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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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1. Introduction 

Process monitoring allows the integrity of a machining 

operation to be gauged through any number of sensor signals, 

such as accelerometers, power/current clamps, or acoustic 

emission sensors. Collection of machine tool controller data 

provides additional data streams and can allow 

contextualisation of the sensor data. This methodology can 

help to identify issues with the component, cutting tool, or 

machine tool, before the component undergoes final 

inspection. The benefits of identifying issues in-process, rather 

than at final inspection, include limiting further damage to the 

component or machine tool, and preventing additional 

components being machined prior to identification of the 

issue. Installing such a system can therefore provide 

significant savings to a manufacturer in terms of scrap, 

machine tool maintenance, and downtime. 

Commercially available process monitoring systems are 

often based on simple signal trending principals or static 

limits. As an example, the Marposs ARTIS Genior process 
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Abstract 

Process monitoring has been shown to be capable of observing the quality of a machining operation through sensor signals and analysis in both 

the literature and in commercially available systems. Some of these systems provide an additional benefit of monitoring the health of a machine 

tool. However, the commercially available systems tend to utilise relatively simple analysis techniques for both the process and machine health, 

limiting their application and robustness. Industrial interest in systems that can profit from the current advances in machine tool digitalisation 

and data analytics has grown considerably. This is especially true for the capability of early-detection of quality issues in components, whilst 

also ensuring machine tools are in a condition that can achieve high quality production. The present research includes the development and 

testing of a fingerprint routine which can be run at regular intervals to detect potential failure modes or machine tool degradation through signal 

analysis. Machining trials were carried out with the objective of detecting known defects in a workpiece through signal analysis. For both cases, 

a combined monitoring system was developed for data capture during testing, and a number of failure modes and defects were physically 

simulated to test the possibility of detection in the acquired signals. Time domain, frequency domain, and time-frequency domain signal 

processing techniques were applied to the sensor data with various levels of success. Continuous wavelet transforms (CWT) were of particular 

interest, as they successfully captured signal changes between tests for the physically simulated failure modes of the machine tool and the 

component. Therefore, a comparative CWT analysis was developed which successfully emphasised some of the machine tool failure modes and 

part defects when compared to baseline signals. The output of the comparative analysis may be well-suited to automation through machine 

learning techniques. 
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monitoring system [1] monitors the level/amplitude of each 

sensor signal in isolation and creates an envelope for 

acceptable operating conditions by averaging over a minimum 

of five repeats of a particular process. Subsequent operations 

are then compared to these levels and customisable warnings 

issued if levels stray outside this envelope. This is a 

reasonable method; however, due to the minimal signal 

analysis, potentially significant process health indicators 

could be overlooked. The use of sensor fusion, ie evaluating 

combinations of sensor signals rather than in isolation, has 

also been suggested to provide more robust monitoring and 

fault identification. To gain further insight into the process 

and machine health, signal analysis techniques for feature 

extraction, such as kurtosis, fast Fourier transforms (FFT), 

spectral entropy and wavelets, could be employed [2-4]. 

Researchers like D�Emilia et al. [5] and Uhlmann et al. [6] 

extracted time domain features from acoustic emissions (AE) 

and vibration signals, and applied machine learning 

techniques, such as support vector machine (SVM), Bayes 

and nearest-neighbour to classify failure modes on rotational 

equipment. Similarly, Krishnakumar et al. [7] extracted 

standard error, kurtosis and median features to compare the 

classification accuracy of a decision tree and an artificial 

neural network for tool condition monitoring. Furthermore, 

wavelet transform techniques such as continuous wavelet 

transforms (CWT) have also been widely used for monitoring 

purposes. For instance, Sevilla-Camacho et al. [8] used CWT 

to illustrate the differences in vibration signals from �healthy� 

and �damaged� cutting tools. Likewise, Zhao et al. [9] used 

synchrosqueezing transforms, which is an extension of CWT, 

to classify faults in bearing systems through a convolutional 

neural network (CNN). However, none of the analysis 

techniques mentioned above are known to be in use in 

commercially available systems today, and so are seemingly 

confined to the literature. 

A similar methodology can also be applied to machine 

health, allowing the condition of the machine tool to be 

gauged prior to cutting any material by conducting a 

fingerprint routine. This involves moving the machine axes, 

and/or spindle(s), in a pre-determined routine to allow the 

machine health to be evaluated and compared across frequent 

uses of the fingerprint routine. Movements by each axis are 

usually conducted in isolation whilst the machine is empty; 

providing a comparable signal where any issues detected can 

be easily attributed to the component that is in motion at the 

time of detection. It should be a relatively short routine, in this 

case �short� was defined as no more than five minutes in 

duration; but include all of the vital motions of the particular 

machine configuration. This makes it feasible to run regularly 

(eg once per day or shift) and give confidence in the machine 

tool�s performance during the periods between calibration 

events. Such a system is not intended to replace calibration 

procedures; but instead, provide brief and regular interim 

checks between each calibration. 

Therefore, the motivation behind this research is to 

investigate the use of such techniques for machine and process 

health monitoring system that utilise a consolidated suite of 

sensors and machine tool data. This is intended to gauge the 

quality of the machining operation whilst cutting a 

component; as well as the machine tool�s performance when 

not undertaking a machining operation, but instead conducting 

a fingerprint routine. 

2. Experimental setup 

The monitoring system used in this research consisted of 

two devices to capture vibrations and one power monitoring 

unit. For vibrations, one accelerometer (PCB 356A02) was 

mounted on the spindle and one accelerometer (PCB 604B31) 

was mounted on the machine bed, underneath the workpiece, 

by means of a Sensor Plate previously developed at the 

University of Sheffield AMRC1. The vibration signal was 

acquired using two NI-9234 modules at a sampling frequency 

of 51.2 kHz. The power monitoring unit was mounted on the 

spindle motor and the power signal was acquired using an NI-

9223 module, sampling at 800 kHz. All of the data acquisition 

modules were plugged into an NI cDAQ-9178 and the signals 

were captured and recorded using LabVIEW. Parallel to this, 

machine data was acquired from the machine tool controller 

through MTConnect at 20 Hz. 

The machine tool used throughout this research was a 5-

axis DMG Mori DMU 40 eVo linear. Although most aspects 

of the system and the equipment used were generic for testing 

the fingerprint routine and the machining trials, some 

materials and tooling were specific for each. To test the 

fingerprint routine, the tools used included a calibration tool 

shown in Fig. 1 (a), normally used on the machine tool for 

laser tool setter calibration, the �blank� tool shown in Fig. 1 

(b), and the face mill cutting tool shown in Fig. 1 (c). For the 

machining trials, nine 100 mm x 100 mm x 40 mm, Ti-6Al-

4V (く annealed) test vehicles were machined using micro-

grain carbide inserts with a wear resistant PVD coating, 

mounted on a seven inserts tool holder. Fig. 2 shows the full 

machining configuration, including the fixturing used and the 

placement of the sensory equipment.  

 
1 The University of Sheffield Advanced Manufacturing Research Centre 

with Boeing. 

Fig. 2. Machining configuration.  

Fig. 1. (a) calibration tool; (b) blank tool; (c) face mill (heavy tool). 
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3. Experimental method 

The fingerprint routine was designed to test each axis over 

the maximum amount of travel at various feed rates, and the 

spindle at various speeds. Whilst machining, it is rare that a 

machine tool will conduct motions that are limited to isolated 

axis movements. For this reason, the behaviour of the axis 

interaction during combined moves (diagonals and circles), as 

well as the interaction between spindle rotation and axis 

motion would normally be of interest. For this initial study, 

the routine was limited to isolated movements:  

 Isolated linear axis moves � starting from a home location, 

run the X-, Y- and Z-axis to each extreme of travel 

sequentially, returning to the home location between each. 

This was conducted at feed rates of 8,000, 40,000 and 

80,000 mm/min (corresponding to 10%, 50% and 100% 

maximum feed rate). 

 Spindle rotation � at a home location run the spindle up to 

various speeds (20, 4,500, 9,000, 13,500, and 18,000 rpm) 

for five seconds at each speed, returning to 0 rpm between 

each. 

Finally, to ensure all tests were directly comparable, the 

same tool was to be loaded whenever the fingerprint was run. 

Ideally, this should have been a tool that does not change over 

time through wear or breakage, ie a tool that does not get used 

for machining. Fortunately, the target machine has a 

calibration tool used for calibrating the laser tool setter 

(shown in Fig. 1 (a)). This is an ideal case as this particular 

tool is balanced to a classification of G 1.5 at 18,000 rpm and 

only ever used when being measured by the tool setter, ie it 

will not change over time. 

The machining trials comprised of shoulder milling around 

the nine test vehicles. The machining parameters used 

included a spindle speed of 304 rpm, a cutting speed of 47.7 

m/min, a feed speed of 361 mm/min, an axial depth of cut of 2 

mm and a feed per tooth of 0.17 mm. This resulted in ten 

layers (axially) of cuts per test vehicle. 

3.1. Failure mode and defect physical simulation 

After a brief literature review and analysis, a number of 

relevant part defects and associated failure modes were 

identified, along with possible ways of physically simulating 

them on the workpieces. All reference to simulation of failure 

modes from hereon will be exclusively physical experimental 

simulation. Three criteria (potential risk involved, preparation 

simplicity and number of tests required) were then used to 

down-select these defects. This yielded three defects that were 

to be included in the testing: surface cracks (from workpiece 

defects or machining induced damage), tool wear, and 

misalignment. 

The method of simulating surface cracks used has been 

demonstrated by Bauerdick et al [10], who prepared a number 

of workpieces with bores to emulate workpiece surface 

defects in a turning operation. For the purpose of these tests, 

the smallest drill suitable for cutting titanium was selected, 

which had a diameter of 1.85 mm. Three bores were drilled 

vertically on each affected test vehicle: two along one edge, 

and one along  

Fig. 3. Part orientation for misalignment machining trials. 

the opposite edge; with the remaining two edges left unaltered 

to provide direct comparisons. These bores were offset by 5 

mm from the edge to ensure they would be in the path of each 

pass of the shoulder milling operations.  

Fresh tools were used for each test vehicle, other than test 

vehicles that were selected for �tool wear� tests. Instead, these 

were machined with tools that had already machined another 

test vehicle. Finally, misalignment was introduced by tilting 

and rotating the worktable as shown in Fig. 3. This produced a 

maximum change in axial depth of cut of 0.97 mm. 

Of the nine test vehicles, four were unaffected by defects 

(baseline); two with surface crack simulations; one 

misaligned; and two machined with worn tools.  

Testing the detection capability of the fingerprint routine 

was more complex, as it required that a number of tests were 

conducted whilst the machine tool experienced some form of 

failure mode. As it was not feasible to alter or damage the 

machine tool in any way, a number of simulated failure modes 

had to be devised. These had to be within the normal 

operating capabilities of the machine tool, but should have 

affected its performance marginally during the fingerprint 

routine. A brief literature review yielded no suggestions on 

how this might be achieved, as the majority of testing in this 

area is conducted on a test bed rather than an entire machine 

tool. Instead, the simulated failure modes had to be devised 

from scratch. 

The simulated failure modes, along with possible failure 

modes that each may represent, chosen for the testing are 

outlined in Table 1. 

Table 1. Description of the simulated failure modes. 

In total, 16 fingerprint routines were conducted. These 

comprised of three baseline, one heavy, two unbalanced, two 

warm-up, two feedrate-adjusted, three cold; as well as three 

Simulation Description Example failure modes simulated 

Heavy tool 

Load a heavier tool 

than the calibration 

tool. 

Incorrect tool loaded. Altered 

jerk/acceleration parameters. 

Spindle/axis drive fault. 

Unbalanced 

Tool with lower 

balancing 

classification than 

the calibration tool. 

Increased spindle runout (eg issues 

with bearing/spindle taper/etc). 

Issue with calibration tool. 

Cold 

Conduct the 

fingerprint routine 

first thing in a 

morning. 

Machine has not undergone 

necessary warm-up routine. Issue 

with ambient temperature. 

Warm-up 

Immediately after a 

warm-up routine has 

been conducted. 

Issue with ambient temperature. 

Residual thermal effects due to 

heavy machining operations. 

Feedrate-

adjusted 

Marginally reduced 

feedrate and spindle 

speed override. 

Erroneous feedrate/spindle speed 

override. Machine parameters 

adjusted. Spindle/axis drive fault.   
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additional �post-machining� runs conducted immediately after 

three of the test vehicles had been machined. 

3.2. Data preparation 

To simplify signal analysis for comparison across tests and 

failure modes, all the acquired data was segmented. In the 

case of the machining tests, the data was segmented into 

milling passes. Fig. 4 shows the raw vibration signals of a 

single cut, which includes four shoulder-milling passes (one 

per square side) around the test vehicle. A full machining test 

included ten cuts, making a total of 40 passes for each test 

vehicle, and hence 40 datasets.  

In a similar fashion, the fingerprint routine signal was 

segmented into each of the individual axis motions and 

spindle speeds. Fig. 5 gives an example of the spindle-

mounted accelerometer signal recorded from a single linear 

axis fingerprint routine. It can be seen how each of these 

routines was segmented into each axis motion at each 

feedrate, resulting in nine individual segments. 

4. Results and discussion 

This section provides an overview of the successes and 

limitations of the analysis methods when applied to the data 

recorded during the machine trials. This section is not 

intended to be comprehensive, as a large number of tests with 

various parameters were conducted on the data in an 

exploratory fashion; resulting in varying levels of success. 

Instead, the general success of each method in highlighting 

differences between baseline and failure mode-affected trials 

is discussed. 

4.1. Time and frequency domain analysis 

The first set of analyses were done in the time domain, 

extracting signal kurtosis, single quantity RMS and single 

quantity mean for the vibrations and power signal in each test. 

Single quantity features can provide a simple summary of the 

signal behaviour for comparison between tests.  

After this, the signals were transformed into the frequency 

domain using FFT for further analysis. Initially, this 

frequency-domain analysis was conducted manually by 

comparing the single-sided amplitude spectrum plots; but then 

a method of automatically extracting the dominant 

frequencies for each signal was developed. 

Given the nature of the part defects tested during the 

machining trials, it was expected that the resulting increase in 

cutting forces, would in turn generate an increase in power 

and a less stable cutting operation. It was expected that these 

effects might be identifiable in both the time and frequency 

domain features extracted. 

As can be seen in Table 2, this was not the case, and the 

signal extraction techniques were limited in their success; 

particularly when applied to the machining trial signals. It is 

thought that this could be due to the operations undertaken 

were not steady-state, and therefore cannot be simply 

characterized by single quantities. Instead, investigation into 

the time-frequency domain was conducted in an attempt to 

highlight how the signal components vary through time. 

Table 2. Overview of feature extraction techniques. 

Feature Description Outcome 

Time domain 

Kurtosis Gives a value quantifying 

the heaviness of the tails 

of a (unimodal) 

distribution. 

No apparent correlation with 

defects/failure modes found. 

RMS Gives the RMS value of 

the entire signal - ie a way 

to quantify the overall 

magnitude of the signal 

without negative 

components tending the 

average to 0.    

No correlation found in the 

machining trials; but drop in 

RMS acceleration seen 

when spindle speed override 

applied during spindle 

rotation fingerprint routine. 

Signal mean Mean value of the signal. No correlation found in the 

machining trials; but drop in 

mean acceleration identified 

when spindle speed override 

applied during spindle 

rotation fingerprint routine. 

Frequency domain (obtained through FFT) 

Dominant 

frequencies 

identification 

Identifies the frequency 

and magnitude of the most 

significant peaks in a 

signal�s FFT. 

No correlation found in the 

machining trials; but 

changes in the single-most 

dominant frequency 

apparent across various 

failure modes. 

Fig. 4. Example of test vehicle machining signal segmentation for analysis 

with approximate bore locations highlighted in blue. 

 

Fig. 5. An example of the linear axis fingerprint routine signal segmentation; 

including the isolated Y-axis acceleration signal from the 40,000 mm/min 

Y-axis motion. 

. 
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4.2. Time-frequency domain analysis 

Spectral entropy analysis was applied to the machining 

signals to measure the complexity of each signal in the 

frequency domain throughout time. As can be seen in Fig. 6, 

the spectral entropy analysis results for surface cracks showed 

two distinct drops across all of the spindle accelerometer axes, 

which corresponded exactly to the moments when the cutting 

tool engaged the bores. However, no such distinction could be 

made for machining trials affected by misaligment or tool 

wear. 

Another time-frequency domain analysis technique 

employed was CWT, an example of which is provided in Fig. 

7. Although this technique is particularly useful in illustrating 

how the frequency components of a signal change through 

time; subtle differences between two similar signals are easily 

lost in the scalograms.  

4.3. Comparative CWT analysis 

To address the difficulty in identifying subtle differences 

between scalograms, a comparative CWT analysis technique 

was developed. The technique, illustrated in Fig. 8, followed 

these general steps: 

 

1. A number of baseline CWT signals are concatenated 

into a three-dimensional matrix. 

2. Two matrices, one containing the average signal, the 

other containing standard deviation, are calculated 

across these baseline CWT signals. 

3. A test signal is then subtracted from the average signal 

to produce an output signal, ie the difference between 

the expected signal and actual signal. 

4. To account for the inherent variance in the baseline 

signals, the output signal is then filtered using the 

standard deviation matrix to produce the resulting 

signal.  

 

The resulting signal only contains a residual, non-zero 

signal where the test signal strayed more than a pre-defined 

number of standard deviations away from the average signal. 

The pre-defined number of standard deviations could be 

adjusted to change the threshold/sensitivity of the filter. 

The effectiveness of this technique when applied to an 

isolated linear axis fingerprint routine signal is illustrated in 

Fig. 9. Two baseline runs were used to test one routine with 

the feedrate override applied and one routine conducted post-

machining, which should show little deviation. As it can be 

seen, there is a significant amount of residual signal in Fig. 9 

(c) and very little residual signal in Fig. 9 (e). 

Similar results were observed in the machining signals. 

Fig. 10 shows the implementation of this technique on a test 

vehicle affected by surface cracks, where Fig. 10 (c) shows 

the resulting signal, which accentuates the engagement of the 

cutting tool on the pre-drilled bores. 

 

Fig. 6. Spectral entropy of the spindle accelerometer signal from two 

�surface cracks� test vehicles compared with one �baseline� test vehicle. 

Fig. 8. Comparative CWT analysis flow diagram. 

 

Fig. 7. A magnitude scalogram produced by performing CWT on the X-

axis spindle acceleration signal during isolated linear X-axis move. 
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Overall, this comparative technique showed good potential 

for the detection of machine faults and part defects, and it 

could be used as a feature extraction technique for further 

analysis. Two avenues might be suggested through this 

technique; the first regarding the use of machine learning, and 

the second the use of deep learning. For machine learning 

analysis, the raw values of the resulting CWT signals could be 

restructured and used in classification and regression 

techniques, eg SVM, decision forest and nearest-neighbour, to 

identify or measure machine and process failure modes. For 

deep learning analysis, the matrix structures or scalogram 

representations of the CWT signals could be used in CNNs 

for classification of the machine and part defects. An initial 

exploration of the latter approach has been initiated by the 

authors of this work, showing good potential which shall be 

investigated further. 

5. Conclusions 

The present research designed and tested a combined 

machine and process health monitoring system. This included 

the implementation of a fingerprint routine and machining 

trials to prove the concept of machine fault and part defect 

detection through sensor signals. To test this, both the 

fingerprint routine and machining of test vehicles were 

conducted under the influence of various physically simulated 

failure modes. A number of analysis techniques were tested 

with various levels of success: 

 Most single-quantity time- and frequency-domain analysis 

techniques were unsuccessful in showing definitive 

correlations with the failure modes. This was attributed to 

the signals not originating from a steady-state process.  

 Time-frequency domain analysis techniques of spectral 

entropy and continuous wavelet transforms (CWT) showed 

better correlations with the induced failure modes. 

However, spectral entropy did not exhibit clear results 

when applied to machining failure modes other than 

surface cracks. 

 A comparative CWT analysis technique was developed 

which successfully filtered and highlighted signal elements 

related to the induced failure modes. This technique is 

proposed as a feature extraction method for further signal 

analysis using machine or deep learning. 

Use of such a system within industry could assist in 

reducing the requirement for component inspection (ie a move 

towards �inspection by exception�) by inferring the process 

quality through the analysis of in-process signal data. It could 

also help reduce reactive maintenance events and unplanned 

downtime by detecting machine tool failure modes prior to 

machining operations. 
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Fig. 9. Comparative CWT analysis applied to feedrate-adjusted and post 

machining isolated linear axis fingerprint routine signals. 

Fig. 10. Comparative CWT analysis applied to surface cracks machining 

trial signal. 


