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State Identification Sequences from the Splitting Tree

Michal Soucha∗, Kirill Bogdanov∗

Department of Computer Science, The University of Sheffield, UK

Abstract

Context: Software testing based on finite-state machines.
Objective: Improving the performance of existing testing methods by construction of more efficient separating

sequences, so that states entered by a system under test can be identified in a much shorter span of time.
Method: This paper proposes an efficient way to construct separating sequences for subsets of states for any

deterministic finite-state machine. It extends an existing algorithm that builds an adaptive distinguishing sequence
(ADS) from a splitting tree to machines that do not possess an ADS. Our extension to this construction algorithm
allows one not only to construct a separating sequence for any subset of states but also form sets of separating sequences,
such as harmonized state identifiers (HSI) and incomplete adaptive distinguishing sequences, that are used by efficient
testing and learning algorithms.

Results: The experiments confirm that the length and number of test sequences produced by testing methods that
use HSIs constructed by our extension is significantly improved.

Conclusion: By constructing more efficient separating sequences the performance of existing test methods signifi-
cantly improves.

Keywords: Splitting tree, separating sequence, harmonized state identifiers, adaptive distinguishing sequence,
finite-state machine, software testing, regular inference

1. Introduction

Software testing takes a significant amount of time, so
effective testing methods can improve the quality of soft-
ware, the cost of development and the cost of execution as
well. Testing methods for finite-state machines are known
for their capability of both finding subtle defects and for
theoretical guarantees of fault-finding. The downside of
these methods is the amount of testing that has to be
completed before any of the claimed guarantees can be at-
tained. A significant contribution to the amount of testing
is the number and length of what is known as separating
sequences. These are the sequences of inputs derived from
a finite-state model of a specification that are intended to
identify states entered by an implementation during test-
ing. For instance, clicking on a link on a web page to
submit an order should place such an order and empty a
basket, so that attempting to submit the same form twice
would not result in a duplicate order. Knowing whether
a basket is indeed empty might not be visible on a ‘thank
you for your order’ page so for most web sites a tester has
to navigate back on the main page to check the contents of
the basket and possibly check the list of orders to observe
that an order has indeed been recorded as placed. This is
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important: verification that a correct state has been en-
tered requires interaction with a system under test with
effects not immediately visible. Construction of sequences
that efficiently verify states is the subject of this paper.
The intention is to make it possible to construct efficient
sequences to separate any chosen subset of states in a spec-
ification, because usually it is known which states may or
may not be entered at the end of a sequence of commands.

The algorithm proposed is an extension to an exist-
ing algorithm that aims to build a splitting tree (ST) for
finite-state machines (FSM) possessing what is known as
an adaptive distinguishing sequence (ADS). An ADS is in
fact a set of sequences with common prefixes. It is best
represented with a tree where nodes are named with in-
puts and branches carrying outputs. States are identified
by walking through this tree starting from the root: in-
puts are submitted to a system under test and depending
on outputs observed, a branch is taken. An input corre-
sponding to the entered node is sent to a system under
test next and an output determines the next node. Every
leaf of this tree is associated with a state in a model which
is uniquely identified by the sequence of inputs/outputs
from the root of the tree to the leaf. Such sequences from
root to leaf are called state verifying sequences (SVS).

The existing algorithm is limited to a specific range
of FSMs where an ADS can be constructed. Where it
cannot be built, one has to use more than a single sequence
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to identify states. Most existing testing methods support
multiple sequences to identify states, although they are
obviously more efficient where an ADS is available.

The extension to the original algorithm presented in
this paper builds a small number of sequences to sepa-
rate states if an ADS does not exist and produces an ADS
where it does. It can be used both for identification of
individual states and for separation of a group of states
(where a tester knows that only some states may be en-
tered by the implementation but does not know which ex-
actly). The described method also permits harmonized
state identifiers (HSI) to be constructed which lead to test
sequences shorter than those constructed using traditional
testing methods [1, 2]. This dramatically improves the
efficiency of testing methods relying on HSI sequences.

Section 2 defines used terms and Section 3 summa-
rizes the related work. Section 4 sketches the benefits of
our extension. Section 5 introduces the structure of split-
ting tree and what a valid input means. Algorithms for
the construction of separating sequences, HSIs and IADSs
from the splitting tree are proposed in Section 6. Section 7
proposes our extension that is then described on a running
example in Section 8, Section 9 describes experiments on
randomly-generated machines and the paper is concluded
in Section 10.

2. Preliminaries

This section defines the type of finite-state machines,
state identification sequences and testing considered in this
paper.

2.1. Finite-State Machine

A finite-state machine (FSM) is a model consisting of
states and transitions between states. According to the
received input, an FSM changes its current state and re-
sponds with the corresponding output. There are many
different definitions of finite-state machines in the liter-
ature. This section proposes a general model called de-
terministic finite-state machine (DFSM) that has outputs
both on states and on transitions, permitting the results
of this work to be used for Mealy and Moore machines as
well as for deterministic finite automata.

There are two functions that describe the behaviour
of a model, a transition and an output function. Both
functions take an input symbol and respectively produce
a next state (a state where the transition leads to) and an
output symbol that is observed if the transition is taken.
Two special symbols are introduced to cover both Moore
and Mealy machines in one definition. An input symbol
↑ called stOut requests the state output and the current
state of the machine is assumed to remain unchanged when
it is used. An output symbol ↓ called noOut represents ‘no
response’.

Definition 1. A deterministic finite-state machine (DFSM)
is a septuple (S,X, Y, s0, D, δ, λ), where S is a finite non-
empty set of states and s0 is an initial state (s0 ∈ S). Set
X is an input alphabet (a finite nonempty sets of symbols,
↑ /∈ X), Y is an output alphabet, D is a domain of defined
transitions; D ⊆ S ×X, D↑ = D ∪ (S × {↑}), δ is a tran-
sition function δ : D↑ → S such that ∀s ∈ S : δ(s, ↑) = s,
and λ is an output function λ : D↑ → Y ∪ {↓}.

Note that the stOut ↑ is not in the input alphabet X
so that it differs from all other input symbols. Similarly,
the noOut ↓ output can be declared outside the output
alphabet Y so as not to interfere with other output sym-
bols but it is usually matched to the output of ‘no output’
or ‘timeout’ that is in Y . Therefore, it is not specified if
↓ is or is not in Y . The timeout output represents that
no response is observed during the predefined time limit.
Strings over X ∪{↑} are called input sequences and strings
over Y ∪ {↓} are called output sequences. ‘Input’ and ‘out-
put’ are sometimes omitted so only ‘sequence’ is used if it
is clear from the context. The empty string is denoted
with ε.

Transitions are labelled with input and output sym-
bols. The next state, or the target state, of a transition
is defined by the transition function δ and the function
λ assigns an output symbol to the transition. This pa-
per works only with completely-specified machines, that
is, DFSMs that have all transitions defined; D = S × X.
The transition function δ and the output function λ can
be extended to work over input sequences. The extended
transition function δ∗ returns the target state reached by
following the path labelled with the given input sequence.
The output sequence formed of labels on this path is re-
turned by the extended output function λ∗. If a transi-
tion on the path is not defined, the path and both func-
tions are undefined. Otherwise, both functions are de-
fined inductively as follows. If nothing is asked, then
the machine stays in the same state and no response is
observed so δ∗(s, ε) = s and λ∗(s, ε) = ε for any state
s ∈ S. If a sequence x · v is queried, then both func-
tions follow the first symbol x and process the suffix v
from the next state, that is, δ∗(s, x ·v) = δ∗(δ(s, x), v) and
λ∗(s, x · v) = λ(s, x) · λ∗(δ(s, x), v) for all (s, x) ∈ D↑ and
v is an input sequence consisting of defined transitions. In
addition, the transition and output function with their ex-
tended versions can be applied to a set of states and a set
of sequences, that is, γ(S′, U) = {γ(s, u) | s ∈ S′ ∧ u ∈ U}
for all γ ∈ {δ, λ, δ∗, λ∗}, S′ ⊆ S and U ⊆ X∗

↑ such that
|u| = 1 for all u ∈ U in the case of δ and λ functions.

Any algorithm that works with DFSMs defined in Defi-
nition 1 can also handle DFA, Mealy and Moore machines.
In the case of Mealy machines, the stOut input ↑ is omit-
ted as Mealy machine has no state outputs (it is defined
in terms of Definition 1 as δ(s, ↑) = ↓ for all states s ∈ S).
In the case of Moore machines, the stOut input is needed
to obtain the output of the initial state but then it could
be considered that ↑ is asked right after any input x ∈ X
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Figure 1: Mealy machine without an ADS

and so the output is obtained in response to the asked x,
that is, λ(s, x) = λMoore(δ(s, x)). Any deterministic finite
automaton can be considered a Moore machine with just
two outputs that divide the states into accepting and re-
jecting. An example of a Mealy machine with 5 states,
A–E, 3 inputs, a–c, and 2 outputs, 0 and 1, is shown in
Figure 1.

2.2. State Identification Sequences

A sequence u is separating for states si and sj if the
states provide different response to u, that is, λ∗(si, u) 6=
λ∗(sj , u). The states si and sj are then called distinguish-
able. Separating sequences get special names if they are
grouped according to the following properties:

• State verifying sequence (SVS), or unique input out-
put sequence, of state s is a sequence u such that u
separates s from all other states, that is, s responds
uniquely to u.

• Adaptive distinguishing sequence (ADS) is a set of
SVSs of all states such that common prefix of any
two SVSs separates the states relating to the SVSs.

• A set of separating sequences that separate all pairs
of states is a characterizing set (CSet), sometimes
denoted W .

• Harmonized state identifiers (HSI) are sets of sepa-
rating sequences such that each set is associated with
a particular state and for each pair of states si and sj
their separating sequence w is a prefix of a sequence
in the HSIs of both si and sj .

• Incomplete adaptive distinguishing sequence (IADS)
is like an ADS of a subset of states, that is, not all
pairs of states need to be separated and the used
separating sequences do not have to be SVSs.

IADS is a generalization of ADS such that a state can
be separated by several sequences instead of a single SVS.
Note that many DFSMs have no ADS because they contain

a state without an SVS. In contrast, it is always possible
to form a CSet, HSIs and IADSs of any minimal DFSM. A
DFSM is minimal if every pair of states is distinguishable
and every state is reachable by a path from the initial
state. A DFSM has an ADS if and only if it has HSIs such
that each HSI contains just one sequence (an SVS) [3].

Algorithms dealing with finite-state machines frequently
need to handle pairs of states, or state pairs, and store in-
formation related to them. A state pair array (SPA) is
introduced for this purpose. The content of an SPA can
be arbitrary but it relates to a particular machine M with

n states. The size of SPA is always n·(n−1)
2 that is about

a half of the size of state pair table that has n rows and n
columns.

2.3. Testing of Finite-State Machines

The specification of a system can be used for testing
purposes such that a procedure called testing method ex-
plores the specification and constructs a test suite. A test
suite usually consists of several sequences of inputs called
test sequences or tests. The process of testing means that
the constructed test sequences are successively applied to
the implementation of the system. If the response to any
test differs from the output given by the specification, then
a discrepancy between the specification and the implemen-
tation is found; one can say that a fault in the implementa-
tion is revealed. A test suite is m-complete for a specifica-
tion M if it can reveal a fault in the implementation that
has at most m states and differs from M behaviourally.
Testing methods considered in this paper work with spec-
ifications that are modelled with minimal DFSMs with n
states (usually n < m).

FSM testing methods, such as the Vasilevskii-Chow
W-method [4, 5], construct tests by exploring the state-
transition diagram so that all states are visited and all
transitions are attempted. In addition, target state of ev-
ery transition is verified. Where the expected number of
states in an implementation is potentially greater than in
a specification (m > n), which could be related to redun-
dancy in an implementation, the size of a test suite may
increase exponentially because it is not known in advance
how to reach those extra states in order to test transitions
from them. For this reason, a test suite has to contain
all sequences of length m− n to reach these ‘clone’ states
and then run tests to verify that they are indeed clones of
the original states. The W-method is one of the early and
one of the first testing methods which is proven to find all
faults (that is, it ism-complete) given that an implementa-
tion has a known alphabet and a bound on the number of
states. Since then a range of rather more efficient testing
methods have been developed which generate much fewer
and/or shorter test sequences than the W-method. This
is made possible with sequences that do multiple things
at the same time, such as testing transitions and verifying
states reached earlier. Despite advances in test generation,
the efficiency of all these methods depends on the effective
identification of states.
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3. Related Work

Separating sequences were initially introduced to form
a characterizing set (CSet) that uniquely identifies any
state. The easiest way to construct such a set of sequences
was to group the separating sequences of all state pairs.
Probably, the first algorithm that constructs separating
sequences of all state pairs was based on the minimization
algorithm [6, Algorithm 4.1]. More than 50 years later,
the algorithm designing the shortest separating sequences
(SSS) of all state pairs without the need of a minimization
procedure was described in [7]. The state-of-the-art con-
struction algorithm of the shortest separating sequences of
all state pairs was then proposed in [8]. It is referred to
as the ST-MSS algorithm in this paper as it builds sep-
arating sequences of minimal length (Minimal Separating
Sequences) and they are stored in a splitting tree (ST).

The structure of a splitting tree was proposed in 1994
[9] but was not designed to construct the shortest sepa-
rating sequences. Instead, it was used as an intermedi-
ate structure to build an adaptive distinguishing sequence
(ADS). If the given machine has no ADS, the construction
of the splitting tree detects it. The splitting tree and ADS
will be described in detail in the following sections.

The use of harmonized state identifiers (HSI) was shown
to be more beneficial than the use of CSet. Unfortunately,
there was only one formally-described algorithm designing
HSIs and it constructs HSIs from a given CSet [10, Ap-
pendix II]. Recently, three new algorithms were proposed.
The first one builds HSI from the shortest separating se-
quences of all state pairs that are constructed by the SSS
algorithm [11]. The second one collects the minimal sep-
arating sequences stored in the splitting tree constructed
by the ST-MSS algorithm [8]. A completely different ap-
proach to the construction of HSIs is proposed in [3]. The
authors of [3] noticed the correspondence between HSIs
and adaptive distinguishing sequence (ADS) and used it
to build HSIs from incomplete adaptive distinguishing se-
quences (IADS). IADSs are first constructed directly by
the greedy algorithm. In contrast, the extension proposed
in this paper allows one to construct both HSIs and IADSs
directly from the splitting tree.

Testing of deterministic finite-state machines has a long
history. The well-known testing method, the W-method [4,
5], uses a characterizing set to identify states. The Wp-
method [12] improves the efficiency of the W-method but
still uses CSet. The HSI-method [1] and the SPY-method
[2] are representatives of testing methods that identify
states using HSIs. There are other testing methods such
as the H-method [13] and the SPYH-method [14] that do
not use predefined sets of separating sequences but choose
the sequences on the fly.

4. Motivation Example

The previous section mentioned four existing meth-
ods constructing harmonized state identifiers (HSI). These

Harmonized State Identifiers

State
From

SSS and
ST-MSS

From
IADSs

From
CSet and
ST-IADS

A aa, cb, b baa, cb aa, cb
B a a, b a
C aa, b baa aa, b
D aa, cb, b baa, cb aa, cb
E a, b a, b aa, b

Numbers of sequences and inputs per state

sequences 2.2 (11/5) 1.8 (9/5) 1.8 (9/5)

inputs 3.2 (16/5) 3.4 (17/5) 3.0 (15/5)

Table 1: Construction of HSIs – a comparison of five approaches

methods are compared with the approach based on our
new extension ST-IADS on the Mealy machine defined in
Figure 1. The machine has no ADS and so some HSIs
need to contain more than one sequence. Table 1 shows
the comparison of the constructed HSIs. The splitting
tree in Figure 2 is created by both the ST-MSS and the
new ST-IADS methods. They follow different construc-
tion procedures but for this small example the resulting
splitting tree is the same. Nevertheless, HSIs constructed
from the ST are different. HSIs from ST-MSS are equal
to the ones produced from SSS. HSIs from ST-IADS are
equal to the ones built from the CSet {aa, b, cb}. The
approach based on incomplete adaptive distinguishing se-
quences constructs different HSIs than all other methods.
The differences of the constructed HSIs are highlighted in
bold in Table 1. The HSIs are compared on the average
numbers of sequences and inputs per state. The numbers
are below each of the three HSIs and the best values, that
is, the minimal ones, are highlighted in bold. One can see
that it is not good to base the construction of HSIs on the
shortest separating sequences.

The ST-IADS algorithm seems to be promising in the
construction of HSIs, however, it is not the only task in
which it could excel. Assume that state C of the Mealy
machine (Figure 1) needs to be separated from states A
and E, and then state E is to be distinguished from states
A and B. In the former case, one would like to obtain
the state verifying sequence ‘baa’ of state C that uniquely
identifies C amongst all states. Although state E has no
state verifying sequence, sequence ‘aa’ separates it from
A and B which is the requirement of the latter case. No
HSI construction method produces both sequences for the
aforementioned states, however, they can be easily con-
structed from ST-IADS as Section 6 describes.

5. Splitting Tree for Incomplete Adaptive Distin-
guishing Sequences

The splitting tree (ST) was originally described in de-
tail in [9]; a very similar structure without sequences inside
nodes can also be found in [6]. An algorithm separating
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states builds an ST which can then be turned to IADS in
order to easily separate states during testing. The descrip-
tion below introduces both an ST and IADS built from ST.

5.1. ADS and IADS

At the beginning of state identification an FSM can be
in any state so the initial uncertainty (in terms of [9]) is the
whole set of states, {A,B,C,D,E} for the running exam-
ple in Figure 1. The idea of an ADS is that one starts with
such an initial uncertainty and then attempts an input as-
sociated with the root node. Different outputs from FSM
in response to this input make it possible to split this set
of states into subsets, associated with subsequent nodes in
this ADS. This corresponds to a reduction of uncertainty.
Subsequent nodes are also associated with inputs and per-
mit further splitting of the set of states, further reducing
the uncertainty. In this way, following a path through an
ADS from the root node to a leaf node narrows down the
set of possible starting states. For ADS, this process con-
tinues until such a set becomes a singleton by the time
a leaf is reached. This can be seen in tree T2 shown in
Figure 3 where the initial uncertainty is called the initial
states {A,D} and shown at the top of the root node r8.
The initial input ‘c’ is such that both states respond with
a 0 so the next node r9 has the same initial states; the sub-
sequent input ‘b’ separates the reached states: the output
0 corresponds to the initial state A and 1 - to the initial
state D. These states are shown at the top of nodes r10
and r11. During a walk through an ADS, the FSM changes
states so during construction of ADS one has to keep track
of the current state. States of FSM reached at each node
of an ADS are called current states and shown at the bot-
tom of each node. At the start, current states are the same
as the initial states; after input ‘c’, the FSM would make
a transition from A to A and D to E. Therefore, current
states of node r9 are A, E. After input ‘b’ and output 0,
the only possible initial state is A and the current state
is C; in a similar way, output 1 singles out state D and
the current state becomes B. In other words, initial states
for any ADS node reflect what remains to separate if we
followed a path from the root of the ADS to this node and
the current states reflect the FSM states that are entered
when such a path is followed.

IADS have the same structure and a path through an
IADS from the root node to a leaf node also narrows down
the set of possible starting states, however, a leaf is not
required to have a singleton set of initial states. This is
the reason there can be multiple IADSs so that where one
reaches a leaf of an IADS, it is possible to continue by
resetting a system under test, re-running a test to enter
a state of interest and then attempting a different IADS,
chosen so that the set of initial states in the root of this
IADS is equal to the initial states in the earlier leaf. After
this, the process of reducing the initial uncertainty con-
tinues until either a leaf node is encountered in the new
IADS or the next IADS is started until eventually a leaf
node with a singleton set of initial states is entered.

A,B,C,D,E
a

E,D,B,E,B

B

0

A,C,D,E
b

C,A,C,B

A,C,D
aa

B,D,B

C

0

A,D
cb
C,B

A

0

D

1

1

0

E

1

1

r0

r1

r2

r3

node’s
name

states

separating
sequence

↓
δ(states,a)

response to a

A and D lead to the same
state B and both output 1
=⇒ aa is invalid

cb is valid as
it does not
‘merge’ states
of equal output

response to
separating
input b

Figure 2: Splitting tree for the Mealy machine Figure 1

5.2. Splitting tree

The splitting tree of the Mealy machine (Figure 1) is
shown in Figure 2 — it is the tree from which Figure 3
is constructed. A set of states called a label is associated
with each node; these states are shown at the top of each
node. The bottom row of each node shows next states
which are entered when a sequence of inputs in a node is
taken from the states labelling that node. Values in the
bottom row can be helpful in the identification of current
states during construction of IADS. The colour of states
in next states of nodes in Figure 2 reflects the output: for
node r0, state B produces 0 and other states produce 1.

At the beginning of state identification the initial un-
certainty is {A,B,C,D,E} shown in the label for the root
node r0 of ST. The first input a makes it possible to sepa-
rate states depending on the output: output 0 singles out
B but if the response is 1 we could have started from any
of {A,C,D,E} as shown by the label of node r1. In a sim-
ilar way, if we somehow knew that the initial state is any
of {A,C,D,E}, then input ‘b’ can be used to single out
state E. In this way, outputs from the FSM in response
to inputs in the splitting tree make it possible to separate
states.

In some cases, a single input would be sufficient to sep-
arate one or more states (as in the case above with inputs a
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Initial set I(r4)

Current set C(r4)

Figure 3: A fully distinguishing set of incomplete adaptive distin-
guishing sequences from the splitting tree in Figure 2

and b), but in other cases a single input symbol would pro-
duce the same output from all the states of interest. Such
an input (called a transferring input) would still be useful
if it leads to states that can be separated by subsequent
inputs/outputs. For the considered example, this can be
seen with node r3 where input c from states A and D leads
to A and E, respectively (with output 0). States A and
E can then be separated with input b, therefore sequence
cb can separate states A and D. This corresponds to the
entire tree T2 in Figure 3. Therefore a node in a splitting
tree could have a sequence of inputs in it but transitions
between nodes in ST only include the last output - it is
the one that actually separates states.

Every node r in an ST answers a question ‘if we started
with a set of states labelling this node, how best to separate
them?’. Based on the last output to a sequence in this
node, there will be two or more child nodes, labelled with
partitions of states from the label of r. This gives a key
property of ST: a label of each node is a union of the
disjoint sets of labels of its children.

When one intends to separate a set of states in an FSM,
it is reasonable to expect that a larger set of states is more
difficult to separate than a smaller set. For example, in an
FSM producing outputs 0 and 1 a few pairs of states can
be separated using a single input but separating a group
of three or more states would require a longer sequence.
This is why when tasked with separating a set of states
S′ one would pick a node in an ST with the smallest set
of states containing set S′. Any node above this node will
contain more states and thus solve a more difficult sepa-
rating problem. If all states in an FSM can be separated,
leaf nodes of a splitting tree are associated with single-
ton sets of states; nodes above them are labelled with a
union of sets for their children etc. In this structure, any-
one intending to separate states S′ would be best picking a
lowest common ancestor (lca) node of the leaf nodes corre-
sponding to states in S′. In the described example, node
r0 separates B from {A,C,D,E}; the states entered by

FSM that produced output 1 in response to input a are
{B,E}. Therefore, in order to continue separating states
one has to find the lowest node in ST containing this set,
as it happens it is r0 again. This time input a separates B
from E. The described example shows how starting from
{A,B,C,D,E} one can construct a tree T0 in Figure 3
resembling an ADS and splitting this set into {B}, {C,E}
and {A,D}. Since next states for different initial states in
leaves r3 and r4 are the same, this particular tree is not
able to completely separate all states. This is not surpris-
ing since the FSM in the example does not have an ADS.
The contribution of this paper is an algorithm building an
ST and from it a few incomplete ADS sequences (IADS)
that collectively distinguish all states.

A different example is where the FSM is expected to
be in one of states A, C or E and one wants to identify
the state. The node of the ST that is an lca of the states
A, C and E is r1 and its separating sequence ‘b’ can be
applied to the machine. Assuming that the response is
0, it means that we have not started from E. At this
point, the machine is in state C or A if we started in A
or C, respectively. The same procedure is repeated with
the set of states {A,C}, that is, r2 is used as a separating
node of C and A (the sequence queried so far being ‘baa’).
According to the response, one can thus determine the
unique state the machine was in at the beginning of the
identification process and the state it entered at the end
(the output of 1 to the last ‘a’ means we started from A;
0 corresponds to C). It is worth noting that although r2
cannot separate A from D, this proved unimportant where
the uncertainty is {A,C,E} because it does not include
both A and D alongside E. If we only needed to separate
A and D, the lca would have been r3.

In the process of state identification one jumps through
nodes in an ST attempting sequences shown in the middle
of each visited node and selecting subsequent nodes based
on the next states of the visited nodes. This corresponds to
a mostly linear walk through nodes in IADS that are also
associated with inputs and branches between nodes are
also based on outputs from an FSM. Here ‘mostly’ relates
to a need to walk through additional IADSs if not all states
have been separated: where all states need separating, T0

may have to be followed by T1 or T2 depending on the leaf
of T0 that was entered.

5.3. Input Validity Types

In general, an input might separate some states but for
other states of interest the FSM would produce the same
output and enter the same state. This means that infor-
mation about the starting state will be lost, therefore such
inputs are called invalid inputs in contrast to valid inputs
that either separate states or cause FSM to enter states
that are all different. For example, sequence a of node r0
is invalid because it merges states A and D by leading to
state E with output 1. In Figure 2 this is depicted by
showing the next state E both in the same colour (to in-
dicate same output) and underlined (to indicate a merge).
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When building an ADS, a sequence that led to different
states from the starting states can be continued and even-
tually the starting states will be separated; invalid inputs
have to be avoided because there is only one chance to run
an ADS - if information is lost one can no longer separate
some starting states. The machine used for the running ex-
ample has no ADS, therefore, invalid separating sequences
(containing invalid inputs) are assigned to nodes r0, r1 and
r2 of the splitting tree. For a splitting tree corresponding
to an ADS no next states would be underlined - even if
a node does not separate all states, for each output of an
FSM the next states would be different.

A splitting tree that contains an invalid sequence can-
not be the basis for an ADS but several incomplete adap-
tive distinguishing sequences (IADS) can be formed from
it. As said earlier, such splitting trees (referred to as ST-
IADS) and the algorithm to construct them are the contri-
bution of this paper. The idea of IADS is to jump through
the splitting tree as described above and pay attention not
just to the outputs from FSM but also to the sets of next
states. If an output is received that leads to a merge (set of
next states has underlined states for this specific output),
one can only continue separating states if there is some-
thing to separate, that is, the set of entered states is not
a singleton. For example, T0 in Figure 3 depicts how the
first input ‘a’ causes a merge of A,D and C,E, depending
on the starting states. After that, it is still possible con-
tinue separating states until the set of current states is a
singleton (nodes r3 and r4 of T0). At this point, one has
to stop the current sequence and start a new one. During
testing this is accomplished by resetting a system under
test, re-running a test to enter a state of interest and then
attempting a different IADS, starting from the next node
in the splitting tree. Therefore, the algorithm constructing
IADS ensures that if an ADS exists, it will be found and
otherwise it attempts to reduce the number of different se-
quences that will need to be attempted in the assumption
that reset and re-running a test sequence is time consum-
ing. In the described splitting tree, an output of 1 to the
second input of a has to be followed by such a reset but
it also means that the initial state was not a B, C or E,
leaving {A,D} as the current uncertainty. Therefore, the
root node r8 of the next IADS T2 has just {A,D} as the
set of initial states and sequence cb is used first since the
lca in ST for {A,D} is r3.

An adaptive distinguishing sequence cannot be built
from an arbitrary splitting tree. All sequences of the ST
need to be composed of valid inputs. An input x is valid
for a subset of states S′ if every two distinct states si and
sj of S′ either respond differently to x, λ(si, x) 6= λ(sj , x),
or they lead to different states on x, δ(si, x) 6= δ(sj , x).
Therefore, an input x is invalid for S′ if there are two
different states in S′ such that both respond equally to
x and both lead to the same state. At every step of an
algorithm a partition π of states of FSM is refined; π is
such that for Si ∈ π and Sj ∈ π, i 6= j implies Si ∩ Sj = ∅
and

⋃
Si∈π Si = S. There are three types of valid inputs x

with respect to the partition π given by the labels of leaves
of ST as proposed in [9]:

a) Two or more states of a block S′ ∈ π respond with
different outputs to input x, that is, |λ(S′, x)| > 1.
For subsets of states of U ⊆ S′ producing the same
output y, target states are different: for any y ∈ Y
and U = {s ∈ S′ | λ(s, x) = y}, |δ(U, x)| = |U |.

b) All states of a block S′ ∈ π respond with the same
output, |λ(S′, x)| = 1, but they lead to more than
one block of π, that is, there are blocks Si 6= Sj such
that δ(S′, x) ∩ Si 6= ∅ and δ(S′, x) ∩ Sj 6= ∅. All
target states are different: |δ(S′, x)| = |S′|.

c) All states of a block S′ ∈ π produce the same output,
have different target states and lead to a block S′′ ∈
π. In symbols, |λ(S′, x)| = 1, |δ(S′, x)| = |S′| and
δ(S′, x) ⊆ S′′ ∈ π.

Inputs can be also divided by their ability to separate some
states regardless of their validity. An input x is called sep-
arating if two or more states of the subset of states S′ re-
spond differently, that is, |λ(S′, x)| > 1. Otherwise, the in-
put x is called transferring. This correspond to the notion
of the shortest separating sequence of a pair of states. The
shortest separating sequence is always formed of transfer-
ring inputs followed by a single separating input (example:
cb of r3 in Figure 2). Note that every valid input of type a)
is separating and valid inputs of type b) and c) are trans-
ferring. An input of type c) that leads from block S′ to
itself is useless and will therefore not be used during the
construction of an ST.

For invalid inputs we do not separate transferring in-
puts into types similar to b) and c), therefore invalid inputs
are seen as one of two types,

i) invalid separating inputs where two or more states
of S′ respond with different outputs to input x, that
is, |λ(S′, x)| > 1. For some of the subsets of states
of U ⊆ S′ producing the same output y ∈ Y , target
states are merged: U = {s ∈ S′ | λ(s, x) = y} and
|δ(U, x)| < |U |.

ii) invalid transferring inputs where all states of a block
S′ ∈ π respond with the same output, |λ(S′, x)| = 1,
but they either lead to more than one block of π on
x (that is, states of δ(S′, x) are not all in a single
block of π) or they lead to a different block π2 6= π1.
Some target states are merged: 1 ≤ |δ(S′, x)| < |S′|.

In practical cases, invalid transferring inputs that merge
all states (δ(S′, x) = 1) are completely useless for separa-
tion of states and will therefore not be selected by the ST
construction algorithm below.

5.4. The structure of a splitting tree

More formally, a splitting tree (ST) is a successor tree
such that:
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• each node is labelled with a subset of states S′,

• the root is labelled with the set of all states S,

• each internal node has a sequence w assigned that
separates S′,

• the label of every parent is the union of disjoint sets
of states labelling its children, and

• an edge from node r to its successor rs is labelled
with the last element of the response of states of rs
to the sequence w assigned to r.

An ST is complete if all states are separated, that is, if
there are exactly n leaves and each corresponds to one
state. Note that the labels of leaves of an ST always form
a partition of all states. To improve the efficiency of the
implementation [9], each internal node is also associated
with the set of next states δ∗(S′, w) that is computed by
taking a δ∗ from the sequence of inputs in the node and
the states of its label. Without such caching, every time
one considers a node during the construction of a splitting
tree, a computation of δ∗(S′, w) would require a walk of up
to n steps through elements of w, making time complexity
worse by a factor of n.

6. State Identification Sequences from ST-IADS

A splitting tree that is complete can be a basis for
the construction of separating sequences of all state pairs,
characterizing sets or harmonized state identifiers as de-
scribed in [8]. This section proposes an alternative design
approach that does not just collect particular sequences
of ST nodes as the ST-MSS algorithm does. The new
approach simply follows the chosen separating sequence
and extends it by another one that separates the reached
states. This is repeated until no states can be separated.
By doing this, new longer separating sequences are built
and subsequently the number of needed sequences is re-
duced. This is significant for testing because HSIs are often
applied at the end of every test sequence, so for instance
halving their number also halves the amount of testing.

6.1. Separating Sequences from ST-IADS

Assume a system under test has entered a state s that is
known to be in a subset of states S′. Algorithm 1 describes
how to obtain a preset separating sequence from a given ST
that separates a given state s from states in set S′ (where
s ∈ S′). There are much fewer FSMs that possess such
sequences compared to those that have an ADS and the
complexity of the construction of a preset distinguishing
sequence is PSPACE [9]. For an arbitrary ST, Algorithm 1
will only separate s from some states of S′. In order to
separate s from the rest of the states, one would have to
re-run the algorithm on the subset of states of S′ that were
not separated from s. This is described later in Section 6.2.

Algorithm 1: getSepSeqFromST(s ∈ S′, S′ ⊆ S,
ST)

1 w ← ε
2 while |S′| > 1 do // there is si ∈ S′ not

separated from s
3 r ← getSeparatingNode(S′)
4 v ← r.separatingSequence
5 w ← w · v
6 S′ ← {δ∗(si, v) | si ∈ S′ ∧ λ∗(si, v) = λ∗(s, v)}
7 s← δ∗(s, v)

8 return w

Algorithm 2: getSeparatingNode(S′)

1 select a pivot sk from S′

2 return the node of ST.separatingNodes[(sk, si)],
sk 6= si ∈ S′, with the most states

When separating a large set of states, a longer sequence
may be needed compared to separating smaller sets. For
this reason, when separating a set of states S′, a good
starting point is not to start with a root node of ST la-
belled with all the states S of the FSM but instead find a
lower-level node that contains S′ and as few other states
as possible. As mentioned above, this corresponds to iden-
tification of a lowest common ancestor (lca) of the leaves
in ST corresponding to states in S′.

Construction of an lca is done by calling function get-
SeparatingNode described in Algorithm 2. A state pair
array separatingNodes that is part of ST in the implemen-
tation of this algorthm permits efficient search for lca. For
every pair of states, separatingNodes stores the lowest node
in ST that separates such a pair. For example, separat-
ingNodes[(A,E))] = r1 and separatingNodes[(C,D)] = r2
for the ST in Figure 2. Consider a path from the root
node of ST to the leaf labelled with state s. The root is
labelled with all the states S, a child of the root node on
this path will have a strict subset of S, the subsequent
node on the path will have an even smaller set states and
so long until only s is left at the leaf. Of all the nodes in
ST, only nodes on this path contain s in their label which
means they are the only candidates for a node that is lca.
The length of labels of nodes on this path varies from n at
the root to 1 at the leaf. Since there are at most n nodes on
such a path, this gives a bound of n on the length of search
for lca but the use of separatingNodes makes it possible to
do it in at most |S′| − 1 steps.

Proposition 1. Given a subset of states S′ ⊆ S and a
splitting tree ST, Algorithm 2 finds the lowest common an-
cestor of the states of S′ by comparison of at most (|S′|−1)
nodes of ST.

Proof. Pick any sk ∈ S′ and consider the set of nodes
L = {separatingNodes[(sk, si)] | si ∈ S′ such that sk 6= si}.
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There are at most (|S′| − 1) distinct nodes and they are
all on a path in ST from the root node to a leaf labelled
with sk. A label of a node in ST is a union of disjoint sets
of states labelling its children therefore nodes in L can be
arranged in a sequence of their labels l1 ⊆ l2 ⊆ . . . ⊆ la
where li is a label of some ri = separatingNodes[(sk, si)]
for some si ∈ S′. The use of ⊆ reflects that some of
these ri could be the same. The topmost (in ST) node
ra = separatingNodes[(sk, sa)] for some sa ∈ S′ is there-
fore the node with the most states and contains states of
all other nodes in L. We prove that ra is the lca for S′.

Consider a node rl that is not on a path in ST from
root to the leaf for sk. In this case, there is a node rp that
is an lca for rl and node for sk. Children of node rp are
labelled with a disjoint set of states, therefore, the label of
rl does not contain sk which implies that rl cannot be an
lca for S′.

Consider a child rc of node ra. If its label contains both
sk and sa then ra cannot be the lowest node in ST sepa-
rating these two states which contradicts the construction
of separatingNodes. Therefore, ra is an lca of S′.

Algorithm 1 starts with an empty separation sequence
w and an initial state s; it then appends a separating se-
quence v of the lca of S′ to it. Such a sequence is expected
to separate a few states based on the output but the rest
of the states in S′ would transfer to some other states.
The algorithm therefore determines the next state δ∗(s, v)
and δ∗(si, v) for states si ∈ S′ that produce the same out-
put as s in response to v (the rest of the states in S′ are
separated by the output). For a subsequent iteration of
the algorithm, state s is replaced with δ∗(s, v) and S′ with
δ∗(si, v) for the described si. The algorithm stops when
the set of current states becomes a singleton - either all
states have been separated or (most likely) they have been
merged.

The time complexity of Algorithm 1 depends on the
number nd of states in the set S′ that are separated from
the given s; nd < |S′|. If all different states of S′ are dis-
tinguished from s, nd = |S′| − 1. The algorithm separates
at least one state of S′ per iteration of the main loop (lines
2–7) so it does at most nd iterations through the loop. It
compares at most |S′| separating nodes to find the lowest
common ancestor r using getSeparatingNode. There-
fore, it runs in O(nd ∗ |S

′|) = O(|S′|2). Considering that
the next states are cached in r, updating S′ does not in-
crease time complexity.

6.2. HSI from ST-IADS

It is easy to construct harmonized state identifiers with
Algorithm 1 at hand. The HSI of a state sk is formed by
successive calls of getSepSeqFromST(sk, S

′,ST) for a
subset S′ of states that are not separated from sk by a se-
quence which was already added to the HSI. Algorithm 3
builds an HSI for all states in this fashion. If the con-
structed HSI of a state contains just one sequence, then
its construction takes O(n2) which follows from the time

complexity of Algorithm 1. The complexity does not in-
crease even if the HSI contains several sequences because
the sum of the numbers nd of distinguished states for each
call of getSepSeqFromST is equal to n. Therefore, Al-
gorithm 3 constructs HSIs of all states from the ST in
O(n3).

Algorithm 3: getHSIsFromST(ST)

1 foreach sk ∈ S do
2 HSIk ← ∅
3 S′ ← S
4 while |S′| > 1 do // there is si ∈ S′ not

separated from sk
5 w ← getSepSeqFromST(sk, S

′,ST)
6 add w to HSIk
7 S′ ← {si ∈ S′ | λ∗(si, w) = λ∗(sk, w)}

8 return HSI as a collection of HSIk of all states

6.3. IADSs from ST-IADS

The construction method of an adaptive distinguishing
sequence (ADS) from a complete ST was proposed in [9]
and Algorithm 4 extends it to work even if the ST contains
invalid separating sequences. A set of incomplete adaptive
distinguishing sequences (IADS) is thus returned in gen-
eral instead of a single ADS but the algorithm returns an
ADS if the complete ST has no invalid sequences. The idea
is the same as in getSepSeqFromST but the separat-
ing sequences are stored in nodes of the tree representing
IADS instead of appending them one after another, and all
responses (different branches) are handled as there is no
reference state s. An IADS is represented by a successor
tree such that:

• each node rj is labelled with the initial set I(rj), the
current set C(rj) and an input xj ,

• all edges leading from an internal node rj are labelled
with distinct output symbols produced by states of
C(rj) in response to xj , and

• if λ∗(s, u) labels the path from the root r0 to a node
rj where s ∈ I(r0) and u is the input sequence
formed of xi’s on the path (without xj of rj), then
the state s is in I(rj) and δ∗(s, u) is in C(rj).

This definition implies that for every root r0 holds I(r0) =
C(r0). The original definition of ADS in [9] requires I(r0) =
S as it needs to distinguish all states and has exactly n
leaves. In the case of IADS, this requirement is transferred
to the following property of a set of IADSs. A set D of
IADSs is fully distinguishing if every pair of distinct states
is distinguished by some IADS from D [3], in symbols for
any pair of states s1 ∈ S and s2 ∈ S there is an IADS
Ti ∈ D containing nodes r1 6= r2 such that s1 ∈ I(r1) and
s2 ∈ I(r2).
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Algorithm 4: getIADSsFromST(ST)

1 push S into undistinguished
2 foreach S′ ∈ undistinguished do
3 create a new IADS Ti with the root r such that

I(r) = C(r) = S′

4 push r into unprocessedNodes
5 foreach rj ∈ unprocessedNodes do
6 rST ← getSeparatingNode(C(rj))

7 u · xj ← rST .separatingSequence
8 foreach xk ∈ u in their order do
9 rj .input ← xk, y ← λ(C(rj), xk)

10 create a successor rk with the edge from
rj labelled with y

11 I(rk)← I(rj), C(rk)← δ(C(rj), xk)
12 rj ← rk

13 rj .input ← xj

14 foreach y ∈ λ(C(rj), xj) do
15 create a successor rk with the edge from

rj labelled with y
16 C(rk)← {δ(sj , xj) | sj ∈

C(rj) ∧ λ(sj , xj) = y}
17 I(rk)← {sj ∈ I(rj) | δ

∗(sj , dk) ∈ C(rk)
where dk is the sequence of xi’s along
the path from the root of Ti to rk}

18 if |C(rk)| > 1 then
19 push rk into unprocessedNodes
20 else if |I(rk)| > 1 then
21 push I(rk) into undistinguished

22 return IADSs Ti’s

Algorithm 4 uses two queues to build a fully distin-
guishing set of IADSs. The first queue called undistin-
guished includes subsets of states that are not distinguished
from each other by any existing IADS; it initially con-
tains the set of all states. The second queue called unpro-
cessedNodes is for the leaves rj of the current IADS Ti such
that their current sets C(rj) contain several states which
means that they can be separated. Each root of a new
IADS Ti is initialized with a subset of states from undis-
tinguished and pushed into unprocessedNodes to start the
construction of Ti. For each unprocessed node rj of Ti, the
lowest common ancestor is found by getSeparatingN-
ode and its separating sequence is then divided into the
transferring sequence u and the separating input xj . If u is
not empty, a chain of successors representing u is appended
to rj and rj then points to the new leaf. All these succes-
sors have the same initial state and differ in the current
sets that are updated by each input of u. The separating
input xj is assigned to the leaf rj and divides its initial
and current states according to the responses. Each suc-
cessor rk corresponds to the states of C(rj) that produce
the same output to xj . Their initial and current sets are
updated accordingly (lines 16 and 17 of Algorithm 4). The

initial and current sets are implemented as arrays so the
correspondence between initial and current states is eas-
ily accessible, and the node rST with its successors in the
splitting tree provides enough information to form succes-
sors of rj and their current sets. Finally, if the successor
rk can be further separated, then it is added to unpro-
cessedNodes. If rk cannot be separated but some initial
states leading to this node were not distinguished, then
these states (I(rk)) are pushed into undistinguished and
another IADS will distinguish them. This corresponds to
the case where invalid sequences merge some states there-
fore multiple IADSs have to be constructed to separate all
states. A fully distinguishing set of IADSs constructed by
Algorithm 4 from the ST in Figure 2 is shown in Figure 3.
Note that usually there is no need to store the chain of
successors representing the transferring inputs. Therefore,
a shortened version of IADSs can be introduced such that
a node stores a separating sequence instead of a single in-
put as proposed in [7]. Lines 8–12 of Algorithm 4 would
be omitted and lines 13–17 would work with the entire
separating sequence u · xj instead of just with xj .

At most n−1 separating sequences are needed to distin-
guish all states. A suitable separating sequence is found in
the ST by getSeparatingNode in O(n). Therefore, Al-
gorithm 4 runs in O(n2) if the shortened version of IADSs
is built. Otherwise, it also depends on the length of sepa-
rating sequences in the ST because the chain of successors
corresponding to each sequence needs be created; the time
complexity is O(n3) if all separating sequences have length
at most n.

All three algorithms work with any splitting tree, how-
ever, getIADSsFromST can build an ADS only from
the ST that has only valid separating sequences. The ST-
MSS algorithm [8] thus cannot be used to prove the exis-
tence of an ADS and generally it results in more sequences
than from ST-IADS. A characterizing set can be formed
from the ST as well as the collection of all separating se-
quences [8]. Characterizing sets formed of either sequences
of IADSs constructed by Algorithm 4 or as union of HSIs
constructed by Algorithm 3 are the same if they are based
on the same ST.

7. ST-IADS Construction Algorithm

This section proposes the extension to the existing al-
gorithm [9] such that the existing algorithm building a
splitting tree with valid separating sequences is not dis-
rupted by the extension. It means that the extension is
not employed if the given machine has an adaptive distin-
guishing sequence (ADS) and so a splitting tree with only
valid sequences is constructed. As the extension allows one
to construct incomplete adaptive distinguishing sequences
(IADS), it is referenced as the ST-IADS algorithm and its
part corresponding to the existing algorithm from [9] is
referenced by the ST-ADS algorithm.

The ST-IADS algorithm is described in Algorithms 5–
11 such that Algorithm 5 captures the main part with
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other algorithms describing routines it relies on.

7.1. General Idea

Methods building separating sequences are usually de-
scribed in terms of a partition of states which initially con-
sists of a single block with all states in it and every step
of an algorithm splits these blocks [9]. Figure 4 shows a
hypothetical construction of a splitting tree for a machine
with 7 states A–G. The initial partition includes only block
r0. Figure 4(A) shows that input ‘a’ separates some states
of the root of the splitting tree, therefore at the subse-
quent step the partition contains three blocks of states r1,
r2 and r3. In this example, state G is separated but two
other blocks need to be dealt with in the steps to follow.
Figure 4(B) shows how input ‘b’ can be used to separate
states in those blocks: A, C from B and E, F from D; the
next step would separate A from C and E from F. Each of
these blocks of states corresponds to a node in ST. An ST
is constructed incrementally and after each step of an al-
gorithm the partition of FSM states corresponds to labels
of the leaf nodes of ST. During construction not every leaf
node is labelled with a singleton set but if all states are
separated, all leaves have singleton labels.

Inputs of type a) that separate states based on the out-
put are the best since they immediately provide informa-
tion permitting one to separate states. If a node cannot
be split in this way, another option is using an input of
type b) which relies on an input that leads FSM from cur-
rent states for the node to states that we know how to
separate. For the running example separation of states A
and D required an input c of type b) followed by input b
of type a). This ‘know how to separate’ is based on the
information in ST — input of type b) requires finding an
already existing node in ST such that next states are in-
cluded in the label of that node and children of that node
splitting those states. In other words, we want to find a
node r such that for its children r1, r2 the corresponding
labels l(r1) ∩ C 6= ∅ and l(r2) ∩ C 6= ∅ where C is the set
of next states for the considered node. If such a r (which
has to be an lca of states in C) can be found, its children
are splitting the current node and therefore can be (recur-
sively) cloned as children of the considered node with few
changes. Since this is done in order to split a specific node,
the sets of states labelling those clones have to be reduced
to be subsets of the label of the considered node and new
sets of next states have to be computed for the clones.

Inputs of type c) switch between elements of a current
partition without separating states, if these are the only
valid inputs, one might have to make a number of such
‘hops’ until an input of type a) or type b) becomes avail-
able.

Compared to the ST-MSS algorithm [8] that processes
the leaves containing several states in the order of the
length of their expected separating sequence, the ST-ADS
orders the leaves for processing according to the number
of states in their labels. This helps with the search for a
valid separating sequence for a subset of states and also

guarantees that if an ADS exists it will be of a polynomial
length [9]. Splitting nodes in the order of their size is close
to a breadth-first construction of ST where we start with
the largest node and in the subsequent step all the largest
nodes of the same size are split, next step smaller nodes are
split etc. In contrast, depth-first exploration may cause a
long branch to be constructed and at the end of it an in-
put of type b) may cause the whole ST to be cloned as
described above for dealing with inputs of type b); while
probably unlikely in practice, in the worst case this leads
to an exponentially long tree which is why splitting in the
order of size was originally introduced by [9].

In the described work, inputs of type a) are applied im-
mediately in each step and where they are not available,
nodes (which would be leaf nodes at that moment) are
stored in a collection of leaves that need a separating se-
quence of several inputs. These leaves are then processed
in similar manner to the SSS algorithm [11], that is, links
between them are first found and subsequently if one is
separated, it can be used to separate other nodes that
have a link to it. This corresponds to a search for trans-
ferring inputs. In other words, when a subset rj of states
is separated with a sequence w, another subset ri can be
separated with the sequence x · w where x labels the link
from ri to rj , that is, states of ri transfer to states of rj
on x.

In the case of the ST-ADS algorithm, the links, or tran-
sitions between subsets of states, are restricted to valid
inputs. Therefore, some leaves do not have to be distin-
guished if they do not have a valid separating sequence.
The extension is thus employed such that even invalid in-
puts are considered for the links from leaves that have
not been separated. The extension described in this work
makes an effort to find the best invalid separating sequence
using scoring to choose between possible inputs (the lower
the score the better the input hence the score is effec-
tively a penalty). If there is no valid separating sequence,
the method explores all the shortest invalid separating se-
quences. During the exploration, auxiliary nodes repre-
senting the subsets of states reached by these sequences
are created; they are kept after they are analysed as they
may be used at any subsequent step of the algorithm.

7.2. Data structures of the ST-IADS algorithm

There are several structures that the algorithm han-
dles.

• Every node r of the splitting tree ST contains a set of
states, a separatingSequence and the associated next
states δ∗(r.states, r.separatingSequence) - this is the
cache of the next states to improve performance.

• separatingNodes is a state pair array that is a part of
ST and stores for each state pair (si, sj) a node r of
ST that separates si and sj , that is, both si, sj are
in r.states (the label of r) but they are in different
states of the children of r.
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Figure 4: Splitting a node during the construction of a splitting tree

Algorithm 5: Construction of a splitting tree

input : A minimal DFSM M with n states
input : validOnly allows to use only valid inputs

if true
output: A splitting tree ST of M or null if

validOnly and M has no ADS

1 r.states ← all n states of M // r is initially

the root of ST
2 ST.separatingNodes[(si, sj)]← null for all (si, sj),i<j

3 if M has state outputs then
4 r.separatingSequence ← ↑
5 sepByCreatingSuccessors(r)

6 else partition ← {r} // M is a Mealy machine

7 while |partition| 6= n do
8 r ← pop a node from partition with the most

states
9 if r is not analysed then

10 analyse(r)

11 if validOnly and r has no valid input then
12 return null // no ADS

13 if r.separatingSequence is assigned then
14 sepByCreatingSuccessors(r)
15 else push r into dependent
16 if |dependent| > 0 and ∀p ∈

partition: |p.states| < |r.states| then
17 foreach u ∈ dependent do
18 initTransOnValidInputs(u)

19 processDependent()
20 if |dependent| > 0 then
21 if not validOnly then
22 foreach r ∈ dependent do
23 initTransOnValidInputs(r)
24 if r has no valid separating

sequence then
25 initTransOnInvalidInputs(r)

26 processDependent()

27 else return null // no ADS

28 return ST

• partition is a set of the leaves of ST; it is implemented
as a priority queue such that the leaves with the most
states in states can be fetched first. This is needed
to enforce the splitting of nodes in the order from
the biggest to the smallest.

• dependent is an array of nodes with states that do not
have a separating input and have to be split using
transferring or invalid ones.

• dependentPriorityQueue is a priority queue of nodes
from dependent. At each step, nodes that are split
are added to it. After all separating inputs and one-
step transferring inputs have been attempted, nodes
from dependentPriorityQueue are used in order to
split nodes still in dependent using transferring in-
puts.

• transitionsTo is an array of lists filled with the links
between nodes in dependent.

• For each node r in dependent, bestr stores an input,
a node next reached by the input and a score re-
flecting how good a separating sequence can be if it
starts with this input. The bestr.score is used when r
is pushed into dependentPriorityQueue that favours
nodes with the lowest score so that they are fetched
first.

Global structures ST.separatingNodes, partition, de-
pendent, dependentPriorityQueue, and transitionsTo are
available in all functions of the ST-IADS (Algorithms 5–
11). Besides a minimal DFSM M , the ST-IADS algorithm
takes an input parameter validOnly that when true forces
the algorithm to follow the existing ST-ADS algorithm. If
M has no ADS and validOnly is true, the algorithm will
return the null value representing the absence of an ADS.

7.3. ST-IADS algorithm

Algorithm 5 starts by separating all states in the root
of ST using the stOut input ↑ if the given machine M
produces state outputs. The function sepByCreating-
Successors in Algorithm 6 captures how a leaf r is sep-
arated. It first appends new nodes to r and then updates
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partition and ST.separatingNodes if r is a part of ST. New
successors of r are formed from states of r that respond to
the separating sequence of r in the same way; the last out-
put symbol of their response, that is, the response to the
separating input, labels the edges from r to the successors.

The condition on line 2 of Algorithm 6 ensures that
only successors of r present in ST lead to updates to par-
tition and ST.separatingNodes. This is necessary because
during a search for the best invalid separating sequence
a range of auxiliary nodes of different size is created in
dependent; out of these nodes only a subset will be used
to split nodes in ST but to identify the splitting power of
each auxiliary node one needs to be able to construct links
between them.

Algorithm 6: sepByCreatingSuccessors(r)

1 create successors of r by grouping states of r.states
with the same response to r.separatingSequence

2 if r is in ST then
3 add the successors to partition
4 ST.separatingNodes[(si, sj)]← r ∀si, sj in

different successors

The main loop of Algorithm 5 (lines 7–27) starts af-
ter partition is initialized with the current leaves of ST. In
each iteration through the loop, one leaf r with the most
states is separated if it has a separating input of type a).
Otherwise, it is stored in dependent. An exception is re-
ported if r has no valid input and valid inputs are required
by validOnly. In this case the ST-IADS algorithm returns
null as a sign that there is no ADS for the given machine.
To discover if r has a valid separating input, r is first
analysed. The function analyse(r) in Algorithm 7 checks
each input x and stores it as the separating sequence of
r if it is a valid separating input. Otherwise, all x and
the related next states δ(r.states, x) are cached if x is valid
or invalid inputs are allowed. Invalid transferring inputs
that merge all states into one, that is, |δ(r.states, x)| = 1,
are not stored as they cannot begin a separating sequence.
During the search for invalid separating sequences, a range
of nodes is created and analysed, this is why it is possible
that the leaf r has already been analysed as an auxiliary
node so the analysis is not repeated due to the condition
on line 9 of Algorithm 5.

After all leaves of ST with the same number of states
are analysed and checked, those pushed into dependent
are separated by sequences of several inputs (lines 17–27
of Algorithm 5). The condition on line 16 of Algorithm 5
is only true when all nodes of the same maximal size were
processed (it literally means that we are looking at the
last node of the maximal size) and so it is the time to split
nodes that could not be split with inputs of type a) using
transferring inputs before moving to the next step of the
algorithm and splitting smaller nodes.

Assume that in the example in Figure 4 there is no

Algorithm 7: analyse(r)

1 foreach input x ∈ X do
2 if x is a valid separating input then
3 r.separatingSequence ← x
4 return

5 else if x is a valid transferring input or
(not validOnly and
(|λ(r.states, x)| > 1 ∨ |δ(r.states, x)| > 1)) then

6 store x and next states δ(r.states, x)

separating input for a node r1 then this node is pushed in
the set dependent. The function initTransOnValidIn-
puts (line 18 of Algorithm 5) then creates links between
nodes according to the transition function. Assume that
the next states of A, B and C on the input ‘c’ are states D,
E and F, respectively, and D, E, F lead to A, D, E on ‘d’.
Therefore, the case shown in Figure 4(C) shows a link ‘c’
from r1 to r2. The link ‘d’ from r2 points to r0 because it
is an lca for states A, D, E. For this reason, function pro-
cessDependent forms the separating sequence ‘da’ for r2
and then ‘cda’ for r1 and splits the nodes accordingly.

At first, only valid separating sequences are used such
that links on valid inputs are prepared by initTransOn-
ValidInputs (Algorithm 8) for every node in dependent
and then they are gradually processed by processDe-
pendent (Algorithm 9). In both cases, only transferring
inputs are considered. After each complete step of the al-
gorithm the set dependent will be empty - if some nodes
are not separated, the FSM does not have an ADS. For
this reason, either the process is repeated using invalid in-
puts or the algorithm exits with null if only valid inputs
are allowed.

Proposition 2. If an FSM has an ADS, the splitting tree
constructed by Algorithms 5 is valid and will lead to a valid
ADS.

Proof. Sketch of the proof. The initial node contains all
states of an FSM. By construction of the algorithm, nodes
are processed in steps where each step splits all nodes la-
belled with the largest set of states (this could be a single
node or multiple nodes of the same size). Each node is
split by identifying a valid input of type a) to split it if
there is any input of this type and otherwise it is stored
in dependent. Once all nodes in a step that can be split
with inputs of type a) are dealt with, nodes that can be
separated by transferring inputs are split by initTran-
sOnValidInputs. The remaining nodes are split with
transferring inputs by processDependent. The stepwise
process and handling of these types of inputs corresponds
to cases 1)-3) of Algorithm 3.2 in [9]. As such, the proof
of validity and the length of ADS from [9] can be directly
applied to ST by Algorithm 5.

Construction of ADS from ST in Algorithm 4 follows
the construction in Algorithm 3.3 of [9].
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Function initTransOnValidInputs on line 23 con-
siders transferring inputs leading to a node with an invalid
separating sequence. If in Figure 4(C) the sequence as-
signed to r0 was invalid, then an auxiliary node r′3 with
states A, D, E (a strict subset of states of r0) would be
created as shown in Figure 4(D) because a smaller set of
states could have a valid separating sequence and in any
case a smaller set of states is likely to have a shorter sep-
arating sequence. In this case, separating sequences for
nodes r2 and r1 would be constructed in a similar way to
Figure 4(C) using a separating sequence for the auxiliary
node r′3.

Alternatively, it can happen that there is no valid in-
put for r′3 and thus no valid sequences for r1 and r2.
Both nodes then remain in dependent and the function
initTransOnInvalidInputs creates links between nodes
even for invalid inputs. In this case, the algorithm at-
tempts to find the biggest subset of states that can be
distinguished by an invalid input and uses scoring (details
in Section 7.5) for that.

Although in the algorithm function initTransOnVa-
lidInputs on line 23 is called for every node of dependent,
the implementation only calls it for new auxiliary nodes
that are added to dependent by initTransOnValidIn-
puts or by initTransOnInvalidInputs (Algorithm 10).

After the set dependent has been populated with nodes
linked with potentially invalid transitions, the next call of
processDependent is again looking at transferring in-
puts to splits nodes. In a similiar case to valid inputs,
processDependent picks separated nodes one by one
and considers nodes with transitions to separated nodes,
separating them and subsequently adding them to depen-
dentPriorityQueue so that nodes with transitions to newly
separated nodes are processed. The loop on line 22 ensures
that each node r in dependent is looked at by either init-
TransOnValidInputs or initTransOnInvalidInputs
and possible transferring inputs added to newly-created
nodes r1 in dependent. For each such r, these new nodes
will have fewer states than r and again due to the loop on
line 22 they will be considered by initTransOnValidIn-
puts or initTransOnInvalidInputs. Thus for a start-
ing node r, the sequence of nodes r → r1 → r2 → . . . has a
monotonically reducing number of states hence eventually
there will be an rk that can be separated by a valid input
and it will be added to dependentPriorityQueue. When
node rk is considered by processDependent, the nodes
rk−1, rk−2, . . . , r1, r will be considered in turn. This shows
that the set dependent will also become empty at the end
of each step. The algorithm will also keep a record of all
those auxiliary nodes r1, r2 . . . that were created in the
hope that these nodes would be useful later to separate
states. Such nodes will not become part of ST unless they
are best (according to the scoring routine) at separating
nodes in ST.

Proposition 3. If an FSM has all states pairwise separa-
ble, getIADSsFromST algorithm constructs valid IADSs

from the splitting tree built by Algorithm 5.

Proof. Sketch of the proof.
For each node of ST, Algorithm 6 constructs child nodes

that partition states labelling this node. In this way, every
set of states can be partitioned.

The construction of IADS is recursive in that start-
ing with the root state r0 of ST and the associated input
sequence wr0 , one needs to attempt wr0 and branch on
outputs y, leading FSM to the target states N(V0, r0, y)
where

V0 = {(s, s) | s ∈ S},

C(V, r, y) = {sc | (si, sc) ∈ V

∧ wr = w′ · x ∧ λ(δ∗(sc, w
′), x) = y},

N(V, r, y) = δ∗(C(V, r, y), wr).

These target states are subsequently separated using a se-
quence in the node r1 = lca(N(V0, r0, y)) where by abuse
on notation we alias states and singleton ST leaf nodes
labelled with those states. Such an r1 could be r0 or any
other node in ST so in order to define the recursive process,
one has to talk of both a node r in ST under considera-
tion and a set of initial and current states of IADS node
being considered. At the start, the node is root r0 and
V0 = {(s, s) | s ∈ S} includes pairs of initial and current
states. The starting pair is (r0, V0). After that, the node
is r1 = lca(N(V0, r0, y)) and V1 = U(V0, r0, y) depending
on y where

U(V, r, y) = {(si, δ
∗(sc, wr)) | (si, sc) ∈ V

∧ wr = w′ · x ∧ λ(δ∗(sc, w
′), x) = y}.

We have thus a set of such (r1, V1). For a given pair (r, V ),
getIADSsFromST can be thought to construct a pair of
(ads0, iads) where the first element is an IADS starting
with a node labelled with the initial and current states
from V and with the separating sequence of ST node r,
the second element iads is a set of IADSs that account for
the use of invalid input sequences by ads0.

The difference of the considered ST to the one where
only valid inputs are used is that for some nodes r and sets
V , there is such a y that |N(V, r, y)| < |C(V, r, y)|.

We prove that for a pair (r0, V0) getIADSsFromST
constructs a set (ads0, iads) separating all initial states
in V0.

Main part of the proof: for a pair (r, V ) a recursive
process separating all initial states in V starting from node
r has three cases to consider:

1. a leaf node r means that the initial states in V can-
not be further separated. Hence, a single IADS node
labelled with initial and current states of V is con-
structed together with an empty set of iads. Where
the node r is an lca after an invalid input was used
(case 3), there may be several initial states in V and
only one current state.
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2. non-leaf nodes with a valid separation sequence. Let
children of r in ST be r1 . . . r|Yr| for different out-
puts y ∈ Yr where Yr ⊆ Y is the set of outputs from
FSM to the last element of wr. In this case, for ev-
ery output y and |C(V, r, y)| > 0, the corresponding
pairs (lca(N(V, r, y)), U(V, r, y)) can be constructed.
Let us assume that getIADSsFromST will con-
struct pairs (a1, ia1) . . . (ak, iak) for each of these
pairs where k is the number of elements of Yr where
|C(V, r, y)| > 0. The corresponding IADS for r has
the structure wr/y1 → a1 . . . wr/yk → ak, hence a
pair

(wr/y1 → a1 . . . wr/yk → ak,∪j=1...kiaj)

will separate all initial states in V . As such, we
have shown that getIADSsFromST will construct
a valid pair (ads0, iads) for (r, V ) where r is a node
with a valid separating sequence.

3. non-leaf nodes with an invalid separating sequence.
If r has an invalid sequence, then the set of the states
of its label can be split into non-intersecting subsets
T (y, st) = {sc ∈ C(V, r, y) | δ∗(sc, wr) = st} where
each subset corresponds to states that produce the
same output and lead to the same state in the FSM;
|δ∗(T (y, st), wr)| = 1. Let the number of such sub-
sets be k, this number is lower than |V | (if it is the
same as |V |, r has a valid separating sequence). This
number k can be greater than the number of outputs
y satisfying |C(V, r, y)| > 0 because for the same
output y there could be subsets T (y, st) 6= T (y, s′t)
producing the same output and leading to different
states st 6= s′t. Some of these sets T (y, st) will be
singletons; if r had a valid separating sequence, all
such T (y, st) would be singletons. Considering node
r as a pseudo-node r′ labelled with such sets T (y, st)
rather than individual states makes it look like a
node with a valid separating sequence, therefore the
same construction as in the case of a node with a
valid separating sequence leads to (ar′ , iar′). This
pair makes it possible to separate subsets T (y, st).

The pair (ar′ , iar′) does not permit separation of in-
dividual states of the subsets T (y, st). Therefore,
additional pairs zj = (lca(I(y, st)), V (y, st)) for j =
1, . . . , k can be constructed where

I(y, st) = {si | (si, sc) ∈ V ∧ sc ∈ T (y, st)} and

V (y, st) = {(si, si) | si ∈ I(y, st)}.

Following the same process for these pairs, it is possi-
ble to construct pairs of (azj , iazj ) for each of z1 . . . zk.
A pair of

(ar′ , iar′ ∪ {az1 , az2 , . . . , azk} ∪
⋃

j=1...k

iazj )

separates all the initial states in V .

Algorithm 8: initTransOnValidInputs(r)

1 (bestr.input, bestr.next, bestr.score) ← (null, null,∞)
2 foreach valid transferring input x of r do
3 rx ← getSeparatingNode(δ(r.states, x))
4 if rx ∈ dependent then
5 add (r, x) to transitionsTo[rx]
6 else if separating sequences of rx and bestr.next

are not valid and |r.states| < |rx.states| then
7 rx ← a (stored or new) node with states

equal to δ(r.states, x)
8 if rx is not analysed or

rx.separatingSequence is not set then
9 if rx is not analysed then

10 analyse(rx)
11 if rx.separatingSequence is assigned

then
12 bestr ← (x, rx, score(r, x, rx))

13 push rx into dependent if it is not there
14 add (r, x) to transitionsTo[rx]

15 else if score(r, x, rx) < bestr.score then
16 bestr ← (x, rx, score(r, x, rx))

17 else if score(r, x, rx) < bestr.score then
18 bestr ← (x, rx, score(r, x, rx))

19 store bestr
20 if bestr.next has a valid separating sequence then
21 push r in association with bestr.score into

dependentPriorityQueue

7.4. State splitting functions of ST-IADS algorithm

Algorithm 8 describes the function initTransOnVa-
lidInputs that initializes bestr of the given node r and
links from r on each valid transferring input x. In the case
of the ST-ADS algorithm, this function chooses the best
valid transferring input of type b) and stores the links on
valid inputs of type c), see Section 5.3 for input validity
types. A valid input x of type b) means that the next
states δ(r.states, x) are covered by more than one block of
the current partition. Therefore, there is a node rx with
the sequence that separates the next states. The best in-
put out of those of type b) should lead to a node with
the shortest separating sequence. This is exactly what is
done on lines 17–18 of Algorithm 8 as the function score
(Algorithm 11) returns the length of separating sequence
of rx if it is valid. A valid input x of type c) transfers the
states of r into another block of the current partition. It
means that the node rx representing such a block of states
is a leaf in dependent because a valid input does not merge
states, that is, |r.states| = |δ(r.states, x)|, and the leaves
are processed in the order of the size of states. There-
fore, a link from r to rx on x is stored in transitionsTo
(lines 4–5) so that r can be separated based on rx when
a separating sequence is found for rx. The node rx that
includes all next states is located in the ST as the low-
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est common ancestor of the leaves corresponding to the
next states; the function getSeparatingNode is defined
in Algorithm 2. In the case of the ST-IADS algorithm,
rx can have an invalid separating sequence. Lines 6–16 of
Algorithm 8 optimize the choice of invalid separating se-
quence starting with a valid transferring input x of type b).
If rx has an invalid separating sequence and more states
than r, then there could be a better separating sequence
for the next states δ(r.states, x). Therefore, an auxiliary
node including just these states is created and analysed (if
it was not). Note that once an rx with a valid separating
sequence is observed, the condition on line 6 is false and
thus no other auxiliary nodes are created. Auxiliary nodes
created for the previous inputs are already analysed and
stored but do not have a separating sequence assigned un-
less they were processed during the search for a separating
sequence of another node; the condition on line 8 allows
such auxiliary nodes to be used again. If the condition on
line 8 is satisfied, then the auxiliary node is added to de-
pendent and a link to it from r is stored to transitionsTo.
Analysed auxiliary nodes with a separating sequence are
like the internal nodes of ST, therefore, the score for them
is calculated and compared against the best score (lines
15–16). If one does not want to optimize the choice of in-
valid separating sequences, hence the number of sequences
in HSIs can be larger, then lines 6–16 can be omitted.
Note that the score function favours valid sequences so
bestr.next gets the node with the shortest valid separat-
ing sequence if there is one. Finally, if a node rx with a
valid separating sequence is found, then r is sorted into
dependentPriorityQueue according to the score calculated
for the best such rx.

Algorithm 9: processDependent()

1 while dependentPriorityQueue is not empty do
2 pop r from dependentPriorityQueue with the

lowest score
3 if r is not separated then
4 r.separatingSequence ← bestr.input ·

bestr.next.separatingSequence
5 sepByCreatingSuccessors(r)
6 foreach (p, x) ∈ transitionsTo[r] do
7 if p is not separated and

score(p, x, r) < bestp.score then
8 bestp ← (x, r, score(p, x, r))
9 push p with bestp.score into

dependentPriorityQueue

10 pop r from dependent

Nodes in dependent are processed using processDe-
pendent described in Algorithm 9 after their links were
initialized either by initTransOnValidInputs or by init-
TransOnInvalidInputs. Besides the links, both func-
tions fill dependentPriorityQueue with nodes r for which

the separating sequence can be constructed based on the
chosen bestr’s. Algorithm 9 goes through all nodes r in
dependentPriorityQueue that is sorted according to the
scores given by bestr’s. If r is not yet separated, its separat-
ing sequence is set to the one of the bestr.next prepended
by x leading to bestr.next from r. The r is then removed
from dependent. As r is now separated, it can help other
nodes in dependent that lead to it. Therefore, all links
(p, x) in transitionsTo leading to r are checked (lines 6–
9 of Algorithm 9). If a predecessor p is better separated
based on r, it is pushed to dependentPriorityQueue with
its new score(p, x, r).

Algorithm 10: initTransOnInvalidInputs(r)

1 foreach invalid separating input x of r do
2 if score(r, x,null) < bestr.score then
3 bestr ← (x,null, score(r, x,null))

4 foreach invalid transferring input x of r such that
|δ(r.states, x)| > 1 do

5 rx ← getSeparatingNode(δ(r.states, x))
6 if rx.separatingSequence is not assigned or not

valid then
7 rx ← a (stored or new) node with states

equal to δ(r.states, x)
8 if rx is not analysed then
9 analyse(rx)

10 push rx into dependent if it is not there
11 add (r, x) to transitionsTo[rx]

12 if rx.separatingSequence is assigned then
13 if score(r, x, rx) < bestr.score then
14 bestr ← (x, rx, score(r, x, rx))

15 push r with bestr.score into dependentPriorityQueue

Algorithm 10 checks all invalid inputs after all valid
transferring inputs are checked by initTransOnValid-
Inputs and no valid separating sequence was observed for
the given node r. At first, all invalid separating inputs are
checked if any of them can improve the best separating
score initialized in initTransOnValidInputs. Then all
invalid transferring inputs x that do not merge all states
are processed in a similar way as the valid ones were in Al-
gorithm 8. If the lowest common ancestor rx of the leaves
corresponding to the next states δ(r.states, x) was not pro-
cessed or has an invalid separating sequence, an auxiliary
node relating only to the next states is considered as rx
instead. It is analysed if it was not, and pushed into depen-
dent as its separating sequence may be needed to obtain
the best invalid sequence for r. The link from r to rx is
stored as well. If rx already has a separating sequence, it is
checked whether rx is a better basis for the best separating
sequence of r and so whether bestr.score can be improved.
Finally, r is pushed into dependentPriorityQueue with the
best score encountered so far. Note that r can be added to
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dependentPriorityQueue with a better score later in pro-
cessDependent after one of its rx’s that is not separated
gets a separating sequence.

Algorithm 11: score(r, x, rx)

1 w ← x · rx.separatingSequence if rx is not null else x
2 if w is a valid separating sequence of r.states then
3 return |w|

4 (a, b, c, d, e, nr)← (0, 0, 0, 0, |w|, |r.states|)
5 foreach response z ∈ λ∗(r.states, w) do
6 S′ ← {s ∈ r.states | λ∗(s, w) = z} // states of

successor

7 if |S′| = |δ∗(S′, w)| then // w valid for S′

8 b← b+ 1 // number of valid successors

9 else
10 a← a+ |S′| // number of states in

invalid successors

11 d← d+ |S′| − |δ∗(S′, w)|
// undistinguished states

12 c← c+ 1 // number of successors

13 return (((a · nr − b) · nr − c) · nr + d) · nr + e

7.5. Scoring of inputs

The last part of the ST-IADS algorithm is the scoring
function in Algorithm 11. The function score(r, x, rx)
analyses how the states of r would be separated by the
sequence w = x · rx.separatingSequence, or only by x if the
given rx is null. If w is a valid sequence for r.states, then
the length of w is returned. Otherwise, a higher score is
returned so that valid sequences are favoured. As the ul-
timate aim is to have the smallest number of separating
sequences for a given subset of states, this scoring function
prioritises invalid sequences that are valid for the maxi-
mum total number of states in the successors for which
the sequence does not merge any two states. A successor
ri of r is valid if r.separatingSequence is valid for ri.states,
that is, |ri.states| = |δ

∗(ri.states, r.separatingSequence)|.
None that |λ∗(ri.states, r.separatingSequence)| = 1 as ri
is a successor of r. If some states of ri are merged by
r.separatingSequence, ri is an invalid successor of r. The
number of undistinguished states of an invalid successor ri
is the difference between the number of states in ri and the
number of their next states on r.separatingSequence, that
is, |ri.states| − |δ

∗(ri.states, r.separatingSequence)|. There
are five parameters a-e to compare invalid separating se-
quences. The parameters represent:

• a - the total number of states in invalid successors,

• b - the number of valid successors,

• c - the number of all successors of r,

• d - the total number of undistinguished states,

• e - the length of w.

As the score of the best sequence is the lowest, the param-
eters b and c that are signs of a good separating sequence
decrease the score and the parameters a, d and e are rather
bad signs so that they increase the score. The priority of
parameters how they influence the score is given by their
alphabetical order. The parameter a estimates for how
many states another separating sequence will be needed,
for example in the construction of HSIs. Therefore, the
higher a the less likely the sequence is chosen to be the
separating sequence of r. Parameters b and c provide a ra-
tio of the number of ‘good’ successors to their total number
and c also represents how well the states of r are divided
by w; the higher c the more state pairs are likely to be sep-
arated by w. The parameter d estimates how many states
will remain undistinguished when asked to separate a state
from the others in r.states. The parameters are connected
together by the formula on line 13 of Algorithm 11 to get
one number evaluating the invalid sequence w. The num-
ber nr of states in r is employed in the formula to order the
parameters in the resulting score by their priority. Note
that d < a ≤ nr and b < c < nr as there is always an in-
valid successor that contains at least two states. Therefore,
only e could interfere with d if e ≥ nr, but it is accept-
able as d provides just an estimate that does not have to
be precise and this interference thus penalizes sequences
that are too long. Note that the scoring function could
be implemented differently which influences the choice of
invalid separating sequences and not the correctness of the
algorithm.

7.6. Time Complexity

The time complexity of the existing ST-ADS algorithm
is O(n2p) where n = |S| and p = |X| ([9, Theorem 3.2]).
There are at most n − 1 refinements of the partition and
so the resulting ST has at most 2n−1 nodes (n leaves and
at most n − 1 inner nodes). Each node r is analysed in
O(np) as all states of r and at most all inputs are checked.
The function initTransOnValidInputs (Algorithm 8)
prepares links in O(np) and it is called at most n times as
dependent contains less than n nodes in total during the
entire construction procedure. During the preparation of
links all valid transferring inputs are checked and for each
of them the lowest common ancestor of the next states is
found by getSeparatingNode in O(n). Each node of
dependent is processed by Algorithm 9 once and it allows
one to check all links stored in transitionsTo. The total
number of links is in O(np) which is also the complexity
of processDependent in Algorithm 9. Therefore, the
ST-ADS algorithm runs in O(n2p). Moreover, all sepa-
rating sequences are of the length at most n − 1 so the
space complexity of the splitting tree is O(n2) if there is
an ADS [9]. Note that the proposed pseudocode is based
on the implementation of the ST-ADS algorithm proposed
in [7] rather than the original one from [9] as [7] simplifies
dealing with valid transferring inputs.
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Figure 5: Construction of splitting tree – analysis of the root node

The proposed extension potentially increases the time
and space complexity by a significant amount but only if
no ADS exists. In the worst case O(2n) (auxiliary) nodes
representing all subsets of states could be analysed. This
can be easily avoided by omitting lines 6–16 of Algorithm 8
and lines 6–11 of Algorithm 10 that try to find a better in-
valid separating sequences by introducing auxiliary nodes.
Without these lines, the ST-IADS algorithm still works
but may result in more sequences in HSIs built from the
resulting ST. Nevertheless, the number of created auxiliary
nodes is restricted by the transition and output functions
of the given machine so that it hardly reaches huge num-
bers. A possible improvement that could result in lower
number of separating sequences in HSIs is the use of a
scoring function on valid sequences. This would mean ad-
justing the existing ST-ADS algorithm, not just extending
it as was done by the proposed ST-IADS algorithm.

8. Running Example

The ST-IADS algorithm is described in this section
how it builds the splitting tree showed in Figure 2 for the
Mealy machine M defined in Figure 1. Examples describ-
ing just the ST-ADS algorithm can be found in [9, 7].

The algorithm starts with the root r0 of ST that con-
tains all states A–E. As M does not have state outputs,
r0 is the only node in partition (line 6 of Algorithm 5).
The root is then popped from partition and analysed. The
analysis of all three input symbols is captured in Figure 5
where the scoring function is also explained. The inputs ‘a’
and ‘b’ are separating as the states respond to them with 2
different outputs; the input ‘c’ is transferring. Notice that

states and next states in the root r0 have the colour of the
corresponding output. As all inputs merge some states,
there is no valid input for r0 and null would be returned as
a sign that M has no ADS if validOnly was true. The root
is thus added to dependent that is immediately processed
by processDependent because partition is empty and
there is no valid transferring input that could be checked
by initTransOnValidInputs. However, dependentPri-
orityQueue is empty so that processDependent exits
and r0 is still in dependent. Hence, initTransOnInva-
lidInputs is called to prepare links from r0.

initTransOnInvalidInputs first calculates score for
the invalid separating input ‘a’ such that r0 with 5 states
would have on ‘a’ 4 states in the invalid successor, 1 valid
successor out of 2 successors, 2 undistinguished states and
the separating input has the length of 1. score(r0, a, null)
is thus 2336. States A, D and B, E merge in their corre-
sponding successors on the input ‘b’, therefore, there is no
valid successor of r0 on ‘b’ and so the score 3086 is worse
than on ‘a’. The invalid transferring input ‘c’ does not
merge all states and so it is checked if it can begin a bet-
ter invalid separating sequence than ‘a’. The lowest com-
mon ancestor rx of the leaves relating to the next states
δ(r0.states, c) is the root itself and as it has no separat-
ing sequence assigned yet, an auxiliary node r′1 is created;
r′1.states = {A, C, D, E}. The analysis of r′1 for all inputs
is shown on the right of Figure 5; ‘a’ and ‘c’ are invalid
transferring for r′1 and ‘b’ is an invalid separating input.
The node r′1 is added to dependent and a link (r0, c) is
stored into transitionsTo[r′1]. As r′1 does not have a sepa-
rating sequence yet, it cannot improve the best score for r0
and so r0 with the score of 2336 relating to the invalid sep-
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Figure 6: Analysis and separating node r2 with states A,C,D

arating input ‘a’ is pushed into dependentPriorityQueue.
The next cycle of ‘foreach’ loop on line 22 of Algo-

rithm 5 chooses to initialize links from the node r′1. The
node has no valid inputs so again initTransOnInvalid-
Inputs is called. After the score of 677 is calculated for
the invalid separating input ‘b’, both transferring inputs
are processed. In both cases, auxiliary nodes are cre-
ated; r′2.states = δ(r′1.states, a) = {B,E} and r′3.states =
δ(r′1.states, c) = {A,D,E}. A valid separating input ‘a’ is
found for the auxiliary node r′2 during the analysis of in-
puts, hence, the analysis is not finished. score(r′1, a, r

′
2)

can be thus calculated. Nevertheless, the value 1002 does
not improve the best score for r′1 relating to the input ‘b’.
Fortunately, the node r′2 is then reused to calculate the
score for the auxiliary node r′3 on the invalid transferring
input ‘a’. The score of 122 is worse than the best one set
by the invalid separating input ‘b’; the scores differ only
by 1 because of the length of separating sequence ‘aa’.
The states of node r′3 are transferred to themselves on the
input ‘c’ which means that ‘c’ cannot start the shortest
separating sequence of a good score; such nodes can be
thrown away already during the analysis of inputs. After
r′3 is processed by initTransOnInvalidInputs, depen-
dentPriorityQueue is filled up with r′3 (score 121), r′1 (677)
and r0 (2336). processDependent pops r′3 first and sets
‘b’ as its separating sequence. Then, it tries to improve the
best of r′1 but score(r′1, c, r

′
3) = 682 is not better. The

same happens to r′1 that is popped from dependentPrior-
ityQueue next. It gets ‘b’ as the separating sequence and
score(r0, c, r

′
1) = 2337 does not improve the best so that

r0 is separated with ‘a’. Analyses of inputs for r′2 and r′3
and the calculation of scores are shown in Figure 5. Notice
that the separating sequence ‘cb’ has the score worse than
the selected separating input ‘a’ just because of its length.

Separating the root r0 with ‘a’ results in two new leaves
and the update of partition and ST.separatingNodes. One

leaf represents state B and so it will not be further pro-
cessed. The second leaf r1 represents the other states.
ST.separatingNodes is thus updated to point to r0 for all
state pairs associated with state B. Both leaves form the
current partition but r1 is popped from partition immedi-
ately when the second cycle of the main loop starts (line
8 of Algorithm 5). Fortunately, r1 is the same as the aux-
iliary node r′1 so that it is directly separated with ‘b’ that
was analysed as the separating sequence of r′1. Note that
r′1 with its successors just replaces r1 in the ST in the
implementation.

The current partition is updated to contain two sin-
gletons representing states B and E, and the leaf r2 that
includes states A, C, D. The splitting tree in the current
form is shown on the left of Figure 6. The node r2 is
popped from partition and analysed as it is not stored
amongst the auxiliary nodes. It has no valid separating
sequence which leads to r2 being added to dependent and
the algorithm tries to find its separating sequence right af-
ter that as there is no other leaf with the same number of
states in partition. This time there is a valid transferring
input and a separating sequence is assigned to the node to
which the input leads. Thus, bestr for r2 is initialized in
initTransOnValidInputs with the input ‘c’ leading to
r′3 and the score of 122. Note that r1 as the lowest com-
mon ancestor of the leaves containing states A, C, E is
considered first instead of r′3 but as r1 also contains state
D and its sequence ‘b’ is invalid, r′3 is chosen. As the sep-
arating sequence ‘b’ of r′3 is invalid, r2 is not pushed into
dependentPriorityQueue and so the first call of process-
Dependent does not change anything. All the shortest
invalid separating sequences for r2 need to be compared
to choose the one that separates it. The auxiliary nodes
created during the search for the best invalid sequence are
shown in Figure 6. In the case of r′5 relating to states A and
D, the inputs ‘a’ and ‘b’ are not visualized as they merge

19



the states so that they cannot begin a separating sequence.
The node r′6 has a valid separating input ‘b’ so that only
this input is used and shown. After all the needed auxil-
iary nodes are created, analysed and connected by links,
the nodes of dependent are processed by Algorithm 9 as
sketched at the bottom of Figure 6. The implementation
checks all inputs in one pass so that alphabetically lower
inputs with the minimal score are favoured. Six auxiliary
nodes were created and two of them were later reused. As
n = 5 and the total number of explored nodes is 9+4 = 13,
the space complexity seems to be closer to Θ(n2) than in
Θ(2n).

9. Experiments

Our new extension was used to construct harmonized
state identifiers from the splitting tree and then these HSIs
was used in the HSI- and SPY- methods to show the im-
provement. Altogether 8 testing methods were compared
on randomly-generated machines. The results of experi-
ments are described in this section. Our implementation of
each method used for experimental evaluation is described
in [15] and available in FSMlib v3.11.

The FSMlib contains a generator of random DFSM
models. The DFSM generator first assigns the target state
to each transition randomly and then changes some of the
transitions such that each state is reachable from the ini-
tial state. The outputs are also assigned randomly but
such that each output symbol is captured at least once
in the machine. If the generated machine is not mini-
mal, it is thrown away and another machine is generated.
This process is repeated until the given number of minimal
completely-specified machines with the given numbers of
states, inputs and outputs is obtained. The experiments
consist of 1700 DFSMs, 1700 Mealy machines and 1700
Moore machines with 5 inputs and 5 outputs. There are
17 groups of 100 machines with different number of states
for all three machine types. The number of states of these
17 ‘state groups’ are: multiples of 10 ranging from 10 to
100 (10 groups) and 150, 200, 300, 400, 600, 800 and 1000.

Each of the 8 testing methods constructs 3 so-called m-
complete test suites (m = l+n) for each of 5100 machines
depending on the given number l of extra states that is 0,
1 or 2. All machines and the results are available in the
repository FSMmodels v1.12. As mentioned in Section 2.3,
the idea of the m-complete test suite is to make it possible
to find any fault in an implementation with up to m-states
and where the expected number of states in an implemen-
tation is potentially greater than that in a specification
l > 0, the size of a test suite may increases exponentially.

The exploration efficiency is a new objective developed
by the authors of this paper. It is calculated as the number
of edges in the testing tree of T divided by the total length

1https://github.com/Soucha/FSMlib/releases/tag/v3.1
2https://github.com/Soucha/FSMmodels/releases/tag/v1.1

of tests in T . As it is based on the testing tree, it permits
one to evaluate how much of the implementation will be
explored by tests, even in the implementation with much
more states than the specification. Moreover, it captures
how many prefixes of tests are overlapping with other tests,
for example, fixed access sequences are covered by several
tests. The exploration efficiency is thus higher (and better)
if a testing method constructs longer sequences that do not
significantly overlap.

Figure 7 shows the results for Moore machines and 0
extra states. It compares the testing methods on 4 objec-
tives: the total number of inputs in the constructed test
suite T , the number of tests in T , the exploration effi-
ciency and the time spent by the construction of T . Each
of 4 graphs show the first and third quartiles calculated for
each state group of 100 machines, and boxplots with min-
imum and maximum values as whiskers for the machines
with 1000 states.

The performance of the HSI- and SPY- methods is well
improved using the HSIs constructed from ST-IADS in-
stead of the HSIs formed of the shortest separating se-
quences of all state pairs. This can be seen in Figure 7 as
the testing methods using ST-based HSIs (labelled ‘HSI/ST’
and ‘SPY/ST’) produce the smallest test suites (2-3 times
fewer sequences) and outperform even the most advanced
methods, the H- and SPYH- methods. The construction
of the splitting tree increases time but it is still less than
in the case of the W- and Wp- methods that try to min-
imize the characterizing set before its use. Moreover, the
growth of the construction time with respect to the num-
ber of states is does not correspond to the worst-case time
complexity derived at the end of Section 7: it takes 0.2 sec
for 600 states and 0.6 sec for 1000 states.

Figure 7 captures just one setting out of 9 possible (3
machine types and 3 different numbers of extra states).
The results of other settings capture the same trends that
the HSI/ST and SPY/ST are better or comparable with
the most advanced methods, the H-, SPY- and SPYH-
methods. Therefore, the improvement by the proposed
ST-IADS algorithm is confirmed on randomly-generated
machines.

10. Conclusion

This paper describes the new ST-IADS algorithm that
allows one to construct a splitting tree for any determin-
istic finite-state machine. With this tree, separating se-
quences for any subset of states, incomplete adaptive dis-
tinguishing sequences and harmonized state identifiers (HSI)
can be easily derived from them. If the machine has an
adaptive distinguishing sequence (ADS), the algorithm will
return it. In the absence of an ADS, a number of incom-
plete adaptive distinguishing sequences (IADSs) are pro-
duced so that state identification would require resetting
a system under test as few times as possible. When used
for the purpose of HSI construction, the sequences from
a splitting tree lead to the smallest number of sequences
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Figure 7: Construction of test suites T for Moore machines with 5 inputs, 5 outputs and no extra states: first and third quartiles calculated
for 100 machines per each state group; boxplots with whiskers from minimum to maximum for machines with 1000 states are shown on the
right of each graph

in HSIs as opposed to HSIs of numerous short separat-
ing sequences; this choice permits testing with as few re-
sets as possible and therefore test suites are significantly
smaller: in the experiments conducted by the authors on
5100 randomly-generated machines the improvement was
2-3 times for testing methods using the splitting tree.

The computational effort to construct a splitting tree
with these properties is significant in the theoretical worst
case. In the experiments nothing even remotely close to
a worst case was encountered: an automaton with 1000
states could be handled in around half a second.

Future work involves optimisation of test sequence gen-
eration for automata without reset, where reset has to be
approximated with exponentially long test sequences that
are guaranteed to re-enter a state of interst. In this con-

text, although the reduction of the number of sequences
in a test suite using IADSs would make a major improve-
ment, one might be get even better results by integrat-
ing state verification and testing such as by extending the
SPYH-Method [14] developed by the authors.
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