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Abstract

A challenge for many structural health monitoring (SHM) technologies is the lack of

available damage state data. This problem arises due to cost implications of damaging a

structure in addition to issues associated with the feasibility and safety of testing a structure

in multiple damage scenarios. Many data-driven approaches to SHM are successful when

the appropriate damage state data are available, however the problem of obtaining data

for various damage states of interest restricts their use in industry. Forward model-driven

approaches to SHM seek to aid this challenge. The methodology uses validated physical

models to generate predictions of the system at different damage states, providing machine

learning strategies with training data to infer decision bounds. In order to obtain statistically

representative damage state data from physical models it is the authors’ belief that a

multi-level uncertainty integration approach is required. Component or sub-system level

physical models, for which validation data is more easily obtained, may be calibrated

over different damage states. These validated sub-system physical models may then be

incorporated into the full-system model, providing probabilistic damage state predictions at

a full-system level. This paper outlines such a framework using uncertainty quantification

technologies and statistical methods for combining sub-system probabilistic models whilst

accounting for model discrepancies. The key stages of forward model-driven SHM are

presented, highlighting relevant technologies and application considerations. Additionally,

a discussion of integration with current data-driven approaches and the appropriate machine

learning tools is given for a forward model-driven SHM approach.

1. Introduction

Structural health monitoring strategies have typically been categorised into two types of

approach: data-driven and model-driven (1, 2). A data-driven framework is one in which

machine learning or pattern recognition algorithms are used to make health decisions based

on features from in-service data. The approaches can be divided further into supervised

and unsupervised categories, distinguished by whether labels for data (e.g. the damage

state of the structure) are known or unknown respectively. As a consequence, supervised

data-driven methods require in-service, labelled data from all damage states of interest in

order to infer robust decision thresholds. This is often not economically viable or feasible at

a full-system level, resulting in a significant challenge to their implementation. In addition,

unsupervised techniques suffer from all the complexities of performing density estimation,

as well as challenges in obtaining labels when in-service data appears outside the normal

condition. In contrast, model-driven frameworks are often seen as the application of model
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updating; whereby parameters of a physical model (herein defined as a simulator) are

adjusted by reducing the residual between the simulator predictions and in-service data.

These methods suffer from several issues when used for identifying health states. Among

these are problems in parametrisation of the simulator when damage types and locations are

unknown; this can often lead to updating a vast quantity of parameters. Another problem

is that the presence of uncertainties contained within in-service data (e.g. environmental

conditions) or the model form are often confounded in the parameter estimation problem.

These issues often result in parameters losing physical meaning and becoming extremely

difficult to interpret in an SHM context. The approaches are often not practicable in an

online setting as multiple runs of expensive FE simulators are required. Subsequently, both

data-driven and model-driven approaches have barriers to implementation for industrial

contexts.

A forward model-driven framework seeks to resolve the issues posed by both data-driven

and model-driven methodologies; namely the problems associated with the lack of available

data and interpretable simulators that handle uncertainties in a rigorous manner. The

distinguishing characteristics of a forward model-driven approach is the utilisation of

simulators in a forward manner in order to predict statistically representative damage state

features, that can then be input into machine learning or pattern recognition techniques.

The contributions of this paper are as follows:

• The proposed framework outlined in this paper. A probabilistic approach using

validated sub-system simulators to make full-system predictions of damage states,

and using these to train classifiers for health state identification.

• A case study on a calibration approach, where both parameters and model discrep-

ancies are inferred, resulting in statistically representative predictions of damage

states.

• A multi-level uncertainty integration strategy whereby parameter uncertainties and

model discrepancies are propagated through to a full-system level.

• The use of simulators in creating predictions of damage state distributions and using

these in probabilistic health decision strategies such as a Bayes risk formulation.

The outline of this paper is as follow; a probabilistic framework for forward-model driven

SHM is outlined, where each main component is discussed. These subsections are model

selection, damage feature identification, calibration and validation, multi-level uncertainty

integration and health decision strategies. Finally, conclusions and further work are

presented.

2. Forward Model-Driven Framework

Forward model-driven methods are comprised of two main components; generating

representative damage state features from simulators and using those predictions to train

machine learning or pattern recognition approaches. The second component has been

well studied within the data-driven driven framework (3). Consequently, the main focus

of research in establishing a framework for forward model-driven SHM is in developing
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Figure 1. Flowchart for generating health predictions using the forward model-driven

framework. Superscripts denote options for generating acceptable outputs. 1 denotes a

review of model selection. 2 and 3 state that either more sub-system experimental data or

simulator evaluations are required respectively. 4 results in the collection of more full-system

undamaged validation data and 5, that more validation data is required for the classification

method.

methodologies and technologies for the first component. In the authors’ opinion a non-

deterministic philosophy is sensible if generating damage state features from simulators

for several reasons. Firstly, a probabilistic approach provides an increased understanding

in analysing the simulator for model form errors and parameter sensitivities. Secondly,

real world data from structures are observations of uncertain processes. Moreover, the

simulator can predict damage state distributions providing the option of using statistical

hypothesis testing to validate the simulator, as well as the ability to use probabilistic health

decision tools, such as a Bayes risk methodology (4). An overview of probabilistic forward

model-driven SHM is outlined in the flowchart presented in Figure 1.

The proposed forward model-driven framework has five main elements:

• Model Selection (blue) - using prior beliefs about a structure and the processes to be

modelled, in order to select an appropriate, verified model that captures the model

form at the required level of fidelity.

• Damage Feature Identification (green) - the ability to use a simulator to investigate

potential output quantities and mathematical transforms that are sensitive to the

onset of damage. Having a simulator means that the measurement type and locations
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can be explored before experimental or in-service data are acquired, aiding their

selection.

• Calibration and Validation (red) - the ability to infer system parameters and model

discrepancy of the simulator via inverse uncertainty quantification methods; where

validation is performed probabilistically.

• Multi-Level Uncertainty Integration (orange) - the ability to use calibrated and

validated component level simulators in order to propagate uncertainty to a full-

system, removing the need for full-system damage state data.

• Health Decision Strategies (purple) - machine learning or pattern recognition

methods used to infer decision bounds, as studied in data-driven research.

The flowchart (Fig. 1) is described as follows. The structure is divided into sub-systems

for which damage state data is obtainable via experimental tests; this data is collected

during certification or qualification stages of a product life-cycle. For each sub-system prior

beliefs are obtained and used to create a verified simulator of that sub-system using model

selection methodologies. Once generated, the sub-system simulator is interrogated to

identify damage sensitive outputs that can be used to validate the sub-system level damage

mechanisms (these may be different from the features later used at full-system level). At

this stage the verified performance of the simulator is evaluated potentially leading to a

repetition of the model selection process.

Once satisfactory, the sub-system simulator is calibrated and validated using experimental

data via an inverse uncertainty quantification process that infers both parameter and model

discrepancy uncertainties. Validation of the identified damage features using probabilistic

metrics, such as hypothesis testing, are applied. If the simulator fails the validation process

three outcomes are possible; repeat model selection; acquire more experimental data; or

evaluate more simulator runs. These processes (inside the -- section of Fig. 1) are repeated

for each sub-system, resulting in the generation of validated simulators that capture the

appropriate damage mechanics.

Subsequently, multi-level uncertainty integration is performed, integrating the sub-system

simulators into a full-system predictive simulator. A key assumption is that the damage

mechanics of interest can be captured fully by a series of sub-system models and that

their parameters, model discrepancies and uncertainties, once propagated to the full-

system, have the ability to describe how the full-system behaves under these damage

mechanics. Undamaged full-system observational data are acquired to validate the

undamaged simulator’s model form; a mismatch leads to model selection at a full or

sub-system level. The valid full-system simulator is utilised to identify damage sensitive

features for the employed health decision technique. As with the sub-system, the type and

locations for measurements are inferred using the full-system simulator. Consequently,

the selected damage state features are generated from the full-system simulator and used

to train the health decision strategy. The technique is validated using held out simulator

predictions, which can be supplemented with undamaged data from the structure. This

stage provides the opportunity to either re-evaluate the model selection process, collect

more full-system undamaged data and revalidate the simulator, or acquire more validation

data for the health decision strategy. Finally, online health state predictions are made
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using the heath decision strategy. A predicted health state’s type, location and extent are

identified from the simulator, which can be subsequently used as a prognostic tool.

The proceeding subsections outline research into the five key elements of forward model

driven SHM. Case studies are provided for calibration and validation as well as multi-level

uncertainty integration, which are the key areas of development in this paper. Descriptions

of the technologies and approaches that can be used are highlighted with examples

demonstrating implementation.

2.1. Model Selection

Model selection is a challenging problem that, when applied properly, can significantly

improve simulator predictive performance and hence help generate a more robust full-

system simulator for forward model-driven SHM. The simplest form of model selection

involves eliciting prior beliefs, generating a class of models that are possible, and evaluating

their performance based on a threshold for a given metric, with a common method being

the Bayesian Information Criterion (BIC) (5). Further research into how sub-system

model selection may affect the full-system simulator as well as the appropriate procedures

for integrating model selection into forward model-driven SHM are required to improve

extrapolation abilities of damage predictions from simulators.

2.2. Damage Feature Identification

Damage feature identification is a positive by-product of a forward model-driven framework.

The obtained simulator, at either a sub-system or full-system level, can be used to generate

a variety of different output quantities and their transforms. By exploring the effect of

damage mechanism parameters on these outputs, via sensitivity analysis (6), damage

sensitive feature sets can be identified. In addition, current sensor placement optimisation

methodologies could be applied, meaning that the type and location of measurements to

collect on the structure can be determined a priori in a rigorous manner. Damage feature

identification is therefore a significant area of further research.

2.3. Calibration and Validation

The success of a forward model-driven framework relies on the ability to generate a

validated full-system simulator that is statistically representative of real world observations.

As a consequence, calibration and validation are vital in producing robust health decisions.

Simulators contain simplifications or the absence of certain physics and therefore even

with ‘true’ parameters will result in a mismatch with observational data. This difference

between the assumed model form and observational data is known as model discrepancy

and must be accounted for in the calibration process (7, 8). Bayesian history matching is

one such method with a mechanism for handling model discrepancy.

Case Study Bayesian history matching is a calibration methodology that reduces the

simulator’s parameter input space whilst accounting for model discrepancy. The method

achieves this using an implausibility metric: a measure of how likely it is that a given

parameter combination will produce a given output. Implausibility is the distance between

the experimental data and the simulator output weighted by the process’s uncertainties.

This allows a statistical model of the form shown in Eq. (1) to be calibrated.
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(a) (b)

Figure 2. Five storey building structure experimental setup (a). Predictive distributions

from the combined Bayesian history matching and GP approach (b), + are experimental

training points, · are experimental test points.

zj(x) = ηj(x,θ) + δj + ej (1)

Where zj(x) is the jth experimental output given inputs x, ηj(x,θ) is the jth simulator

given inputs x and parameters θ. The model discrepancy is δ and observational uncertainty

e. In order to overcome computational cost the simulator is often replaced with an emulator

- a statistical model of the simulator. Specifically, a Gaussian Process (GP) emulator is used,

as the Bayesian formulation provides an understanding of the code uncertainty introduced

by using the emulator, rather than the original simulator. Additionally, the GP will fit

known simulator runs exactly, and as a consequence any information from simulator runs

is preserved whilst allowing the emulator to interpolate effectively across the space. The

implausibility metric can be defined as demonstrated in Eq. (2).

Ij(x,θ) =
|zj(x)− E

∗ [GPj(x,θ)] |

[Vo,j + Vm,j + Vc,j(x,θ)]
1

2

(2)

Where Vo, Vm and Vc are variances associated with observational, model discrepancy

and code uncertainties. The predictive mean of the GP emulator E∗ [GPj(x,θ)] and the

associated variance Vc,j(x,θ) are integral to exploring a large part of the parameter space

efficiently. A large implausibility value indicates that the parameter set was very unlikely

to have produced an output that matches the experimental data given the uncertainties in

the process. For multiple outputs the maximum implausibility is used. By comparing the

implausibility metric to a threshold, parts of the input space can be removed. Pukelsheim’s

3σ rule is a sensible cut-off as it states that any continuous unimodal distribution contains

99.73% of probability mass within three standard deviations from its mean (9). In order to

preserve conciseness of this paper, the reader is referred to (10) for more information on

Bayesian history matching.
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An example of how Bayesian history matching can be used in calibrating sub-system

models within the forward model driven framework is presented below. Modal testing was

performed on a five storey building structure, shown in Fig. 2a, under different extents

of pseudo-damage (added masses). The parameters, θ, were the material properties of

the structure, for which ±10% of the nominal values were used as prior bounds. The

inputs were, x = {0, 0.1, ..., 0.5}kg masses. The experimental outputs were the natural

frequencies of the structure, specifically the second and third natural frequencies, as

these were most sensitive to damage. Bayesian history matching was performed using

experimental natural frequencies when xz = {0, 0.3, 0.5}kg with the remaining data used

as a validation set. The identified plausible parameters were propagated through the

emulators in order to obtain the distribution of the outputs for the calibrated parameter set.

Bayesian history matching defines the description of model discrepancy as a variance,

however it will have a functional form. In order to infer this functional form a GP regression

model (with noise) was used to infer the model discrepancy. A maximum a posteriori

(MAP) estimate was taken of the output distributions from Bayesian history matching

and used as inputs to a GP regression model for inferring the experimental outputs. This

was performed using the same training and validation data split as in the Bayesian history

matching step. The predicted outputs of the combined Bayesian history matching and GP

regression approach are presented in Fig. 2b. The normalised mean squared error (NMSE)

for each output were 0.04 and 0.02 respectively and the KL-divergences were all below 3,

with most being close to 2. In keeping with the brevity of this paper the reader is referred

to (10) for more details on the analysis.

2.4. Multi-Level Uncertainty Integration

An important aspect of a forward model-driven approach is the ability to create validated

simulators of full-systems without conducting damage experiments at the full-system level.

In order for this to be viable a multi-level uncertainty integration methodology must be

developed. This process takes sub-system level simulators where key model forms can be

validated, such as the functional relationship when damages types, extents and locations

are applied, and scales the uncertainties and model discrepancies through to a full-system

prediction. This means that the damage mechanisms are validated at a sub-system level,

reducing the need for validation at a full-system level. This is possible if the damage

mechanics can be captured at a sub-system level and appropriately scaled up. In order to

demonstrate multi-level uncertainty integration a numerical case study on a four degree of

freedom sway frame is presented.

Case Study. A four degree of freedom sway frame is constructed as displayed in Fig. 3a

where the frame is divided into two component types - beams and plates. The key modelling

assumptions in this case study are that the beams and plates do not contribute to the mass

and stiffness of the full-system respectively. The joints are perfect between each beam and

its respective plate and that damping is ignored. Each beam is modelled as a cantilever

beam, where the tip stiffness K contributes to the full-system stiffness. Table 1 presents

properties for each component with the structure comprised of eight beams and four plates.

For simplicity it is assumed that the parameter distributions of Young’s modulus and

density are already known. In practice these would be inferred in the calibration stage, as

mentioned in Section 2.3. Damage is introduced into the structure by applying a single
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Figure 3. Four degree of freedom sway frame (a). EI curves for simulator and ‘true’ crack

models. A crack length is 0.1% of the beam thickness, located at the midpoint, is presented

(b).

Property Value

Length, lb 17.5cm

Width, wb 2.5cm

Thickness, tb 0.5cm

Young’s Modulus, E N (7.1, 0.52)GPa

Property Value

Length, lp 30cm

Width, wp 25cm

Thickness, tp 2.5cm

Density, ρ N (2700, 1002)kg/m3

Table 1. Properties of the sway frame components: beam (left) and plate (right).

open crack to the midpoint of the beam. In this paper the ‘true’ functional relationship

between stiffness and crack size for a cantilever beam is formulated using the crack model

for a continuous beam proposed by Christides and Barr (11), involving an exponential

function of EI (where I is the second moment of area). The simulator crack model is an

idealised bilinear function of EI proposed by Sinha et al (12). The two open crack models

in Fig. 3b demonstrate that model discrepancy will exist even for simple structures and

damage types. The full-system is damaged by including the reduction in tip stiffness of a

cantilever beam under different crack lengths, into the four degree of freedom system’s

equation of motion. This allows any beam to be damaged at any of the four locations. The

only difference between the sway frame simulator and the ‘true’ physics therefore is the

stiffness model that governs an open crack in a cantilever beam.

The multi-level uncertainty integration strategy proposed in this paper, for this motivating

case study, is as follows:

1. A simulator of a continuous cantilever beam with a bilinear crack model is generated

ηb(xbθb), where the inputs are crack length xb = {0, 0.1, ..., 0.9} × tb and the

parameters θb are the properties shown in Table 1. The output of the model yb is the

tip stiffness.

2. Experimental data is collected for the beam component, namely force-deflection

curves for different crack lengths. Experimental tip deflections are measured with an
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observational uncertainty distributed N (0, 12)mm - here are calculated using the

‘true’ crack model. The experimental tip stiffness zb(xb) are calculated using linear

least squares regression. 50 repeats are used to obtain the experimental uncertainties.

3. Using the statistical model zb(xb) = ηb(xbθb) + δ(xb) + eb (where zb(xb) = K(xb)
- the tip stiffness) the model discrepancy δb(xb) and observational uncertainty eb
are estimated using GP regression. A MAP estimates of the material properties

are used to generate simulator predictions, and the GP regression model is fitted

between the crack length and tip stiffness residual, ∆K(xb) = zb(xb) − yb(xb)
(where zb(xb) contains 50 repeats). A comparison of the bias and non-bias correction

simulators and the experimental data are presented in Fig. 4 (where 1000 Monte

Carlo realisations have been used for the non-bias correct simulator).

4. A simulator of the sway frame ηs(xs,xb,θp,θb), is generated from a four degree

of freedom system. The inputs xs = {1, 2, 3, 4} are the floor in which the crack

is applied to beam a, and the parameters θp are those associated with the plates

in Table 1a. The outputs of the simulator are the percentage difference of the

four natural frequencies of the system (the damage state feature used in this case

study) i.e., ys = {∆ω1,∆ω2,∆ω3,∆ω4}. 1000 Monte Carlo realisations of the

material properties and the bias corrected stiffness are used to obtain the damage

state distributions shown in Fig. 5a.

Due to the numerical nature of the study, validation data at all damage states are obtained to

show the effectiveness of the multi-level uncertainty integration strategy. In practice only

the undamaged state distributions would be obtained experimentally. The ‘true’ percentage

differences for the four natural frequencies zs(xs,xb), obtained for 1000 Monte Carlo

realisations of the material properties using the ‘true’ crack model, are presented in Fig. 5b.

The NMSEs between the mean predictions and ‘true’ outputs at a full-system level for

the bias and non-bias corrected simulator were 0.003 and 101.151 respectively. At a

sub-system level the NMSEs were 0.006 and 91.33 respectively, demonstrating how errors

scale through to the full-system and the need for a model discrepancy approach. A more

detailed comparison of the distributions, when xs = 1 for ∆ω1, are displayed in Fig. 6.

The case study motivates the need for multi-level uncertainty integration. The study can

easily be extended to inferring sub-system simulators that model, for example, the joint

interactions, if bolted joints were included. This would be an additional damage mechanism,

though loosing of bolts. At a full-system level, calibration may also be required. This

means parameter uncertainties and model discrepancies that only apply at full-system

level could be inferred. A challenge with a multi-level uncertainty integration approach is

understanding where key damage mechanisms apply, and therefore what sub-systems to

simulate. This is left as an area of additional research.

2.5. Health Decision Strategies

Health decision strategies have been well studied in the data-driven framework, where a

variety of classification methods have been successfully implemented when labelled damage

state data are available (3). All of these techniques are applicable to a forward model-driven

framework, with the key difference being that the labelled data is generated from a simulator

9



Figure 4. Beam stiffness curves where BC is the bias corrected simulator, Exp is the

experimental data and Sim is the non-biased corrected simulator with 1000 Monte Carlo

realisations.

(a) (b)

Figure 5. The percentage difference for the four natural frequencies presented for different

crack length at locations: 1 (red), 2 (blue), 3 (green) and 4 (purple) - for the bias-corrected

simulator (a) and ‘true’ (b) outputs.

rather than from observational data. A health decision strategy trained using a full-system

simulator provides additional insight. Firstly, any classified observational data will relate

to a damage state in the simulator, aiding the interpretation of the type, location and extent

of damage in the structure. This means that once identified the simulator can be used as a

model for prognosis. Additionally, any new damage state data can help to recalibrate and

validate the simulator, improving the simulator’s predictive performance. Furthermore, the

observational data can be added to the health decision strategy’s training set, aiding the

calculation of decision bounds.

An alternative health decision strategy that is available to a forward model-driven approach

is that of a Bayes risk methodology (4). The technique requires distributions of the damage

feature for each damage state of interest. These are obtainable from the validated full-system

simulator, generated by a forward model-driven framework. This approach has strengths in

that it is both probabilistic and results in outcomes based on cost from asset management,

aiding the decisions strategies interpretability. The implementation of Bayes risk in a
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Figure 6. Comparison of the bias corrected simulator (blue), experimental (red), and non-

bias corrected simulator (green), damage state distributions when xs = 1 for ∆ω1. The

x-axis limits are different for {0.8, 0.9} × tb due to the large percentage differences at these

crack lengths.

forward model-driven setting is an area of further research.

3. Discussion

Forward model-driven SHM has been demonstrated to be an alternative to both data-driven

and model-driven approaches. This is because it provides potential solutions to the lack

of available damage state data in industrial applications, among other problems. The

framework relies on the ability to generate valid, statistically representative predictions

of damage state features, replacing the need for observational data of damage states. The

method proposed in this paper is one where multiple sub-system level models are integrated,

whilst inferring parameters and model discrepancies associated with damage mechanisms

of interest. These are propagated through the sub-systems to a full-system level. Hence, the

two key elements that have been investigated in this paper are the calibration and validation,

as well as the multi-level uncertainty integration processes.
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Bayesian history matching has been proposed as a method for performing calibration of

sub-system models, allowing both inferences of the parameters and model discrepancy to

occur (when combined with a GP regression model). In addition, multi-level uncertainty

integration using a model discrepancy approach has also been demonstrated to be effective

on a simple case study. As a consequence further work will be conducted in applying the

two approaches on a more complex system.

Three areas of further research have been highlighted, namely integrating model selection

methodologies, using simulators for damage feature selection, and using the validated

full-system models in a Bayes risk health decision strategy. The inclusion of these methods

into a full demonstration of forward model-driven SHM is left for further research.

In conclusion, forward model-driven SHM is a promising framework in which current

industrial challenges could be overcome. These approaches have the potential to provide

further benefits and insight to the current state-of-the-art data-driven methods helping

SHM to become more universally adopted.
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