

This is a repository copy of *Computational design of graphitic carbon nitride photocatalysts for water splitting*.

White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/158309/

Version: Supplemental Material

Article:

Hartley, G.O. and Martsinovich, N. orcid.org/0000-0001-9226-8175 (2021) Computational design of graphitic carbon nitride photocatalysts for water splitting. Faraday Discussions, 227. pp. 341-358. ISSN 1359-6640

https://doi.org/10.1039/c9fd00147f

© 2020 The Royal Society of Chemistry. This is an author-produced version of a paper subsequently published in Faraday Discussions. Uploaded in accordance with the publisher's self-archiving policy.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Supplementary Information for

Computational design of graphitic carbon nitride photocatalysts for water splitting

Gareth O. Hartley,^{a,b} Natalia Martsinovich ^a

^a Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, United Kingdom

^b Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, United Kingdom

Figure S1. Projected densities of states for N-, P- and B-linked graphitic carbon nitride structures. Atom types (N central, edge and linker, C bay and corner) are indicated. The zero energy is the energy of electron in vacuum.

Figure S2. Projected densities of states for triazine-, benzene- and substituted benzene-linked graphitic carbon nitride structures. The zero energy is the energy of electron in vacuum.

Figure S3. Band structure plots for N-, P- and B-linked graphitic carbon nitrides (2D and 3D AA-stacked structures). The zero energy is at the top of the valence band.

Figure S4. Band structure plots for triazine-, benzene- and substituted benzene-linked graphitic carbon nitrides (2D and 3D AA-stacked structures). The zero energy is at the top of the valence band.