 30–47. doi:10.1016/S0167-4838(01)00333-8. 

[41] C.R. Robinson, S.G. Sligar, Hydrostatic and osmotic pressure as tools to study 

macromolecular recognition, Methods Enzymol. 259 (1995) 395–427. 

doi:10.1016/0076-6879(95)59054-4. 

[42] S. Asakura, F. Oosawa, On interaction between two bodies immersed in a solution of 

macromolecules, J. Chem. Phys. 22 (1954) 1255–1256. doi:10.1063/1.1740347. 

[43] H.-X. Zhou, G. Rivas, A.P. Minton, Macromolecular Crowding and Confinement: 

Biochemical, Biophysical, and Potential Physiological Consequences, Annu. Rev. 

Biophys. 37 (2008) 375–397. doi:10.1146/annurev.biophys.37.032807.125817. 

[44] S. Shimizu, N. Matubayasi, Preferential hydration of proteins: A Kirkwood-Buff 

approach, Chem. Phys. Lett. 420 (2006) 518–522. doi:10.1016/j.cplett.2006.01.034. 

[45] N. Matubayasi, Free-energy analysis of protein solvation with all-atom molecular 

dynamics simulation combined with a theory of solutions, Curr. Opin. Struct. Biol. 43 

(2017) 45–54. doi:10.1016/j.sbi.2016.10.005. 

[46] N. Naleem, N. Bentenitis, P.E. Smith, A Kirkwood-Buff derived force field for 

alkaline earth halide salts, J. Chem. Phys. 148 (2018). doi:10.1063/1.5019454. 

[47] C. Hölzl, P. Kibies, S. Imoto, R. Frach, S. Suladze, R. Winter, D. Marx, D. Horinek, 

S.M. Kast, Design principles for high-pressure force fields: Aqueous TMAO solutions 

from ambient to kilobar pressures, J. Chem. Phys. 144 (2016). doi:10.1063/1.4944991. 

[48] T.W.J. Nicol, N. Isobe, J.H. Clark, N. Matubayasi, S. Shimizu, The mechanism of salt 



16 
 

effects on starch gelatinization from a statistical thermodynamic perspective, Food 

Hydrocoll. 87 (2019) 593–601. doi:10.1016/j.foodhyd.2018.08.042. 

 

  



17 
 

Figures  

 

Figure 1. The scope of this review. (a) Our goal is a universal understanding of how cosolvent 

(green) addition modulates solubilization, aggregation, binding, conformational stabilization 

and gelation of solutes (red). These phenomena involve (b) solute sizes all the way from small 

hydrophobic solutes via macromolecules and their assemblies towards granules in the presence 

of (c) cosolvents with varying amphiphilicity and self-aggregation tendencies.  
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Figure 2. Options and choices are available, but often without clarity. (a) Different 

experimental techniques available to quantify cosolvent effects. (b) Different models proposed 

to analyse some of the experiments in (a) to yield solvation changes based on simplified 

assumptions on solvation. (c) Different hypotheses to rely on how cosolvent works.   
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Figure 3. The Kirkwood-Buff integrals (KBIs) are a universal measure of solvation. (a) KBIs 

between solute and water (𝐺𝑢1) and between solute and cosolvent (𝐺𝑢2) are defined through 

the increment of water (or cosolvent) molecule from the bulk by the presence of a solute. (b) 

The difference in solute-water (Δ𝐺𝑢1) and solute-cosolvent (Δ𝐺𝑢2) KBIs between denatured 

and native states of a protein. KBI differences can be used to quantify the role of solvents not 

only on protein stability as in here but also biomolecular gelation, aggregation and binding.  
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Figure 4. KBIs have microscopic interpretation, which has been illustrated using solute-

cosolvent KBI as an example. A KBI is an integration of the increment of radial distribution 

function from its bulk value (namely, 1), through which thermodynamic or macroscopic 

measurements listed in Figure 1 will be unified with the structural data attainable by light, X-

ray and neutron scattering.  
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Figure 5. KBIs can be determined from experimental data alone. For example, calculation of 

the two KBIs (solute-solvent and solute-cosolvent) requires two independent experiments, such 

as (a) water activity dependence of the solvation free energy and (b) partial molar volume, or 

the hydrostatic pressure dependence of the solvation free energy.  

  



22 
 

 

 

Figure 6. Distribution of cosolvents as the driving force. (a) 𝐺𝑢2 can either be positive or 

negative, depending on the difference between local (solute’s vicinity) and bulk concentrations 

of cosolvents. (b)  Δ𝐺𝑢2 governs the transition, in this case aggregation. When cosolvents are 

excluded from the solutes, aggregation makes the cosolvent less excluded, hence Δ𝐺𝑢2 > 0, 

leading to the enhancement of aggregation. When cosolvents are accumulated around the 

solutes, aggregation makes them less exposed to cosolvents and are less attractive, hence 

Δ𝐺𝑢2 < 0,  leading to the suppression of aggregation.  
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Figure 7. Two contribution to the cosolvent effect when viewed per molar clarified for the first 

time by KBIs. The major contribution is the preferential solute-cosolvent interaction, whereas 

the minor contribution is the per-molar inefficiency arising from the self-association of the 

cosolvent.   

 

 

 

 

 

 


