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a b s t r a c t

Recent efforts have demonstrated the ability of computational models to predict fractional flow reserve

from coronary artery imaging without the need for invasive instrumentation. However, these models

include only larger coronary arteries as smaller side branches cannot be resolved and are therefore

neglected. The goal of this study was to evaluate the impact of neglecting the flow to these side branches

when computing angiography-derived fractional flow reserve (vFFR) and indices of volumetric coronary

artery blood flow. To compensate for the flow to side branches, a leakage function based upon vessel

taper (Murray’s Law) was added to a previously developed computational model of coronary blood flow.

The augmented model with a leakage function (1Dleaky) and the original model (1D) were then applied to

predict FFR as well as inlet and outlet flow in 146 arteries from 80 patients who underwent invasive coro-

nary angiography and FFR measurement. The results show that the leakage function did not significantly

change the vFFR but did significantly impact the estimated volumetric flow rate and predicted coronary

flow reserve. As both procedures achieved similar predictive accuracy of vFFR despite large differences in

coronary blood flow, these results suggest careful consideration of the application of this index for quan-

titatively assessing flow.

� 2020 The Authors. Published by Elsevier Ltd. This is an open access article under theCCBY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

Fractional flow reserve (FFR) is the gold standard method to

evaluate the physiological significance of epicardial coronary

artery disease (CAD) (Neumann et al., 2018). Yet, clinical uptake

is poor due to availability, time constraints, and the invasive nature

of the procedure (Dehmer et al., 2012). Several groups have evalu-

ated computational fluid dynamics (CFD) methods to compute FFR

and achieved relatively high diagnostic accuracy (FFR � or > 0.80)

(Gosling et al., 2019; Koo et al., 2011; Min et al., 2012; Morris et al.,

2013; Nakazato et al., 2013; Papafaklis et al., 2014; Tu et al., 2014;

Norgaard et al., 2014). Quantitative accuracy, however, remains

limited (Morris et al., 2015, 2020). Accuracy is limited by various

anatomical and physiological assumptions made to enable compu-

tational modelling (Eck et al., 2016; Fossan et al., 2018; Morris

et al., 2017; Sankaran et al., 2016; Sturdy et al., 2019). When con-

structing a geometric model of the coronary arteries, assumptions

must be made about which branches and outlets should be repre-

sented explicitly. Prior work often assumes the flow to side

branches is non-influential and models the artery of interest as a

single lumen (Morris et al., 2013). To a degree, all approaches

neglect some side branches due to limitations in medical imaging,

even if some approaches model all the larger side-branches seen in

the medical images (Blanco et al., 2018; Fossan et al., 2018; Koo

et al., 2011). Tu et al. (2016) implicitly accounted for flow to side

branches by assuming constant flow velocity; however, no
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comparison was made to evaluate the impact of this assumption.

This study seeks to quantify the effect of neglecting side branch

flowwhen predicting FFR and other indices of coronary physiology.

Whilst geometric modelling of side-branches is impractical, it is

possible to compensate for the flow to neglected branches by

means of a leakage function, which quantifies the flow leaving

the main vessel along its length. An estimate of the flow to these

branches may be derived fromMurray’s law, which relates changes

in vessel calibre (taper) to blood flow and shear stress (Murray,

1926). This study augmented a model for FFR prediction (Fossan

et al., 2018) with a leakage function and applied both models to

predict FFR and volumetric flow in 146 arteries from patients with

CAD.

2. Methods

2.1. Study population

Data were collected prospectively from patients with stable

coronary artery disease undergoing invasive coronary angiogra-

phy. Patients were excluded if they had presented acutely within

the previous 60 days, had previous coronary artery bypass graft

surgery or chronic total occlusions, or were unable to provide

consent.

2.2. Procedural protocol

Patients underwent invasive coronary angiography using stan-

dard techniques. All arteries with disease affecting >50% diameter

were assessed with a pressure wire (Philips/ Volcano Primewire or

PressureWireTM X guidewire, St Jude/Abbott). FFR was measured in

diseased vessels during maximal stable hyperaemia (Sciola et al.,

2018) induced by intravenous infusion of adenosine (140 lg/kg/
min).

2.3. Vessel segmentation and reconstruction

3D vessel anatomy was reconstructed with outlet correspond-

ing to the location where distal pressure was measured from two

2D angiographic acquisitions and the segments of interest were

extracted as a single lumen model via purpose built software.

2.4. 1D model

Radius data were sampled with a spacing of 0.1 mm along the

centreline of the reconstructed vessel to produce a 1D axisymmet-

ric model of each vessel (see Fig. 1). Volumetric flow and virtual

FFR (vFFR) were computed with a 1D model (Fossan et al., 2018)

derived from the Navier-Stokes equations under assumptions of

axial-symmetry and steady, laminar flow, which closely approxi-

mate full 3D simulations of blood flow (Alastruey et al., 2016;

Blanco et al., 2018; Boileau et al., 2015; Fossan et al., 2018).

For this model the pressure difference between two points xi
and xiþ1 on the centreline of the artery is

Pi � Piþ1 ¼ q
1

2

Q iþ1

Aiþ1

� �2

� q
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where P is pressure, Q volumetric flow, and A cross sectional area.

The parameter f is related the assumption that the velocity profile

in the vessel is
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where R is the radial coordinate. Fossan et al. (2018) found

thatf ¼ 4:31 gives good agreement with 3D CFD in coronary arter-

ies. The values of viscosity and blood density were l ¼ 3:5e� 3

Pa s and q ¼ 1050 kg/m3.

Abrupt changes in geometry at stenoses invalidate the assump-

tions of this model, thus the pressure drop across a stenosis is

modelled by an experimentally derived pressure loss term:

DP ¼ Kvl
A0D0

Q þ K tq

2A2
0

A0

As

� 1

� �2

Q Qj j; ð1:3Þ

where A0 and As refer to the cross-sectional areas of the normal and

stenotic segments, respectively. Similarly, D0 and Ds represent the

normal and stenotic diameters and Ls the length of the stenosis.

Kv and Kt are empirical coefficients, with Kv ¼ 32 0:83Lsþð
1:64DsÞ � A0=Asð Þ2=D0 and Kt ¼ 1:52 (Liang et al., 2011).

To determine exactly where the stenosis model should be

applied, a stenosis detection filter was used to identify stenotic

regions based on an estimated ‘‘healthy” radius of the vessel as

described previously (Fossan et al., 2018). The stenosis model is

applied when the degree of vessel narrowing exceeds a threshold.

2.5. Leakage model

Because the reconstructed anatomy neglects side branches, the

assumption that inflow equals outflow (Q in ¼ Q out) in the main

vessel is invalid. To extend the 1D model, the flow Q in (1.1) is var-

ied along the centreline to account for flow to branches which are

not explicitly represented. The relative proportion of flow to side

branches is predicted according to Murray’s law, which posits that

the radii (r) of blood vessels are adapted to achieve an equipoise

between flow (Q) and energy expenditure (Murray, 1926)

Q / rc ð1:4Þ

where the exponent c depends upon the energetic costs. Experi-

mental and theoretical considerations require that 2.33 � c � 3.

The value c = 2.4 was used as a preliminary analysis indicated that

altering the value of c did not significantly change the results (see

supplemental Table 1).

Murray’s law implies that tapering of an arterial segment corre-

sponds to the amount of flow to branches, and thus the flow to

such arteries may be estimated from Eq. (1.4), which implies that

the ratio of flow at the inlet and outlet of the segment is:

Q 0ð Þ
Q Lð Þ ¼

r 0ð Þ
r Lð Þ

� �c

ð1:5Þ

where (0) indicates the inlet and (L) the outlet of the vessel. Fur-

thermore, if the branches are assumed to be uniformly distributed

along the length of the segment, the flow can be determined at

any position (x) along the segment:

Q xð Þ ¼ r 0ð Þ � r 0ð Þ�r Lð Þ
L

x

r 0ð Þ

" #c

Q 0ð Þ: ð1:6Þ

To formulate the 1Dleaky model, (1.6) is substituted into (1.1)

accounting for flow to side branches inferred from the geometric

taper of the vessel and Murray’s law:

Pi � Piþ1 ¼ q
1

2

Q xiþ1ð Þ
Aiþ1

� �2

� q
1

2

Q xið Þ
Ai

� �2

þ
Z l

0

Q xð Þ2 fþ 2ð Þpl
A2

dx

ð1:7Þ

In practice the radius r(x) observed from the angiogram may be

diseased and thus deviate from Murray’s law, hence an estimate of

the healthy radius is used in (1.6) to determine the flow to side

branches. This estimate of the healthy radius is identical to that

used in the stenosis detection filter. Further, in some cases -even

with this smoothing- the inlet radius is larger than the outlet

radius. For these cases, no flow is distributed to side branches as
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(1.6) would suggest an unphysiological mass influx from side

branches. Thus if r(L) > r(0) the 1Dleaky model is identical to the

1D model.

2.6. Boundary conditions and analysis protocol

Fig. 1 illustrates the computational analysis of both 1D and

1Dleaky models. For each model one simulation is performed to

compare the volumetric hyperaemic flow and associated indices

and another is performed to quantify vFFR’s accuracy. First, mea-

sured inlet and outlet pressures are imposed to determine each

model’s predicted volumetric flow. Second, to predict vFFR, mea-

sured inlet pressure is applied while a generic distal resistance is

applied at the outlet.

(i) Pressure matching computation of volumetric flow

To compute the volumetric flow, the invasively measured prox-

imal (Pa) and distal (Pd) pressures were applied at the inlet and

outlet respectively. The corresponding volumetric flow (Q) was

then determined computationally (See Fig. 1), and used to calculate

coronary microvascular resistance (CMVR) and stenotic segment

resistance (SR):

CMVR ¼ Pd

Q out

ð1:8Þ

SR ¼ Pa-Pd

1=2 Q in þ Q out

� �

(ii) Minimally invasive prediction of vFFR

vFFR offers a less-invasive alternative to FFR and avoids passage

of a pressure wire. The proximal boundary is set to match the

patient-specific mean proximal (aortic) pressure (Pa). This is easily

measured during any catheterization procedure (diagnostic or PCI).

The distal boundary represents the distal CMVR, which is unknown

and thus more challenging. In this study a model-specific resis-

tance (Rmodel) is applied as the distal boundary condition such that

Pout ¼ RmodelQ out (see Fig. 1). The value of Rmodelis the average of all

CMVR values calculated from the volumetric flow in setting (i)

for the given model (1D = 1.23e+10 Pa/m3 s�1 and 1Dleaky = 2.42e

+10 Pa/m3 s�1). vFFR is calculated from the outlet pressure (Pout)

computed for the given aortic pressure (Pa) and resistance (Rmodel):

vFFR ¼ Pout

Pa

: ð1:9Þ

2.7. Computation of baseline flow and coronary flow reserve

The focus of this study was computation of hyperaemic flow

and prediction of FFR; however, the flow under resting conditions

is also of interest, and the ratio of flow between resting and max-

imal hyperaemic conditions defines the coronary flow reserve

(CFR), the extent to which coronary flow may be increased to meet

physiological demands.

To compute baseline volumetric flow for each model, the mea-

sured inlet and outlet pressures were imposed and the flow gener-

ating a matching pressure drop was determined, in the same

manner as for the hyperaemic state. Then, combining baseline

and hyperaemic flow estimates, CFR may be predicted as

CFR ¼ Qhyp
in =Qbl

in

where Qbl
in is the flow determined from matching the baseline pres-

sures and, Qhyp
in , is the flow determined from matching the hyper-

aemic pressures.

A virtual CFR (vCFR) that could be computed from minimally

invasive measurements was computed in a similar manner to vFFR,

where a generic baseline CMVR is applied as a distal boundary con-

dition to predict baseline flow. Then ratio of flows computed using

hyperaemic CMVR and baseline CMVR may be used to compute

vCFR as

vCFR ¼ Q
� hyp

in =Q
� bl

in ð1:9

where Q
� bl

in is the flow determined by applying the measured base-

line inlet pressure and the generic baseline CMVR (1D = 2.83e+10

Pa/m3 s�1 and 1Dleaky = 5.95e+10 Pa/m3 s�1) at the outlet, and

Fig. 1. Illustration of computational workflow, The above figure illustrates the computational workflow beginning with geometric reconstruction from the angiographic

images (top) and subsequent construction of a 1D axisymmetric geometric model of each vessel (middle row). Finally, the two distinct boundary conditions applied to both

the 1D and 1Dleaky to compute (i) the volumetric flow and (ii) virtual FFR are depicted (bottom row).
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Q
� hyp

in is the flow determined by applying the measured hyperaemic

inlet pressure and generic hyperaemic CMVR at the outlet.

2.8. Statistical analysis

Data are presented as median and 25th and 75th percentiles

unless stated otherwise. Tables 4 and 5 summarize quantitative

results. Differences between models were analysed with robust

linear regression with a two-sided test for non-zero differences

using the Python library statsmodels (Seabold and Perktold,

2010) as the Shaprio-Wilk test indicated differences were not nor-

mally distributed. Differences between the bias (vFFR – FFR), abso-

lute error (|vFFR – FFR|), inflows, outflows, and resistances were

analysed identically. Diagnostic accuracy was assessed by sensitiv-

ity, specificity, positive predictive value, negative predictive value

and overall accuracy on dichotomised data (FFR > or � 0.80).

Bland-Altman analyses compared FFR and vFFR of each model

(see Fig. 2B–D).

3. Results

Tables 1–4 present the summary statistics of all quantities of

interest that are presented in the following paragraphs.

3.1. Patient and lesion characteristics

Eighty patients with angiographically confirmed coronary

artery disease were studied. Table 1 shows baseline patient and

lesion characteristics. The mean age was 65.8 ± 10.2(std. dev.)

years. 25% of patients were male, 20% had type 2 diabetes mellitus,

and 10% were current smokers. 146 arteries were studied; 84 left

anterior descending (LAD), 29 left circumflex (LCX), 31 right

coronary (RCA) and 2 intermediate arteries. Median invasively

measured FFR was 0.834(0.736–0.901) with 43 (29%) within the

range 0.75–0.85. The median length of vessels studied was

73.0 mm (59.6–95.5).

3.2. FFR computation

Median vFFR for the 1D and 1Dleaky models were 0.91(0.82–

0.95) and 0.92(0.81–0.96) respectively (see Fig. 2A for a scatter plot

of vFFR for each modes). Including leakage increased vFFR by an

average of 0.005 (95%CI 0.0, 0.01; p = 0.08).

3.3. Quantitative and diagnostic accuracy

Overall diagnostic accuracy (ability to predict FFR � or > 0.80)

was similar for both models (1D 75%; 1Dleaky 72%) as were other

Fig. 2. Comparison of FFR and vFFR, A scatter plot (A) of vFFR vs FFR for all cases. The markers indicate the anatomical branch of the case, and the black line represents

where vFFR equals FFR. Dashed lines indicate the clinical cut-off value of 0.8 for determining the significance of CAD. The correlation coefficient between 1D vFFR and FFR was

0.65, between 1Dleaky vFFR and FFR was 0.65, and between 1D and 1Dleaky vFFR was 0.93. Bland-Altman plots for 1D model (B) and 1Dleaky model (C) and between models

(D). Limits of agreements are �0.22–0.31, �0.20–0.29 and �0.12–0.12, respectively with mean biases of �0.046, �0.047, and 0.001 respectively.

Table 1

Patient and lesion characteristics.

Patient characteristics (N = 80)

Age 65.8 (10.2)

Male 20 (25%)

Current smoker 8 (10%)

T2DM 16 (20%)

Hyperlipidaemia 59 (74%)

Previous MI 30 (38%)

Lesion characteristics (N = 146)

Average % diameter stenosis 58.6 (15.4)

SYNTAX score 11.5 (6.7)

Artery 84-LAD, 29-LCX, 31-RCA, 2-IM

Ratio of inlet diameter to outlet 0.65 ± 0.220.62 ± 0.17 in

LAD vs 0.69 ± 0.27 otherwise

Artery length 77.7 ± 27.1 mm78.3 ± 24.5 in

LAD vs 76.7 ± 30.5 otherwise

Invasive FFR 0.80 (±0.14), 43 in the range 0.75–0.85
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diagnostic and quantitative metrics (see Table 2). Mean

bias of vFFR was similar between 1D and 1Dleaky models

(0.06(0.00–0.10) vs 0.07(0.00–0.11), p = 0.08). The 1Dleaky model

had greater absolute error than the 1D model (0.08(0.04–0.13) vs

0.08(0.04–0.14), p = 0.02). Fig. 2B–D shows Bland-Altman plots

for each model.

3.4. Hyperaemic flow computation

Inflow and outflow for each model were compared (Figs. 3 and

4). The 1Dleaky model inflow was significantly higher (1.97(1.13–

3.45) mL/s or 148%(125–190%) of 1D flow, p � 0.001) and outflow

was significantly lower (0.75(0.36–1.35) mL/s or 60%(47–77%) of

Table 2

Comparison of diagnostic and uantitative accuracy of vFFR models.

Diagnostic accuracy Sensitivity Specificity PPV NPV

1D 75% 46% 95% 88% 71%

1Dleaky 72% 46% 91% 78% 70%

Mean vFFR Mean bias (FFR-vFFR) AUC Correlation Average error |FFR-vFFR|

1D 0.85(0.16) �0.05(0.13) 0.84 0.65 0.10(0.09)

1Dleaky 0.85(0.18) �0.05(0.14) 0.82 0.65 0.11(0.10)

Table 3

Summary statistics (mean, standard deviation, median, 25th percentile and 75th percentile) of FFR and vFFR related quantities for both 1D and 1Dleaky models.

mean std median 25% 75%

Invasive

FFR

All 0.803 0.138 0.834 0.736 0.901

LAD 0.795 0.118 0.818 0.740 0.877

LCX 0.863 0.146 0.901 0.832 0.965

RCA 0.757 0.164 0.798 0.644 0.879

Lengths All 77.667 27.104 72.952 59.580 95.511

LAD 78.333 24.455 72.316 62.466 93.756

LCX 64.353 19.552 66.640 54.150 74.353

RCA 91.245 32.029 95.477 74.997 105.732

vFFR 1D vFFR 0.850 0.159 0.911 0.816 0.947

1Dleaky vFFR 0.849 0.175 0.923 0.808 0.957

1Dleaky vFFR � 1D vFFR �0.001 0.063 0.007 �0.012 0.020

1D Bias 0.047 0.126 0.056 �0.003 0.103

1Dleaky Bias 0.046 0.136 0.066 �0.004 0.115

|1D vFFR - FFR| 0.099 0.090 0.079 0.040 0.133

|1Dleaky vFFR – FFR| 0.107 0.095 0.083 0.039 0.138

vFFR LAD 1D vFFR 0.867 0.137 0.913 0.846 0.944

1Dleaky vFFR 0.861 0.156 0.923 0.847 0.949

1Dleaky vFFR � 1D vFFR �0.007 0.055 0.004 �0.014 0.015

1D Bias 0.072 0.110 0.082 0.041 0.131

1Dleaky Bias 0.065 0.125 0.080 0.024 0.130

|1D vFFR - FFR| 0.108 0.075 0.094 0.053 0.141

|1Dleaky vFFR – FFR| 0.113 0.083 0.089 0.058 0.146

Table 4

Summary statistics (mean, standard deviation, median, 25th percentile and 75th percentile) of flow and resistance related quantities.

mean std median 25% 75%

Hyperaemic Flows 1D flow 1.534 1.162 1.257 0.734 2.034

1Dleaky inflow 2.523 2.126 1.974 1.134 3.452

Inflow ratio (1Dleaky:1D) 1.664 0.629 1.479 1.249 1.895

1Dleaky outflow 1.001 0.986 0.752 0.360 1.351

Outflow ratio (1Dleaky:1D) 0.620 0.212 0.601 0.468 0.769

Leaked flow 1.522 1.710 1.090 0.399 2.091

Pct flow leaked 56% 26% 63% 44% 74%

LAD Pct flow leaked 60% 23% 67% 48% 74%

LCX Pct flow leaked 56% 30% 67% 45% 80%

RCA Pct flow leaked 44% 29% 47% 24% 70%

Baseline flows and CFR 1D flow 0.826 0.658 0.638 0.305 1.235

1Dleaky inflow 1.346 1.094 1.049 0.495 1.938

1D CFR 2.236 1.277 1.922 1.543 2.592

1Dleaky CFR 2.248 1.286 1.919 1.537 2.621

1D vCFR 2.616 0.439 2.739 2.362 2.931

1Dleaky vCFR 2.753 0.492 2.907 2.417 3.095

Hyperaemic CMVR 1D 1.22E + 10 1.52E + 10 6.928E + 09 4.49E + 09 1.25E + 10

1Dleaky 2.35E + 10 3.58E + 10 1.253E + 10 7.15E + 09 2.51E + 10

1Dleaky:1D Ratio 1.859 0.894 1.664 1.301 2.135

Baseline CMVR 1D 2.82E + 10 3.32E + 10 1.735E + 10 9.19E + 09 3.49E + 10

1Dleaky 5.95E + 10 9.34E + 10 2.974E + 10 1.59E + 10 7.12E + 10

1Dleaky:1D Ratio 1.927 0.704 1.799 1.414 2.316
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1D flow, p < 0.001) compared to the 1Dmodel (1.26(0.73–2.03)mL/s.

The median artery leaked 63%(44–74%) of flow (1.09(0.40–2.09)

mL/s) between inlet and outlet, and including leakage

increased inflow 0.63(0.19–1.18) mL/s and decreased outflow

0.46(0.18–0.77) mL/s.

3.5. Baseline flow and coronary flow reserve

Baseline volumetric flows were computed for 107 vessels for

which baseline pressure recordings were available and showed a

difference greater than 133.32 Pa. The baseline inflows for the

1Dleaky model (1.05(0.49–1.94) mL/s) were significantly higher

compared to the 1D model (0.64(0.31–1.24) mL/s; p < 0.001). No

significant difference in the coronary flow reserve (CFR) predicted

by matching measured pressures was found (1Dleaky 1.92(1.54–

2.62) vs 1D 1.92(1.54–2.59), p = 0.236); however, the vCFR pre-

dicted in the same manner as vFFR differed significantly (1Dleaky

2.91(2.42–3.09) vs 1D 2.74(2.36–2.93), p < 0.001) with a 95% con-

fidence interval of (0.136, 0.176) for the mean difference between

the models (see Fig. 5).

3.6. Stenotic and myocardial resistances

1D segment resistance (SR) was lower than for 1Dleaky (3.17e+

09 ± 5.9e+09 vs 1Dleaky 3.19e+09 ± 7.0e+09 Pa/m3 s�1, a ratio of

0.91, p < 0.001). 1Dleaky hyperaemic CMVR was significantly higher

(1D 6.93e+09(4.49e+09–1.25e+10) vs 1Dleaky 1.25e+10(7.15e+09–

2.51e+10) Pa/m3s�1 a ratio of 1.86 of 1D, p � 0.001).

4. Discussion

We analysed the importance of accounting for flow to coronary

arterial side branches upon computed FFR and measures of flow in

the main vessel. We implemented a computational model in which

a leakage function mimicked the flow to branches. Accuracy of

computed FFR was unaffected by the presence of branches,

whereas inlet volumetric flow increased and was more similar to

hyperaemic values (see Table 5 and Xaplanteris et al. (2018)).

The still somewhat lower value of flow found for the 1Dleaky model

may be partly explained by the fact that FFR in the current popu-

lation was lower.

Thus, compensating for side-branch flow does not appear to

improve the prediction of FFR but is an important consideration

when estimating flow rate and associated indices such as predicted

CFR.

4.1. FFR computation

Several proposed methods of FFR computation achieve reason-

able diagnostic accuracy in determining whether FFR is � or > 0.80;

however, quantitative accuracy is limited. For models of vFFR the

limits of agreement are in the order of ±0.15(Morris et al., 2015).

Considering the range for intermediate vessels (0.70–0.90), this

makes interpretation of individual results difficult. All methods

neglect some side branches either explicitly or due to limited

image resolution. We hypothesised that accounting for branch flow

with the proposed leakage model could improve vFFR estimation

but found this not to be the case. Addition of a leakage function

to a 1D model increased vFFR by an average of 0.005 and did not

affect accuracy (see Fig. 2 and Table 2).

FFR depends upon inflow to the coronary vasculature, the rela-

tive resistances of all branches, and the CMVR. Direct measurement

of FFR accounts for impacts of side branches, visible or not;

whereas vFFR often ignores them or only incorporates the larger

ones. Configuration of model boundary conditions may compen-

sate for this to a degree. In our model, the inlet is defined as the

proximal aortic pressure and the outlet by a generic, model-

specific resistance value representing the CMVR and tuned to the

model, but not to the individual patient. Determination of patient

specific CMVR requires a pressure wire in the distal position. Lower

outflow in the 1Dleaky model compared with the 1D model results

in a higher average CMVR, which effectively tunes the boundary

condition to achieve similar predictive accuracy for FFR. Thus the

tuning of boundary conditions may obviate differences in pre-

dicted FFR that are expected if models predict flows quite different

from the unknown physical flow. Moreover, as FFR depends upon

the relative pressures, as a proxy for relative flow, the value of pre-

dicted FFR can be identical for models with different volumetric

flows.

Our finding that vFFR is unaffected by branch flow contrasts

with previous studies(Li et al., 2015; Sturdy et al., 2019; Vardhan

et al., 2019). Li et al. (2015) compared haemodynamic indices pre-

dicted by single lumen models and full tree models derived from

fusion of optical coherence tomography and 3D coronary angiogra-

phy and found that Pd/Pa increased by an average of 0.06

Table 5

Comparison of model predicted hyperaemic inflows QHyp with flows measured by Xaplanteris et al. (Xaplanteris et al., 2018) via thermodilution. (All values in mL/s).

LAD LCX RCA

1D 1Dleaky Thermo. 1D 1Dleaky Thermo. 1D 1Dleaky Thermo.

25th percentile 0.89 1.50 2.52 0.51 0.87 2.00 0.49 0.63 1.97

Median 1.59 2.41 3.15 1.07 1.76 2.47 0.88 1.24 2.77

75th percentile 2.24 3.80 3.87 1.60 2.97 3.27 1.53 2.03 3.50

Fig. 3. Comparison of estimated hyperaemic flows between the models,

Computed hyperaemic flow values are compared for each case studied. The 1D

flow values are shown on the x axis and the 1Dleaky values on the y axis. The blue

markers represent the 1Dleaky inflow and the orange markers represent the 1Dleaky

outflow. The marker shape indicates the anatomical location of each case. The solid

line represents the expected flow if both approaches agree. (For interpretation of

the references to colour in this figure legend, the reader is referred to the web

version of this article.)
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Fig. 4. Computed hyperaemic flows for bothmodels, The overall distribution of hyperaemic inflow and outflow is shown for each model, with estimated probability density

shown as a line. The first panel (All) shows the distribution over all studied arteries, while subsequent panels display the distribution of arteries of specific branch type (LAD,

RCA or LCX). In the conventional 1D model inflow and outflow are identical.

Fig. 5. Comparison of CFR, vCFR, FFR and baseline pressures, CFR derived from invasive pressures (A) and vCFR based on average CMVR (B) plotted against measured FFR.

The dashed lines represent the clinical cut off points; FFR = 0.80 and CFR = 2.0. (C) The 1Dleaky CFR (blue) or vCFR (orange) plotted against 1D CFR or vCFR. (D) Predicted CFR

plotted against the measured pressure difference (Pa-Pd) at baseline conditions suggests the sensitivity of CFR estimates to variations of pressure when Pa-Pd is small. (For

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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(p � 0.001) in the full tree model. Sturdy et al. (2019) reported sig-

nificant changes in vFFR using a full tree model with branches

down to diameter of 0.1 mm compared to a model neglecting

branches with diameter < 1 mm. Vardhan et al. (2019) demonstrated

that neglecting side branches increased estimates of wall shear stres-

ses in coronary trees of 21 patients by comparing 3D CFD of geome-

tries reconstructed from biplane angiography images and including

all, some and no side branches. These previous studies all found sig-

nificant changes in pressure drops when imposing fixed inflow con-

ditions on models accounting for varying numbers of branches.

The difference between these results and the marginal change we

found in vFFR of the 1Dleaky model (0.005) is due to differences in the

imposed boundary conditions. As prior approaches imposed the

same inlet flow rate in both the single lumen (or reduced branching)

and the tree model, the single lumenmodel will have relatively more

flow through the same vessel, resulting in a smaller Pd/Pa. As the

pressure drop directly results from the flow through a given artery,

imposing a specific flow will result in elevated flow in single lumen

models relative to branched models and thus directly affect vFFR. In

contrast the pressure and resistance boundary conditions in the pre-

sent study (and their tuning for the respective modelling

approaches) allow the flow to vary to match the model geometry,

measured arterial pressure andmodel resistance. Thus, while in both

cases the pressure drop is directly linked to the flow, the present

procedure for computing vFFR may be less affected by accounting

for flow to side branches than approaches that impose flow.

The fact that the importance of including leakage terms appears

to be related to the choice of boundary conditions is relevant when

considering which modelling approach to employ for predicting

FFR. The importance of accurate boundary conditions for predic-

tion of FFR is well known. For example, significant individual vari-

ability of terminal resistances, CMVR, is known to be a primary

source of uncertainty in predicting FFR (Morris et al., 2015) (Sup-

plemental Fig. 1 shows that error in vFFR increases as the CMVR

is further from Rmodel).

4.2. Computation of flow

Whilst FFR prediction was unaffected by compensation for side-

branch flow, significant differences in computed flow rates were

observed (Figs. 3 and 4). The leakage function increased average

inlet hyperaemic flow from 1.53 mL/s to 2.52 mL/s, (65% increase)

and decreased outlet flow from 1.53 mL/s to 1.00 mL/s (35%

decrease). On average, 56% of flow leaked from inlet to outlet. This

phenomenon was highest in LAD arteries (60%) and lowest in the

RCA (44%) as hypothesized and directly resulting from the more

significant tapering of LAD arteries relative to non-LAD arteries

(see Table 1 and supplementary material); however, accuracy of

vFFR was similar for LAD and non-LAD arteries. Li et al. (2015) also

found the flow reduction to be greatest in LAD arteries and

observed a similar reduction in outlet flow (from 1.89 mL/s to

1.38 mL/s). The flows predicted by the 1Dleaky model more closely

resemble those measured by thermodilution (see Table 5 and

Xaplanteris et al., 2018). Some discrepancy between the predicted

flows and those measured by thermodilution may be explained by

the relatively lower FFR in the present population.

4.3. The difference between FFR and volumetric blood flow

In the presence of side branches, coronary inlet flow will always

exceed outlet flow. The 1Dleaky model accounts for this effect and

quantifies flow lost from the main vessel to the side branches.

However, despite significant differences in coronary flow rates,

FFR was unaffected.Why is FFR, an index of coronary flow, agnostic

to changes in flow? FFR is a surrogate index, derived from a ratio of

invasively measured pressures. FFR reports the ratio of flow in the

diseased artery relative to the hypothetical flow (an unknown

value) that would occur in the healthy artery. FFR is therefore

unable to predict volumetric flow and, given an unchanged ratio

of pressures, FFR will be similarly unchanged.

Van de Hoef et al. (2014) demonstrated discordance in FFR and

CFR results in 37% of cases. In our study, the range of computed CFR

was larger than that found by Van de Hoef et al. (0.8–8.0 vs 1.0–

5.5) which may be explained by uncertainties in the measured

pressure drops for cases where the pressure drop at baseline was

small (see Fig. 5D). The computed CFR was discordant from mea-

sured FFR in 42% of cases for both approaches (Fig. 5A). For individ-

uals with discordant results, CFR has been found to be a better

predictor of long term prognosis than FFR (Echavarria-Pinto

et al., 2013). The ability to combine a measure of volumetric flow

with FFR might add value when assessing patients with CAD.

4.4. Limitations

The accuracy of computed FFR results are affected by the accu-

racy of the reconstruction and assumptions about the boundary

conditions. The generic resistance applied at the distal boundary

when computing vFFR limits case-specific accuracy. Further, since

this resistance was calibrated using all cases, the predictive accu-

racy may be worse if this value is applied to future cases. However,

the same assumptions were made in each model, allowing accurate

between-model comparison; the primary aim of this study. The

clinical data were obtained under ideal circumstances in elective

cases; however, no invasive flow measurements were acquired

for comparison of computed flow values. Without flow measure-

ments, comparison with previous studies is complicated and indi-

vidual accuracy is unknown. A lack of information about larger side

branches prohibits direct comparison of the leakage model with

models that explicitly include side branches. The assumption that

vessel taper corresponds to flow to side branches neglects the pos-

sibility that taper may reflect the presence of concentric atheroma,

which may invalidate Murray’s law. Some 1Dleaky inflows are

unphysiologically large (e.g. 17.5 mL/s), which likely occurs when

taper does not correspond to Murray’s law. Stenoses at the inlet

of the artery and tapering due to disease may both cause the taper-

ing ratio to misrepresent the flow to side branches, an appropriate

methodology to identify abnormal taper from healthy taper would

be valuable in further investigations. Further, flow to side branches

is likely distributed non-uniformly and a leakage model accounting

for variations could be explored.

Side branch flow likely affects diffuse lesions differently than

focal lesions; however, as the data are not annotated to differenti-

ate these cases, this hypothesis was not evaluated. Further, the

heuristic stenosis detection algorithm purports to identify regions

where the 1D assumptions are violated and thus may not neces-

sary mark all diseased regions or may break the diseased region

into multiple regions. Comparison of stenotic flow between models

would require an appropriate method to define which flow should

be compared between the models. The segment resistance, defined

based on average flow, provides one point of comparison.

5. Conclusion

The accuracy of computational models of FFR depends on the

anatomical and physiological assumptions which are made during

the computational process. This study tested the assumption that

coronary physiology can be accurately predicted using computa-

tional models that neglect side-branches. The addition of a leakage

term had no significant effect on the predictive accuracy of vFFR

despite significant differences in the estimated volumetric flow

rate. The insensitivity of accuracy of predicted vFFR to differences

8 R.C. Gosling et al. / Journal of Biomechanics xxx (xxxx) xxx

Please cite this article as: R. C. Gosling, J. Sturdy, P. D. Morris et al., Effect of side branch flow upon physiological indices in coronary artery disease, Journal

of Biomechanics, https://doi.org/10.1016/j.jbiomech.2020.109698



in predicted flow may reflect the fact that FFR is a ratio whereas

absolute measures of flow will be directly affected. The increasing

adoption of computed physiological indices may require better

understanding of the significance of both relative and absolute

measures of coronary artery function.
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