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Abstract

It is well known that the theory of coalgebras provides an abstract definition of behavioural

equivalence that coincides with strong bisimulation across a wide variety of state-based systems.

Unfortunately, the theory in the presence of so-called silent actions is not yet fully developed. In

this paper, we give a coalgebraic characterisation of branching (delay) bisimulation in the context

of labelled transition systems (fully probabilistic systems). It is shown that recording executions

(up to a notion of stuttering), rather than the set of successor states, from a state is sufficient to

characterise the respected bisimulation relations in both cases.
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1 Introduction

Since its inception, coalgebra-based modelling of systems provides a simple and abstract

definition of behavioural equivalence that coincides with the so-called strong bisimulation

relations across a wide variety of dynamical systems (see [19] for an introduction). Two

states are said to be behaviourally equivalent if they are mapped to a common point by

a coalgebra homomorphism. Unfortunately, the theory in the presence of so-called silent

actions is not yet well developed, albeit some general constructions (with varying level of

generality) characterising Milner’s weak bisimulation [16] are proposed in the literature (see,

for instance, [8, 9, 10, 12, 22] and the references therein).

Another refinement of strong bisimulation is branching bisimulation proposed by van

Glabbeek and Weijland [25], which is the coarsest equivalence (in the van Glabbeek

spectrum [23]) preserving the branching structure of a state [24]. In this context, we are

unaware of any prior work that captured branching bisimulation in the framework of coal-

gebras. Moreover, a natural notion of behavioural equivalence should preserve the branching

structure of a state just like strong bisimulation does in the absence of silent action.

Bonchi et al. [7] have considered silent transitions coalgebraically by removing them all

together by considering the labels as words rather than single letters. This approach is not

useful when characterising branching bisimulation (or even weak bisimulation) because not

all silent transitions can always be removed from the system without violating the transfer

properties of branching (weak) bisimulation. In [8, 9, 10, 12], weak bisimulation is captured

in two phases: first, a given coalgebra is transformed into a coalgebra (possibly over a

different base category) which captures the “saturation” effect of a silent action; second, it

is shown that the notion of behavioural equivalence on this transformed coalgebra coincides
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6:2 On path-based coalgebras

with weak bisimulation on the corresponding dynamical system. In [22] the authors used

Aczel-Mendler style formulation of strong bisimulation in the latter step.

x1

x2 x3

x4

y1

y2 y3

y4

τ b

a

τ b

a a

Figure 1 The states x1, y1 are weakly

bisimilar, but not branching bisimilar.

Nevertheless, it is well known that the saturation

step (i.e. adding strong a-transitions for each weak

a-transition to the transition system) is not sound

with respect to branching bisimulation even in the

case of labelled transition systems [25]; thus, a dif-

ferent approach to characterise it is required. The

reason is that τ -steps can enable or disable choice in

an observable behaviour, something that is hidden

by the saturation step. For weak bisimulation this

point is irrelevant; however, branching bisimulation

(which is finer than weak bisimulation) requires that

τ -steps which are required to answer an observable action may only lead to states that are

still in bisimulation relation with the original state. For instance, consider the states x1, y1

described in Figure 1. They are not branching bisimilar because the transition y1
a
−→ y4 can

be simulated by the transitions x1
τ
−→ x2

a
−→ x4, but the intermediate state x2 cannot be

related with the state y1 because y1 can fire a b-transition which x2 cannot simulate.

Our research hypothesis is that recording executions (up to a notion of stuttering) gen-

erated by a state (instead of the set of successor states) is sufficient to capture branching

bisimulation across different classes of systems. Stated differently, it is the set of execu-

tions (not the set of successor states) which specifies the branching structure of a state in

the presence of silent actions. In particular, we will substantiate this claim for the class of

labelled transition systems and fully probabilistic systems in this paper.

In lieu of the above hypothesis, we restructure the classical coalgebraic machinery in

the following way. We begin by studying a notion of paths on an arbitrary set X (denoted

Path(X)) in Section 2, which is general enough to specify the executions of a labelled

transition system and a fully probabilistic system. Intuitively, a path on X can be viewed

as a finite sequence that alternates between the elements of X and an action in the alphabet

Aτ = A ⊎ {τ}, where τ 6∈ A is the silent action. Now for every path p ∈ Path(X) there is

a unique stutter invariant path p† ∈ Path(X) associated with it, which intuitively can be

constructed by removing the τ self-loops. This is reminiscent of a coloured trace from [25],

which is obtained from a concrete coloured trace in a process graph whose nodes are labelled

by a fixed set of colours. In the sequel, stutter invariance induces an equivalence relation ∼

on the set Path(X) whose quotient is denoted as Path∼(X). Furthermore, it turns out that

both the mappings Path(X), Path∼(X) are endofunctors on the category of sets Set.

Now what is missing in our approach is the type of dynamics (also known as the branching

type in the theory of coalgebras). For instance, a labelled transition system can be viewed

as a coalgebra of type P ◦ (Aτ × id) over the base category Set. Here P is the covariant

powerset functor and Aτ × id is the product functor whose left component is fixed. In other

words, the branching type of labelled transition system is nondeterministic. Therefore, to

characterise branching bisimulation, we consider coalgebras of type P ◦ Path∼ over the base

category Set. In Section 3, we show that behavioural equivalence in this coalgebra coincides

with the traditional branching bisimulation relation [25]. Moreover, this framework can

also be used to characterise the weak bisimulation, delay bisimulation, and eta-bisimulation

relations; however, for reasons of space, this is worked out in [6].

Nevertheless, the situation is not so straightforward in the case of a fully probabilistic

system. Often such systems are modelled as coalgebras of type D ◦ (Aτ × id) over the base
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category Set, where D is the sub-distribution functor. It turns out that one needs a notion

of measurable space and a measure on the set of maximal executions1 in order to define

branching (weak) bisimulation relations over the states of a fully probabilistic system (cf.

[4, 21]). Thus, it is natural to consider fully probabilistic systems as ‘weighted’ coalgebras

of type G ◦ (Aτ × id) over the base category of measurable spaces Meas. Here, G is the

well-known Giry monad of probability measures [17].

In Section 5, just like in the discrete case, we consider coalgebras of type G◦Path∼ over the

base category Meas to characterise probabilistic delay bismulation, which was mistakenly

[20] called probabilistic branching bisimulation in [21, 22]. The crux of the matter is in

defining Path(X) and Path∼(X) as endofunctors on the category Meas. In other words,

we need to resolve the following issues: first, which subsets of Path(X) and Path∼(X) are

measurable; second, whether Path(X)
Path(f)- Path(Y ) (for a given X

f- Y in Set) is

a measurable function or not; third, constructions of measures on the sets Path(X) and

Path∼(X). These issues are explored in Section 4, for which some preliminary knowledge

on topology, domain theory, and measure theory is required. In Section 6, we discuss future

directions for research and present some concluding remarks. An extended version of this

paper containing all the complete proofs pertaining to each section can be found in [6].

2 Preliminaries

This section is devoted to formally introduce a notion of path and stutter equivalent path

on a set X, which will be used throughout the paper. As mentioned earlier, a path on X

can be intuitively viewed as a finite sequence that alternates between the elements of the

set X and an action in the alphabet Aτ . However, we abstain from this operational view in

favour of Definition 2.1 to reason about paths from a functional perspective.

Let A∗
τ be the set of finite words with ε ∈ A∗

τ denoting the empty sequence. We write �

to denote the prefix ordering on words and let ↓σ = {σ′ | σ′ � σ}.

◮ Definition 2.1. A path p on a set X is a function whose codomain is X and domain is

the set of all prefixes of some word in A∗
τ .

Let Path(X) be the set of all paths on a given set X. Then, this lifts to an endofunctor

on the category of sets Set by letting: Path(f)(p) = f ◦ p, for every function X
f- Y .

Every path p ∈ Path(X) has a trace associated with it. Moreover, every path p ∈

Path(X) reaches a last element from the set X. Symbolically, we write

trace(p) = max dom(p) and last(p) = p(trace(p)).

◮ Proposition 2.2. Let X
f- Y be a function. Then, for every path p ∈ Path(X) we

have trace(p) = trace(fp) and f last(p) = last(fp). x1
f - y1

x2

τ
?

f
-

y2

a
?

x3

a
?

f
-

Figure 2 Two systems hav-

ing same branching structure.

The above proposition states that the functor Path pre-

serves the trace of a path, which is quite strong for our pur-

pose. To exemplify this, consider two labelled transition

systems and a function between the states as shown in Fig-

ure 2. Since the τ -step from the state x1 does not disable

1 An execution of a fully probabilistic system is maximal if it is an infinite execution or it stops in a state
with the sum of probabilities of all outgoing transitions as 0.
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6:4 On path-based coalgebras

any choice of observable action offered by x1, we would like to declare the states x1 and x2

as equivalent. In other words, we would like to assert that f is a homomorphism between

the coalgebras (X = {x1, x2, x3}, α) and (Y = {y1, y2}, β), where the functions α, β return

all the generated executions. However, we note that this is not the case because the f -image

of the execution p = 〈x1 τ x2 a x3〉 ∈ α(x1) is 〈y1 τ y1 a y2〉 which is not an execution from

y1. Thus, the key observation is to relate the executions of two systems up to stuttering,

which leads to the following definition.

◮ Definition 2.3. A function φ with dom(φ) = dom(p) and cod(φ) = A∗
τ is a stutter basis

for a path p ∈ Path(X) if it can be constructed inductively by the following rules:

1. φ(ε) = ε.

2. if σ′τ ∈ dom(p) and p(σ′τ) = p(σ′) then φ(σ′τ) = φ(σ′).

3. if σ′τ ∈ dom(p) and p(σ′τ) 6= p(σ′) then φ(σ′τ) = φ(σ′)τ .

4. if σ′a ∈ dom(p) and a ∈ A then φ(σ′a) = φ(σ′)a.

As an example, consider a path p = 〈x1 τ x1 a x2〉. Then, the function φ defined as φ(τ) =

φ(ε) = ε and φ(τa) = a is a stutter basis φ for the path p. However, if p = 〈x1 τ x2 a x3〉

with x1 6= x2, then φ = id is a stutter basis for p.

◮ Theorem 2.4. For any path there is a unique stutter basis.

◮ Lemma 2.5. Let φ be the stutter basis for a path p ∈ Path(X) with dom(p) =↓ σ, for

some σ ∈ A∗
τ . Then, φ(↓σ) = ↓φ(σ).

◮ Definition 2.6. Given a path p ∈ Path(X) and its corresponding stutter basis φ, then a

function φ(dom(p))
p†

- X is the stutter invariant path relative to p if p† ◦ φ = p.

Notice that for the function p† to be a path its domain should be a prefix closed subset

of a word, which follows directly from Lemma 2.5.

The notion of stutter invariant path induces an equivalence relation on the set of all

paths as follows. Two paths p, q ∈ Path(X) are said to be stutter equivalent, denoted p ∼ q,

if and only if they have the identical stutter invariant path, i.e., p† = q†. Let Path∼(X) be

the set of all the paths up to stutter equivalence. This lifts to a functor as well:

Path∼(f)[p]∼ = [f ◦ p]∼ for any p ∈ Path(X) and X
f- Y . (1)

To prove that the above map is well-defined, we need the following lemma.

◮ Lemma 2.7. For any p ∈ Path(X) and any X
f- Y , we have f ◦ p† ∼ f ◦ p.

◮ Theorem 2.8. The mapping in (1) is well defined and Path∼ is an endofunctor on Set.

Notation We write πX for the quotient map that maps a path p ∈ Path(X) to [p]∼.

We end this subsection with few properties on (stutter equivalent) paths.

◮ Lemma 2.9. Let p ∈ Path(X), q ∈ Path(Y ), and X
f- Y .

1. If fp ∼ q and trace(q) ∈ τ∗aτ∗ then q(ε) = fp(ε) ∧ trace(p) ∈ τ∗aτ∗.

2. last(p) = last(p†).

3. If fp ∼ q, then f(last(p)) = last(q).

4. πY ◦ Path(f) = Path∼(f) ◦ πX .

5. Let Vi ⊆ Path∼(Y ) (for i ∈ I) be a family of pairwise disjoint sets. Then,

Path∼(f)
−1

(

⋃

i∈I

Vi

)

=
⋃

i∈I

Path∼(f)
−1

(Vi) .
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Coalgebraic preliminaries

◮ Definition 2.10. Let C be a category and let C
F- C be an endofunctor. An F -coalgebra

over the base category C is a tuple (X, α), where X is an object in C and X
α- FX is

an arrow in C. Given two objects (X, α) and (Y, β), an F -coalgebra homomorphism is an

arrow X
f- Y in C such that Ff ◦ α = β ◦ f .

◮ Definition 2.11. Let C be a concrete category over the category of sets Set, i.e., there is

a faithful functor C
|_|- Set. Let (X, α) be an F -coalgebra over the concrete category C.

Then, two points x, x′ ∈ |X| are said to be F -behaviourally equivalent if and only if there is

an F -coalgebra (Y, β) and an F -coalgebra homomorphism X
f- Y such that f(x) = f(x′).

In Section 3, we will let C = Set and |_| = id; however, in Section 5, we will let

C = Meas and the faithful functor |_| to be the forgetful functor which forgets the sigma

algebras associated with the underlying sets.

3 Branching bisimulation on labelled transition systems

The goal is to characterise branching bisimulation of van Glabbeek and Weijland [25]

using a coalgebraic approach based on paths as outlined in the introduction.

◮ Definition 3.1. A labelled transition system is a triple (X, Aτ , →), where X is a set of

states, Aτ a set of actions, and →⊆ X × Aτ × X is the so-called transition relation.

As usual, we write x
a
−→ x′ and −։ ⊆ X × A∗ × X to denote an element (x, a, x′) ∈→ and

the weak reachability relation, respectively. The latter is defined as the smallest relation

satisfying the following inference rules:
x

ε

−։x

x
σ

−։x′ x′
a

−→x′′

x
σa

−−։x′′

.

◮ Definition 3.2. Let (X, Aτ , →) be a labelled transition system. A symmetric relation

R ⊆ X × X is called a branching bisimulation relation [25] if and only if for any x, y, x′ ∈ X

and a ∈ Aτ , if x
a
−→ x′ ∧ xRy then (x′Ry ∧ a = τ) ∨ ∃y′,y′′ y

ε
−։ y′ a

−→ y′′ ∧ xRy′ ∧ x′Ry′′.

Two states x ∈ X and x′ ∈ X are branching bisimlar if and only if there exists a branching

bisimulation relation R such that xRx′.

Next, we construct a P ◦Path∼-coalgebra based on paths, where P is the covariant power

set endofunctor on the category of sets Set.

An execution starting from a state x ∈ X of a labelled transition system (X, Aτ , →) is

a path p ∈ Path(X) such that p(σ)
a
−→ p(σa), for all σa ∈ dom(p). Let Exec(x) be the set

of all executions starting from x. Such a transition system can be modelled as a coalgebra

(X, πX ◦ α), where transition function α is given as:

α(x) = {p | p ∈ Exec(x) ∧ trace(p) ∈ τ∗a} ∪ {p | p ∈ Exec(x) ∧ trace(p) ∈ τ∗}.

◮ Remark. At this stage, we would like to highlight the distinction between a path and an

execution made in this paper. It should be noted that all executions of a system (under

investigation) are paths; however, the converse may not be true. This is not unusual because

after all the executions of a system are generated on the basis of how behaviour of the system

is specified (for instance, by the transition relation in the case of labelled transition systems

and by the transition function in the case of fully probabilistic system).

Next, we state the main result of this section.

CALCO 2017



6:6 On path-based coalgebras

◮ Theorem 3.3. Let (X, Aτ , →) be a labelled transition system and (X, πX ◦ α) be the

corresponding P ◦ Path∼-coalgebra. Then, two states x, x′ ∈ X are branching bisimilar if

and only if the states x, x′ are P ◦ Path∼-behaviourally equivalent.

Proof. ⇒ Let R ⊆ X × X be the largest branching bisimulation on the given labelled

transition system. Then, from [25] we know that R is an equivalence relation. So let

X
f- X/R be the quotient map. Now to show that f is indeed the required P ◦ Path∼-

coalgebra homomorphism, we first construct a coalgebra X/R
β- PPath∼(X/R):

β(f(x)) = {Path∼(f)(p) | p ∈ α(x)}, for all x ∈ X .

Clearly, β is a total function because f is surjective. Next, we claim that β is well-defined,

i.e., independent of the chosen representative. Let x, x′ ∈ X such that f(x) = f(x′). Then,

we need to show that β(f(x)) = β(f(x′)). Suppose [fp]∼ ∈ β(f(x)) with p ∈ α(x). Then,

by structural induction on the word σ ∈ dom(p) we show that there is a path p′ ∈ α(x′)

such that f ◦ (p|σ) ∼ f ◦ p′. Here, we write p|σ to denote the restriction of the function p to

the sub-domain ↓ σ. To see this, without loss of generality, let σa ∈ dom(p). Then by the

induction hypothesis we find an execution p′ ∈ α(x′) such that f ◦ (p|σ) ∼ f ◦ p′. Note that

p(σ)
a
−→ p(σa) and using Lemma 2.9(3) we get f ◦ (p|σ) ∼ f ◦ p′ =⇒ p(σ) R last(p′). Let

a ∈ A. Then, using the transfer property of branching bisimulation we get last(p′)
ε
−։ y

a
−→ y′

such that p(σ)Ry and p(σa)Ry′ since p(σ) and last(p′) are branching bisimilar. Moreover,

from the stuttering lemma [25] we know that any intermediate state visited in the path

last(p′)
ε
−։ y is also R-related to p(σ). Therefore, there is a path p′′ ∈ Path(X) which extends

p′ such that f ◦ (p|σa) ∼ f ◦ p′′. In addition, if a = τ then we either have p(στ) R last(p′) or

last(p′)
ε
−։ y

τ
−→ y′, for some y, y′, with p(σ)Ry and p(στ)Ry′. Suppose the former is true,

then clearly we have f ◦ (p|στ ) ∼ f ◦ p′. The latter case is similar to the case when a ∈ A.

Thus, for every p ∈ α(x) there is a path p′ ∈ α(x′) such that f ◦ p ∼ f ◦ p′. Likewise, we can

show the symmetric property when the role of x and x′ is interchanged. This completes the

proof of the above claim. Clearly, we have β ◦ f = PPath∼(f) ◦ α.

⇐ Let (Y, β) be a P ◦ Path∼-coalgebra and X
f- Y be a P ◦ Path∼-coalgebra

homomorphism. Below we rather illustrate why the relation xRx′ ⇐⇒ f(x) = f(x′) is a

witnessing branching bisimulation. The complete proof can be found in [6]. ◭

Consider the two labelled transition systems drawn below enclosed inside the two rectangles.

Here, X
α- PPath∼(X) and Y

β- PPath∼(Y ) denote the corresponding path-based

x1
α :

x2 x3

x4 x5

x′
1

x′
2 x′

3

τ a

a b

a b
y1

β :

y2

ba

coalgebras with X = {xi, x′
j | i ∈ {1, 2, 3, 4, 5}, j ∈ {1, 2, 3}} and Y = {y1, y2}. Furthermore,

let X
f- Y be a function defined as f(x) = y1 if x ∈ {x1, x′

1, x2}; otherwise f(x) = y2.

To illustrate why R (as defined above) is a witnessing branching bisimulation, consider the

transition x′
1

b
−→ x′

3 and x1Rx′
1. Clearly, 〈x′

1 b x′
3〉 ∈ α(x1), which further implies that

〈y1 b y2〉 ∈ β(y1). Since PPath∼(f) ◦ α = β ◦ f we know that there is an execution p such

that f ◦p is stutter equivalent to 〈y1 b y2〉. And by inspection we note that p = 〈x1 τ x2 b x5〉
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is such an execution. Moreover, x2Ry1 and x5Ry2 which is required by the transfer property

of a branching bisimulation relation.

In hindsight, using the terminology of [24], a PPath∼-coalgebra homomorphism preserves

the branching structure of states. As a consequence, two behaviourally equivalent states have

the same set of executions under the image of a PPath∼-coalgebra homomorphism up to

stutter invariance. For instance, in the above example, the sets of all executions having trace

τ∗a from the states x1 and x′
1 are {〈x1 a x3〉, 〈x1 τ x2 a x4〉} and {〈x′

1 a x′
2〉}, respectively.

Notice that the f -image of these two sets are equivalent up to stutter invariance. A similar

argument can be observed for the set of executions from x1, x′
1 having trace τ∗b.

Though we have focussed on branching bisimulation, this approach can also be used

to capture weak, η and delay bisimulation, by defining α differently, saturating τ leading

transitions, trailing τ transitions or both, respectively. This is made explicit in [6].

4 A measurable space on paths

As mentioned in the introduction, we will consider coalgebras of type G ◦ Path∼ over the

base category Meas to characterise probabilistic delay bisimulation. However, before we do

so, we have to fix which subsets of the sets Path(X) and Path∼(X) are measurable together

with the construction of a measure on the space of paths, which can be a challenging issue

in its own right. In this section, we resolve these fundamental issues by first recalling some

basic definitions of measure theory taken from [17].

◮ Definition 4.1. A set ΣX ⊆ P(X) of subsets of X is a sigma-algebra on X if and only if

X ∈ ΣX and ΣX is closed under the set complements and countable unions. Then, the tuple

(X, ΣX) is called a measurable space. A measure space is a measurable space (X, ΣX) with a

measure ΣX
µX- [0, ∞], i.e., µX is a function satisfying µ(∅) = 0 and the sigma-additivity

property: for any countable family of pairwise disjoint sets Ui ∈ ΣX (for i ∈ I) we have

µX(
⋃

i∈I

Ui) =
∑

i∈I

µX(Ui) .

A probability space (X, ΣX , µX) is a measure space with µX(X) = 1. A discrete space is a

measure space such that X is countable and ΣX = P(X).

Here, the arbitrary sum of a family {ri | i ∈ I} of nonnegative real numbers is defined

as
∑

i∈I ri = sup{
∑

i∈J ri | J ⊆f I} (cf. [21]), where J ⊆f I ⇐⇒ J ⊆ I ∧ J is a finite set.

We want to endow a notion of measurability on the set Path∼(X); however, for simplicity

we first restrict ourselves to the set of all paths on X, i.e., Path(X). It turns out that the set

of all paths carries a topological structure (precisely, they form what is known as Alexandroff

topology [2]) and also satisfies the so-called Kolmogorov separability axiom. Once we have a

topological space, the convention is to consider the smallest sigma-algebra generated by the

set of all open sets (also known as the Borel sigma-algebra) as the set of measurable sets.

◮ Definition 4.2. A topology on a set X consists of a set of open sets OX ⊆ P(X) such that:

first, the empty set and the whole space are in OX ; second, the set OX is closed under finite

intersection and arbitrary unions. A topological space (X, OX) is an Alexandroff space if

the set OX is closed under arbitrary intersection. A topological space (X, OX) satisfies the

Kolmogorov separability axiom (X is a T0 space) if any two distinct points are topologically

distinguishable, i.e., ∀x,x′∈X x 6= x′ =⇒ ∃U∈OX
(x ∈ U ∧ x′ 6∈ U) ∨ (x 6∈ U ∧ x′ ∈ U).

CALCO 2017



6:8 On path-based coalgebras

It is well-known that the set of all upward closed subsets generated by a poset forms a

T0 Alexandroff space. In particular, our set of paths Path(X) carries the following order:

p � q ⇐⇒ dom(p) ⊆ dom(q) ∧ ∀σ∈dom(p) q(σ) = p(σ) .

Actually, the above ordering is a prefix order in the sense of Cuijpers [11].

◮ Definition 4.3. A prefix order is a partial order whose every principal ideal is a totally

ordered set.

◮ Proposition 4.4. The history of a path p ∈ Path(X) is downward total, i.e., the set

↓p = {p′ | p′ � p} is a totally ordered set.

◮ Proposition 4.5. The set of all paths Path(X) on a set X forms a T0 Alexandroff space,

whose open sets are upward closed subsets of Path(X), i.e., OPath(X) = {U ⊆ Path(X) |

U =↑U}. Here, the set ↑U = {p′ | ∃ p ∈ U ∧ p � p′} denotes future of paths in the set U .

At this stage, we note the following relationship between stutter paths and the order �.

◮ Lemma 4.6. Let X be a set. Then we have the following property: for any two paths

p1, p2 ∈ Path(X), if p†
1 � p†

2 then ∃p∈Path(X) p ∼ p1 ∧ p � p2.

Every point x ∈ X in an Alexandroff space has a special neighbourhood associated with it,

often called the smallest neighbourhood of x, denoted N (x) =
⋂

{U | U ∈ OX ∧ x ∈ U}. In

particular, this structure, in the case of paths, is the principal filter generated by a path.

◮ Proposition 4.7. For a path p ∈ Path(X), the smallest neighbourhood of p represents the

future of the path p, i.e., ↑p = N (p). In contrast, the closure cl(p) of a path p ∈ Path(X) –

the smallest closed set that contains p – represents the history of p, i.e., cl(p) =↓p.

The next proposition states that the subsets of paths which belong to the Borel sigma-algebra

B(OPath(X))) are measurable.

◮ Proposition 4.8. The tuple (Path(X), ΣPath(X)) is a measurable space, where ΣPath(X) =

B(OPath(X)). Here, B(X ) denotes the smallest sigma-algebra generated by X ⊆ P(X).

Next, we establish that the Path(X)
Path(f)- Path(Y ) (for a given X

f- Y ) is meas-

urable, i.e., if V ∈ ΣPath(Y ) then f−1V ∈ ΣPath(X). For this, we need the following result.

◮ Theorem 4.9. For any X
f- Y , the function Path(f) is an order embedding, i.e., for

any p, p′ ∈ Path(X) we have p � p′ ⇐⇒ f ◦ p � f ◦ p′.

Since every order preserving function is continuous and every continuous function is Borel

measurable, it follows that, in particular, Path(f) is Borel measurable.

◮ Corollary 4.10. For any X
f- Y , the function Path(f) is measurable.

In hindsight, the function Path(f) is an arrow in the category Meas. Next, we turn our

attention on constructing a measurable space on the set Path∼(X). The idea is to first define

an order on the quotient space Path∼(X), which can be inherited from the underlying space

of paths Path(X) by simply letting: [p]∼ � [q]∼ ⇐⇒ p† � q†, for all p, q ∈ Path(X).

◮ Lemma 4.11. The relation � on the set Path∼(X) is a well-defined partial order. Fur-

thermore, the relation � on the set Path∼(X) is also a prefix order.
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Once we have an order on the quotient space, we can establish that the quotient maps

are order preserving (or continuous in the topological sense).

◮ Theorem 4.12. The quotient function Path(X)
π- Path∼(X) is order preserving.

Consequently, the quotient function Path(X)
π- Path∼(X) is Borel measurable, where

the sigma-algebra on paths is given by ΣPath∼(X) = B(OPath∼(X)).

Next, we state the main theorem of this section.

◮ Theorem 4.13. For any X
f- Y , the function Path∼(f) is order preserving. Thus,

the function Path∼(f) is Borel measurable.

Constructing measures on the space of paths

Often, measures on a space are constructed in a top-down manner by identifying a meas-

urable set of building blocks and defining a set-function on this collection (for example, in

the case of Lebesgue measures on R, a semi-closed interval [r, r′) with r ≤ r′ is one such

building block and the set-function maps every interval of the form [r, r′) to the value r′ −r).

In turn, measure extension theorems (for instance, the well-known Carathéodory-Hahn ex-

tension theorem; see [18, pp 356]) are invoked to lift the set-function on building blocks to

a measure on the whole measurable space. In this paper, we will follow a similar recipe;

our building blocks will be open subsets of paths. As for measure extension theorems, we

will use a result (cf. Theorem 4.17) established by Alvarez-Manilla [3]. Below, we recall

some definitions on a topological space necessary to state this result.

◮ Definition 4.14. Let (X, OX) be a topological space. A function OX
µ- [0, ∞] is a

valuation if and only if the following conditions are satisfied.

1. The function µ is strict, i.e., µ(∅) = 0

2. The function µ is order preserving, i.e., for any two open sets U, U ′ ∈ OX , we have

U ⊆ U ′ implies µ(U) ≤ µ(U ′).

3. The function µ is modular, i.e., for any two open sets U, U ′ ∈ OX , we have µ(U)+µ(U ′) =

µ(U ∪ U ′) + µ(U ∩ U ′).

A valuation µ is Scott-continuous if and only if for any directed family of open sets (Ui)i∈I

we have µ(
⋃

i∈I Ui) = supi∈I µ(Ui). Lastly, a valuation µ is locally finite if and only if every

point has a finitely valued open neighbourhood.

◮ Definition 4.15. A space (X, OX) is locally compact if and only if for every point x and

open set U with x ∈ U , there is a compact subset V ⊆ X such that x ∈ int(V ) and V ⊆ U .

Here, int(V ) denotes the interior of V ⊆ X.

◮ Definition 4.16. A topological space (X, OX) is sober if and only if every irreducible closed

set is a closure of a unique point. A closed set C is irreducible if and only if C is nonempty

and it cannot be expressed as union of two smaller closed subsets, i.e., if C = C1 ∪ C2 and

C1, C2 are closed sets, then C = C1 or C = C2.

We call a subset C ⊆ X non-sober if C is irreducible, C is closed, and it cannot be stated

as a closure of point (i.e., ∄x∈X C = cl(x)).

◮ Theorem 4.17 ([3]). Every locally finite and Scott-continuous valuation on a locally com-

pact sober space extends uniquely to a Borel measure.

The restrictions on OX
µ- [0, ∞] imposed by the above theorem are not unreasonable; at-

least for our purpose. In Section 5, we will construct a locally finite and a Scott-continuous
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valuation on open subsets of paths, which is induced by a given fully-probabilistic trans-

ition system. Nevertheless, we cannot immediately apply Theorem 4.17 because our space

Path(X) is not a sober space, even though it is locally compact, i.e., every path p ∈ Path(X)

has a compact neighbourhood (since p ∈↑p). As a result, in the following, we first ‘soberify’

our space Path(X) and use Theorem 4.17 to construct a Borel measure on Path(X) by

lifting a given locally finite and Scott-continuous valuation OPath(X)
µ- [0, ∞].

◮ Remark. By inspection, we note that our space Path(X) is non-sober. For instance, if

X is non-empty then unfolding a τ -loop results in an infinite chain of paths without any

maximum since the domain of a path is a set of prefixes generated by some finite word.

Recall that, for a set X, both sets of paths Path(X) and stutter-equivalent paths Path∼(X)

are prefix orders. We want to construct measures on both kinds of spaces, therefore below

we work with a class of simple prefix orders which generalises both the structures.

◮ Definition 4.18. A prefix order is simple if the history of every point is a finite set.

For example, the sets Path(X) and Path∼(X) are simple prefix orders.

◮ Proposition 4.19. A directed subset of a prefix order is always totally ordered. In addition,

an irreducible downward closed subset of a prefix order is always totally ordered.

Next, we construct a space X∞ consisting of all points from X in which the non-sober sets

(w.r.t. Alexandroff topology) are added as limit points.

X∞ = X ∪ {∞C | C ⊆ X is a non-sober set w.r.t. Alexandroff topology}.

�′= � ∪ {(∞C , ∞C) | ∞C ∈ X∞} ∪ {(x, ∞C) | x ∈ C}.

As an example, consider the prefix order (N, ≤) with their natural ordering. The sober space

N∞ = N ∪ {∞N} is isomorphic to the well-known set of extended natural numbers Nω.

◮ Lemma 4.20. The set X∞ is prefix ordered by the relation �′, if (X, �) is a prefix order.

Henceforth, we do not distinguish between the relation � and �′. Notice that being sober

is a topological property and therefore, we need a ‘right’ notion of topology on X∞ to

qualify it as sober. For instance, if we take upward closed sets as open sets (just like in

the case of X) we find that the space X∞ is still non-sober; as a result, X∞ is non-sober

w.r.t. Alexandroff topology. However, if we endow X∞ with a Scott topology then the

space becomes sober w.r.t. this finer topology. For example, in the case of extended natural

numbers, the problematic case of the directed set N (which was non-sober w.r.t. Alexandroff

topology) is actually not a Scott-closed set2 since supN = ∞N and ∞N 6∈ N.

◮ Proposition 4.21. Let (X, �) be a simple prefix order. A subset U ⊆ X∞ is Scott open if

and only if U is upward closed and it is inaccessible by directed joins, i.e., for any directed

set D ⊆ X∞ if sup D exists and sup D ∈ U then D ∩ U 6= ∅. Let SX∞ denote the collection

of Scott open subsets of X∞. Then, the space (X∞, SX∞) is a sober space.

To apply Theorem 4.17, we need to first construct a locally finite and Scott-continuous

valuation on our new sober space Path∞(X). In the following theorem, we will construct

one such valuation on Path∞(X) from an old valuation OPath(X)
µ- [0, ∞].

2 A subset C ⊆ X of a prefix order (X, �) is Scott closed if and only if C is downward closed and for
any directed set D ⊆ C, if sup D exists then sup D ∈ C.
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◮ Theorem 4.22. Let (X, �) be a prefix order and let OX
µ- [0, ∞] be a locally finite

and Scott-continuous valuation. Then, the function SX∞

µ̃- [0, ∞] defined as follows:

µ̃(V ) = µ(V ∩ X) (for every Scott-open set V ∈ SX∞)

is a Scott-continuous valuation. If X is simple then µ̃ is locally finite.

As a result, the function µ̃ lifts to a unique Borel measure on the sigma-algebra ΣPath∞(X) =

B(SPath∞(X)) due to Theorem 4.17. However, in order to reflect back this measure on the

original sigma-algebra ΣPath(X), it is sufficient to establish that ΣPath(X) is contained in the

Borel sigma-algebra induced by Scott-open sets, i.e., ΣPath(X) ⊆ ΣPath∞(X) = B(SPath∞(X)).

The next theorem states under what conditions the set-containment between the two sigma-

algebras ΣPath(X), ΣPath∞(X) is possible.

◮ Theorem 4.23. For countable sets A and X, the sigma-algebra ΣPath(X) is contained in

the Borel sigma-algebra ΣPath∞(X). Moreover, we also have ΣPath∼(X) ⊆ ΣPath∞
∼ (X).

◮ Corollary 4.24. Suppose the sets A and X are countable. Then every locally finite and

Scott-continuous valuations OPath(X)
µ- [0, ∞] and OPath∼(X)

µ- [0, ∞] lifts to a

unique Borel measure ΣPath(X)
µ̃- [0, ∞] and ΣPath∼(X)

µ̃- [0, ∞], respectively.

5 Probabilistic delay bisimulation

In this section, we use the concepts developed in the previous section to characterise prob-

abilistic delay bisimulation relation between the states of a fully probabilistic system.

◮ Definition 5.1. A (fully) probabilistic transition system is a triple (X, Aτ , P ) consisting

of a countable set of states X, a countable set of actions Aτ , and a probability transition

function X ×Aτ ×X
P- [0, 1] such that for every x ∈ X, the set {(a, x′) | 0 < P (x, a, x′)}

is finite and
∑

(a,x′)∈Aτ ×X P (x, a, x′) ∈ {0, 1}.

Given a probabilistic transition system (X, Aτ , P ), an execution p is a path on X such

that ∀σa∈dom(p) 0 < P (p(σ), a, p(σa)). Let Exec(x) be the set of all executions starting from

the state x. We write â = ε if a = τ and â = a if a ∈ A.

◮ Definition 5.2. An equivalence relation R ⊆ X × X on a probabilistic transition system

(X, Aτ , P ) is a probabilistic delay bisimulation [4, 21] if and only if

∀x,x′∈X xRx′ =⇒ ∀x′′∈X,a∈Aτ
P (x, τ∗â, [x′′]R) = P (x′, τ∗â, [x′′]R) .

Two states x, x′ ∈ X are probabilistic delay bisimilar if and only if there is a probabilistic

delay bisimulation R such that xRx′.

Here, the probabilities associated with weak transitions are defined (originally given in

[22]) in the following way. For x ∈ X, Y ⊆ X, L ⊆ A∗
τ , we let

x
L
−→ Y = {p ∈ Exec(x) | trace(p) ∈ L ∧ last(p) ∈ Y ∧

∀q (q ≺ p ∧ trace(q) ∈ L) =⇒ last(q) 6∈ Y }.

P (x, L, Y ) =
∑

p∈x
L

−→Y
µP (p), where Path(X)

µP- [0, 1] is defined as:

µP (p) =

{

∏

σa∈dom(p) P (p(σ), a, p(σa)), if p ∈ Exec(x), for some x ∈ X

0, otherwise
.
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◮ Proposition 5.3. For a given fully probabilistic system (X, Aτ , P ), the induced function

µP on paths is order reversing. Moreover, µP (εx) = 1 (for any x ∈ X).

In contrast to Section 3, our base category will be rather the category of measurable

spaces and measurable functions Meas.

◮ Definition 5.4. Below we recall the well known Giry functor G (see e.g. [17]):

Let (X, ΣX) be a measurable space. Then, G(X, ΣX) = (GX, ΣGX), where GX is the set

of all probability measures on the measurable space (X, ΣX). The sigma-algebra ΣGX

is the smallest sigma-algebra such that the evaluation maps GX
ǫU- [0, 1] are Borel

measurable, for every U ∈ ΣX .

For any arrow X
f- Y in Meas, we let G(f)(µ) = µ ◦ f−1.

x′′
1 x′

1

x1

τ 6 τ -

x2

x0

τ
-

�
τ

Figure 3 An example mo-

tivating separation closure.

To motivate the next definition, consider the transition sys-

tem depicted in Figure 3 and assume a nonzero probability

with each of the drawn transitions. Furthermore, let p1, p′
1,

and p2 be the three executions that reach the states x1, x′
1, and

x2, resp., from the state x0. Notice that P (x0, τ∗, {x1, x′
1, x2})

is the sum of the probabilities associated only with the execu-

tions p1, p2. The execution p′
1 is not considered in the above

computation because one can reach the set of target states {x1, x′
1, x2} with the execution

p1 which is a prefix of p′
1. This means, the execution p′

1 is redundant and neglected while

computing the probability to reach the above target states. Such redundancies at the level

of paths are identified by the following notion of separation closure.

◮ Definition 5.5. Let (X, OX) be an Alexandroff space. The separation closure of a subset

U ⊆ X is the set U⋆ = {x ∈ U | cl(x) ∩ U = {x}}. A subset U ⊆ X is separated if U = U⋆.

In the context of the previous example (Figure 3), let U = {p1, p′
1, p2}. Then, we find that

↓x ∩ U = {x}, for x ∈ {p1, p2}, while for the execution p′
1 we find that ↓p′

1 ∩ U = {p1, p2}.

Thus, U⋆ = {p1, p2} which were the only executions needed to compute the probability to

reach one of the target states. Incidentally, a separated subset of paths U ⊆ Path(X) (i.e.,

U = U⋆) is minimal in the sense that any two distinct paths p, p′ ∈ U are not in the prefix

relation �, i.e., p 6� p′ and p′ 6� p. The following proposition asserts this.

◮ Proposition 5.6. In an Alexandroff space (X, OX), a separated subset U ⊆ X (i.e.,

U = U⋆) has topologically distinguishable points. Moreover,

1. the separation closure of a set is always separated, i.e., U⋆ = U⋆⋆, for any U ⊆ X.

2. the collection of separated sets is hereditary, i.e., if U1 ⊆ U2 and U2 = U⋆
2 , then U1 = U⋆

1 .

3. for any subset U ⊆ X, we have (↑ U)⋆ ⊆ U⋆. Moreover the converse also holds, if the

underlying space X is a T0 space. Here, upward closure is w.r.t. the specialisation order

�, i.e., x � x′ ⇐⇒ cl(x) ⊆ cl(x′), for any x, x′ ∈ X.

Thus, separation closure provides an alternative way to compute P (x, L, Y ).

◮ Lemma 5.7. For a given system (X, Aτ , P ), define the set x
L
−։ Y = {p ∈ Path(X) |

p(ε) = x ∧ trace(p) ∈ L ∧ last(p) ∈ Y }. Then,
∑

p∈x
L

−→Y
µP (p) =

∑

p∈(x
L

−։Y )⋆

µP (p).

It should be noted that for a given probabilistic transition system (X, Aτ , P ), we have

x
L
−→ Y ⊆ (x

L
−։ Y )⋆; however, the converse is not true in general.

The next theorem highlights a property characteristic to fully probabilistic systems. It

states that if a separated subset of paths U has a lower bound p, i.e., ∀q∈U p � q, then the
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sum of probabilities associated with each path in U is bounded by the weight of p. This

property is due to the order reversing nature of the function µP (cf. Proposition 5.3).

◮ Theorem 5.8. Given a system (X, Aτ , P ), a path p ∈ Path(X), and a separated set of

paths U ⊆ Path(X) such that p � U , i.e., ∀q∈U p � q. Then,
∑

q∈U µP (q) ≤ µP (p).

Next we focus on the construction of probability measures on the space Path(X). From

Corollary 4.24, it suffices to construct a locally-finite and Scott-continuous valuation on the

open subsets of paths. The following theorem extends the function µP (induced by a given

fully probabilistic system (X, Aτ , P )) to such a valuation on paths.

◮ Theorem 5.9. Given a system (X, Aτ , P ), then the function OPath(X)
µ̃P- [0, ∞] defined

as µ̃P (U) = µP (U⋆) (for every open set U) is a locally finite and Scott-continuous valuation.

Now we have all the technical machinery to encode a given probabilistic transition system

(X, Aτ , P ) as a coalgebra X
α- GPath∼(X), where ΣX = P(X) (since X is countable).

The transition system α is defined, coalgebraically, as follows:

α(x)(U) = µ̃P (πX
−1(U) ∩ ↑εx), for every U ∈ ΣPath∼(X) . (2)

Here, we abuse notation by using µ̃P to denote a measure on ΣPath(X). Note that this

measure is rather constructed by extending the valuation given in Theorem 5.9.

◮ Proposition 5.10. The mapping in (2) is a probability measure.

Now we are ready to state the main result of this section.

◮ Theorem 5.11. Two states are probabilistic delay bisimilar if and only if they are G ◦

Path∼-behaviourally equivalent.

Proof. ⇒ Let R be a probabilistic delay bisimulation, let (X, α) be the G◦Path∼-coalgebra

induced by (X, Aτ , P ), and let X
f- X/R be the quotient map. We will construct a

coalgebra on the quotient set X/R in two stages. First, we construct a measure νf(x) (for each

x ∈ X) on the space Path∼(X/R) using the extension result (cf. Corollary 4.24) such that

it coincides with the pushforward measure (α(x))∗ on the open subsets V ∈ OPath∼(X/R).

Second, we invoke the well-known application (taken from [17, Proposition 2.10]) of Dynkin’s

λ − π theorem to conclude that νf(x) = (α(x))∗.

Let x ∈ X. Define a function OPath∼(X/R)

νf(x)- [0, ∞] as follows:

νf(x)(V ) = µ̃P (π−1Path∼(f)
−1

V ∩ ↑εx), for every V ∈ OPath∼(X/R). (3)

We need a technical result proven in [21, Lemma 24] in order to show that νf(x) is well

defined, i.e., for any xRx′ and open set V ∈ OPath∼(X/R) we have νf(x)(V ) = νf(x′)(V ). (See

[6] for the proof of this claim). Moreover, the function νf(x) is a valuation, which immediately

follows from (3) and the fact that µ is a valuation. Therefore, from Corollary 4.24, the

valuation νf(x) extends to a Borel measure ν̃f(x) on the space Path∼(X/R).

Recall that the pushforward measure (α(x))∗(V ) = α(x)(Path∼(f)
−1

(V )) (for each Borel

set V ∈ ΣPath∼(X/R)), is also a measure on the space Path∼(X/R). Clearly, for any V ∈

OPath∼(X/R), we have (α(x))∗(V ) = νf(x)(V ) = ν̃f(x)(V ) due to Equation (2). Since both

ν̃f(x) and (α(x))∗ are probability measures, so from [17, Proposition 2.10] we get ν̃f(x) =

(α(x))∗. Now letting β(f(x)) = ν̃f(x), we find that f is a coalgebra homomorphism because

β(f(x))(V ) = ν̃f(x)(V ) = (α(x))∗(V ) = α(x)(Path∼(f)
−1

V ), for every V ∈ ΣPath∼(X/R).

CALCO 2017



6:14 On path-based coalgebras

⇐ Let (X, Aτ , P ) be a fully probabilistic system and (X, α) be the corresponding

G ◦ Path∼-coalgebra. Moreover, let (Y, β) be a G ◦ Path∼-coalgebra and X
f- Y be a

G◦Path∼ coalgebra homomorphism. In [6], we show that the equivalence relation xRx′ ⇐⇒

f(x) = f(x′) is a probabilistic delay bisimulation. Below we rather illustrate why R is a

witnessing probabilistic delay bisimulation relation. ◭

Consider the two probabilistic transition systems drawn below,

x1
α :

x2 x3

x4

x′
1

x′
2 x′

3

x′
4

τ, 1
3

τ, 1
3 a, 1

3

b, 1

τ, 1
2 a, 1

2

b, 1

y1
β :

y2 y3

y4

τ, 1
2 a, 1

2

b, 1

together with the path-based coalgebras X
α- GPath∼(X) and Y

β- GPath∼(Y ) where

X = {xi, x′
j | i, j ∈ {1, 2, 3, 4}} and Y = {yi | i ∈ {1, 2, 3, 4}}. Furthermore, let X

f- Y

be a function defined as f(zi) = yi, where z ∈ {x, x′} and i ∈ {1, 2, 3, 4}. To see why the

relation R (as defined above) is a witnessing bisimulation, consider the equation

α(x1)
(

⋃

p∈x1

τ∗b

−−։[x4]R

↑ [p]∼

)

= α(x′
1)

(

⋃

p∈x′
1

τ∗b

−−։[x4]R

↑ [p]∼

)

, (4)

which can be derived from the facts x1Rx′
1 and β ◦ f = GPath∼(f) ◦ α (see [6] for the

proof in the general case). The two terms in Equation 4 denote the probabilities of reaching

the equivalence class [x4]R from the states x1 and x′
1. This can be seen, for instance, by

deriving α(x1)(
⋃

p∈x1

τ∗b

−−։[x4]R

↑ [p]∼) = P (x1, τ∗b, [x4]R) using Equation 2, definition of µ̃P ,

Proposition 3, and Lemma 5.7. Moreover, the probability to reach the equivalence class

[x4]R from x1, x′
1 is 1

2 because P (x1, τ∗b, [x4]R) =
∑∞

i=1( 1
3 )i = 1

2 = P (x′
1, τ∗b, [x4]R).

6 Discussion and conclusion

The main message of this paper is that behavioural equivalence in a path-based coalgebra is

sufficient to capture branching bisimulation. In particular, we considered coalgebras of type

F ◦ Path∼ over a concrete category C, where F is an endofunctor modelling the branching

type of the system under investigation. We showed that behavioural equivalence when

F = P and C = Set coincides with the traditional branching bisimulation [25]. In a similar

spirit, we also showed that behavioural equivalence when F = G and C = Meas coincides

with the probabilistic delay bisimulation [4, 21, 22].

Interestingly, in the case of labelled transition systems, we can use the final chain based

algorithm presented in [1] to minimise the system with respect to branching bisimulation.

The following prerequisites for this algorithm are satisfied in this context: first, a terminal

object exists in Set; second, Set is equipped with a (epi,mono)-factorisation structure; third,

the functor P ◦ Path∼ preserves monomorphisms. However, for the probabilistic case, more

research is required to find out whether the above conditions are valid or not.

In retrospect, our paper comes short in one regard when comparing with the recent

works [8, 10, 12] on capturing weak bisimulation; namely, there is no abstract construction

given to construct our path-based coalgebras from the system under study. In particular,
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we would like to construct a path-based coalgebra, for instance, X
α′

- FPath∼(X) from

a given coalgebra of type X
α- F (Aτ × X).

In this regard, it might be interesting to extend the initial work of Jacobs and Sokolova

[13]: Given a system X - TFX over Set (T is a monad modelling the branching type

and F is an endofunctor modelling the transition type), then the traces (executions) can be

described as an arrow X - I (X ×I - I) in the Kleisli category of T with I being the

initial algebra of F . Note that this insight of [13] works under some technical requirements

and it is unclear whether these requirements hold in a more general setting of Meas. This

was already voiced by Kerstan and König [15] in conjunction with generic trace semantics

for probabilistic systems that were modelled over the base category Meas.

Another way to generalise the result of this paper is to consider the executions of a

system as first-class citizens from the onset. Such a venture is carried out by Cuijpers [11]

under the banner of prefix orders. Prefix orders are partially ordered sets whose principal

ideals are totally ordered sets. The homomorphisms on such structures are called history

preserving functions, those order preserving functions that preserve the principal ideals of

the underlying ordered sets. Beohar and Cuijpers [5] extended the theory of open maps

[14] to the concrete category setting to get a characterisation of traditional branching bisim-

ulation. Therefore, it will be worthwhile to study whether the measure theoretic concepts

proposed here can be lifted to the more general setting of prefix orders to capture probabil-

istic branching bisimulation. Lastly, it will be interesting to construe a notion of behavioural

equivalence in the open map approach akin to the theory of coalgebras, where the notion of

bisimulation is parametric to a functor modelling the branching type of system under study.
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