
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tbep20

Biostatistics & Epidemiology

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tbep20

Intervention differential effects and regression
to the mean in studies where sample selection is
based on the initial value of the outcome variable:
an evaluation of methods illustrated in weight-
management studies

Lucy Beggs, Rebecca Briscoe, Claire Griffiths, George T. H. Ellison & Mark S.
Gilthorpe

To cite this article: Lucy Beggs, Rebecca Briscoe, Claire Griffiths, George T. H. Ellison & Mark
S. Gilthorpe (2020) Intervention differential effects and regression to the mean in studies where
sample selection is based on the initial value of the outcome variable: an evaluation of methods
illustrated in weight-management studies, Biostatistics & Epidemiology, 4:1, 172-188, DOI:
10.1080/24709360.2020.1719690

To link to this article:  https://doi.org/10.1080/24709360.2020.1719690

© 2020 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

Published online: 22 Mar 2020.

Submit your article to this journal Article views: 1108

View related articles View Crossmark data

Citing articles: 2 View citing articles 

https://www.tandfonline.com/action/journalInformation?journalCode=tbep20
https://www.tandfonline.com/loi/tbep20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/24709360.2020.1719690
https://doi.org/10.1080/24709360.2020.1719690
https://www.tandfonline.com/action/authorSubmission?journalCode=tbep20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tbep20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/24709360.2020.1719690
https://www.tandfonline.com/doi/mlt/10.1080/24709360.2020.1719690
http://crossmark.crossref.org/dialog/?doi=10.1080/24709360.2020.1719690&domain=pdf&date_stamp=2020-03-22
http://crossmark.crossref.org/dialog/?doi=10.1080/24709360.2020.1719690&domain=pdf&date_stamp=2020-03-22
https://www.tandfonline.com/doi/citedby/10.1080/24709360.2020.1719690#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/24709360.2020.1719690#tabModule


BIOSTATISTICS & EPIDEMIOLOGY
2020, VOL. 4, NO. 1, 172–188
https://doi.org/10.1080/24709360.2020.1719690

Intervention differential effects and regression to the mean in
studies where sample selection is based on the initial value of
the outcome variable: an evaluation of methods illustrated in
weight-management studies

Lucy Beggs a,b,c, Rebecca Briscoe a,b,d, Claire Griffiths a,e,
George T. H. Ellison a,b and Mark S. Gilthorpe a,b,f

aLeeds Institute for Data Analytics, University of Leeds, Leeds, United Kingdom; bSchool of Medicine,
University of Leeds, Leeds, United Kingdom; cNational Institute for Health and Care Excellence, Manchester,
United Kingdom; dLeeds Teaching Hospitals Trust, Leeds, United Kingdom; eSports Science, Leeds Becket
University, Leeds, United Kingdom; fThe Alan Turing Institute, London, United Kingdom

ABSTRACT
Background: Intervention differential effects (IDEs) occur where
changes in an outcome depend upon the initial values of that out-
come.Althoughmethods to identify IDEs arewell documented, there
remains a lack of understanding about the circumstances under
which these methods are robust. One context that has not been
explored is the identification of intervention differential effect in
studies where sample selection is based on the initial value of the
outcome being evaluated. We hypothesise that, in such settings,
established methods for detecting IDEs will struggle to discriminate
these from regression to the mean.
Methods: Using simulated datasets of weight-loss intervention pro-
grammes that recruit according to initial body mass index, we
explore the reliability of Oldham’s method and multilevel modelling
(MLM) to detect IDEs.
Results: In datasets simulated with no IDE, Oldham’s method and
MLM yield Type I error rates > 90%, confirming that threshold selec-
tion/truncation leads to bias due to regression to the mean. Type I
error rates return close to 5% for bothmethodswhen a control group
is introduced.
Conclusions: Oldham’s method and MLM can robustly detect IDEs
in this setting, but only if analyses incorporate a control group for
comparison.
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Background

In longitudinal studies, researchers may be interested in detecting the presence of inter-
vention differential effects (IDE). Intervention differential effects occur when the effect of
an intervention on an outcome depends on the initial value of that outcome. Exploring
IDEs in the analysis of change is akin to exploring the relationship between ‘baseline’ and
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‘change’; and statistical analysis of this relationship has been shown to face several chal-
lenges [1]. IDEs manifest as a change in the variance of outcome measures over time, with
either a ‘fanning out’ or ‘fanning in’ of values (Figure 1) [1]. Recognising IDEs may have
substantial clinical importance; for example, detecting the presence of IDEs may identify
groups of patients most likely to benefit from an intervention. This article focuses on the
challenges with established methods for detecting IDEs in samples that are selected based
on ‘high’ initial values of the outcome variable. Using simulated datasets, we demonstrate
that established methods do not perform robustly in these samples due to regression to
the mean. We then propose an adaption to the methods and demonstrate that this restores
their ability to identify IDEs.

Throughout the article, weight-loss studies are used as a motivating example because
(i) weight-loss programs generally recruit based on high initial values of body mass index
(BMI); and (ii) participants with a high BMI often lose more weight following an inter-
vention than those with a lower initial BMI (an example of an IDE). Although this article
focuses on weight-loss studies, our findings have relevance to all studies that explore the
presence of an IDE in samples selected on the basis of the initial value of the outcome
variable.

Currentmethods for detecting IDE

A search of the literature identified three established statistical approaches commonly used
to detect IDEs: ‘adjusting for baseline’; Oldham’s method; andmultilevel modelling.

Adjusting for baseline

‘Adjusting for baseline’ to explore the presence of an IDE involves correlating or regress-
ing change with baseline. In this seemingly intuitive approach, a significant correlation or
baseline regression coefficient is inferred to indicate both the presence and strength of an
IDE. However, Oldham [2] highlighted that change is derived from baseline; meaning that
the correlation or regression model faces mathematical coupling. Mathematical coupling

Figure 1. Simulated example of an IDE in which participants with high initial BMI have a greater
intervention effect than participants with low initial BMI, leading to a reduction in standard deviation
between measurements, manifesting as a ‘fanning-in’ of measurements over time.
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occurs where ‘one variable directly or indirectly contains the whole or part of another, and the
two variables are then analysed using correlation or regression’ (1). It distorts the null hypoth-
esis being tested, which may lead to incorrect estimates of the relationship between change
and baseline. Tu andGilthorpe [1] comprehensively outlined the problems of ‘adjusting for
baseline’ in analyses of change. However, the erroneous practice of regressing change on
baseline continues to be advocated as a robust method for detecting IDEs [3–6].

Oldham’smethod

Instead of identifying IDEs by adjusting for baseline, Oldham [2] proposed a method
in which change is correlated with the average values of baseline and follow-up mea-
surements; equivalent to a simple regression of change on average, and an approach that
Tu and Gilthorpe [1] confirmed nullifies the adverse effects of mathematical coupling.
Oldham’s method works by identifying any change in the variance of the outcome mea-
sure from baseline to follow-up, detecting the ‘fanning out’ or ‘fanning in’ ofmeasurements
that emerge from an IDE. As such, Oldham’smethod is a well-established tool for detecting
IDEs [7–9].

Multilevel modeling

Blance et al. [10] proposed that a post-intervention IDE can be estimated using a mul-
tilevel model, with time centered around zero as the principal covariate. Any non-zero
covariance between the random intercept and the random slope implies the presence of an
IDE. When only two longitudinal measures are involved (i.e. the pre-/post-intervention
measurements), the estimated correlation is the same as Oldham’s correlation. However,
an advantage of multilevel modeling is that it allows for multiple repeated measures, and
for the inclusion of additional covariates.

Hypothesis: regression to themean (RTM) affectsmethods’ ability to identify IDEs

As initially described by Galton [11], it is now well documented that longitudinal studies
which select on the basis of high initial valueswill encounter regression to themean (RTM).
RTM implies that, following an extreme randomevent, the next randomevent is likely to be
less extreme. In a sample selected on high initial value of the outcome variable, RTM leads
to a ‘fanning out’ of values over time. This is because subsequent measures are likely to be
less extreme and thus closer to the mean of the population from which they were selected
(Figure 2). Crucially, this ‘fanning out’ is unrelated to any intervention and is entirely a
consequence of selecting a sample based on a high initial value of the outcome variable.
This is illustrated in the Appendix using approximated theoretical properties for a sample
of repeated measures of BMI obtained by truncating a population of repeated BMI values
in the absence of an intervention (i.e. assuming no IDE).

We thus hypothesise that, in samples selected based on an initial threshold (i.e. the ini-
tial value of the outcome variable), because IDEs and RTM both manifest as a change
in the variance of measurements over time, identifying the presence of an IDE in sam-
ples selected on the basis of a high initial value of the outcome becomes challenging; and
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Figure 2. Simulated example of RTM, in which a sample is selected on the basis of high initial BMI. Over
time, and independent of any intervention, the standard deviation of measurements increases due to
RTM. This manifests as a ‘fanning-out’ of measurements over time.

that both Oldham’s method and multilevel modeling will be unable to discriminate a gen-
uine IDE from RTM. We use simulation methods to demonstrate this. We also reiterate
the problem of mathematical coupling when an IDE is investigated by regressing change
on baseline. Finally, we demonstrate that Oldham’s method and multilevel modeling can
robustly identify an IDE in the presence of RTM, but only if a control group is available.

Methods

Simulation

BMI data for 5,000 male adults aged 25–34 were simulated, informed by data on obesity
generated by the Health Survey for England [12]. Datasets were simulated under three
hypothetical scenarios:

(i) a ‘no intervention’ control group with a mean BMI of 26.4 kg/m2, and standard
deviation (sd) of 5 kg/m2 at baseline and at follow-up;

(ii) a ‘null IDE’ weight-loss program intervention group with a mean reduction in BMI
of 4.4 kg/m2, and no change in sd from baseline to follow-up; and,

(iii) a ‘true IDE’ weight-loss program intervention group with a mean reduction in BMI
of 4.4 kg/m2, and where participants with a high initial BMI lost more weight during
the intervention period than participants with a lower initial BMI, such that BMI
‘fanned-in’ by 1.0 kg/m2 to yield a sd of 4.0 kg/m2.

These datasets were simulated to represent the population distribution of BMIs for adult
males aged 25–34yrs. To emulate the sample recruitment process of a weight-loss program,
a ‘study weight-selection criterion’ of BMI ≥30kg/m2 (i.e. at or above the contemporary
definition of clinical obesity) was then applied to each of the three datasets, and a random
sample of 500 individuals was selected for each dataset. This produced ‘control’ (i), ‘null
IDE’ (ii) and ‘true IDE’ samples (iii) selected on the basis of a high initial value of the out-
come variable BMI (see Figure 3) – each of which can be thought of as ‘truncated’ samples
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Figure 3. Schematic of the simulated truncated datatsets for each of the 3 scenarios: (i) ‘no intervention’
control; (ii) ‘null IDE’; and (iii) ‘true IDE’.

Table 1. Average properties of the simulated population and truncated
sample datasets.

Population Study Sample

kg/m2

Baseline mean BMI 26.4 32.9
Post intervention mean BMI – null IDE 22.0 27.6
Post intervention mean BMI – true IDE 22.0 26.4
Baseline BMI standard deviation 5.0 2.4
Post intervention BMI sd – null IDE 5.0 3.3
Post intervention BMI sd – true IDE 4.0 2.7

Correlation
Baseline / follow-up BMI association 0.85 0.62

of the population distribution of BMI values. This meant we had simulated population and
truncated sample datasets for each of the 3 scenarios, resulting in a total of 6 datasets. By
selecting samples based on a high initial value of the outcome variable BMI, the effects
of RTM (which creates a ‘fanning-out’ of values) were introduced to all 3 truncated sam-
ple datasets. Additionally, in the truncated true IDE scenario (iii), the impact of the IDE
(simulated as a ‘fanning-in’) was present alongside RTM. The simulated average parameter
values for each of the population and truncated samples are summarised in Table 1. Sim-
ulations are detailed in the Appendix, together with sensitivity analyses that explored the
uncertainty surrounding the choice of parameters. All simulations were undertaken in R,
version 3.5.0 [13].

Statistical analyses

The 3 established methods used to detect an IDE were tested in both the population and
the truncated sample datasets. To adjust for baseline, change in BMI was correlated with
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Table 2. Median values and95%credible intervals (95%CrI: 2.5% to97.5%quantiles) of IDE correlations,
and the proportion of associated p-values ≤ 0.05 (i.e. the Type I error rate under the null of no IDE; or
the statistical power for a true IDE) for the analyses of population and truncated sample datasets, with
‘adjusting for baseline’, Oldham’s method and MLM applied separately to each of the ‘no intervention’
control, ‘null IDE’, and ‘true IDE’ scenarios.

Population Study Subsample

Method / Dataset
IDE Correlation

(95% CrI)
% Statistically
Significant

IDE Correlation
(95% CrI)

% Statistically
Significant

Adjusting for baseline
Control −0.27 (−0.30,−0.25) 100.0 −0.14 (−0.22,−0.05) 86.3
Null IDE −0.27 (−0.30,−0.25) 100.0 −0.14 (−0.22,−0.05) 86.2
True IDE −0.60 (−0.62,−0.59) 100.0 −0.35 (−0.42,−0.27) 100.0

Oldham’s Method
Control 0.00 (−0.03, 0.03) 5.3 0.38 (0.30, 0.46) 100.0
Null IDE 0.00 (−0.03, 0.03) 4.8 0.38 (0.30, 0.46) 100.0
True IDE −0.39 (−0.42,−0.37) 100.0 0.13 (0.03, 0.22) 77.2

MLM (separate groups)
Control 0.00 (−0.03, 0.03) 5.3 0.38 (0.30, 0.46) 100.0
Null IDE 0.00 (−0.03, 0.03) 4.8 0.38 (0.30, 0.46) 100.0
True IDE −0.39 (−0.42,−0.37) 100.0 0.13 (0.03, 0.22) 77.2

baseline BMI to yield a coefficient (and associated p-value) equivalent to the standardised
regression of change on baseline.Oldham’s method was used to derive the correlation (and
associated p-value) between change and themeanof baseline and follow-upmeasurements.
The multilevel model assigned baseline and follow-up BMI measurements to level-1, and
individuals to level-2; and centered the covariate measurement occasion (i.e. time) on its
mean, while estimating the covariance between random intercept and random slope to
derive a correlation (and associated p-value) – equivalent to Oldham’s method [10]. All
estimates of correlations and p-values were derived using restricted maximum likelihood
(REML), and were stored for each iteration.

Empirical distributions of correlation coefficients (or correlation differences) were sum-
marised using a median point estimate and 95% credible interval (95% CrI: 2.5% to 97.5%
quantiles). Associated empirical distributions of each set of p-values were used to derive
the proportions of p-values that were ≤0.05. These proportions indicate Type I error rates
for the control (i) and null IDE scenarios (ii), while revealing the statistical power to detect
the simulated ‘true’ IDE. A robust method is expected to find around 5% of iterations to be
significant in the control and null IDE scenarios; a higher proportion of Type I error rate
indicating that the method under question is not robust. All analyses were undertaken in
R, version 3.5.0 [13], with multilevel models developed in MLwiN, version 3.01 [14] from
within R using the R2MLwiN package [15].

Results

Table 2 summarises the results of all analyses undertaken on both the simulated popula-
tions and the truncated samples. These analyses estimated the IDE and associated p-values
separately for the control (i), ‘null IDE’ (ii) and ‘true IDE’ scenarios (iii).
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Population datasets

As expected, Oldham’s method and MLM yielded identical results when applied to the
population control and null IDE scenarios. This is because both methods detect IDEs
by assessing the change in standard deviation from baseline to follow-up, which in this
instance was zero in both scenarios because the control scenario (i) displayed no overall
mean change and no change in sd, while the null IDE intervention scenario (ii) displayed
a mean change in BMI but no change in sd. Adjusting for baseline also yielded identical
estimates between control and null IDE scenarios. However, these estimates were consis-
tently biased, with high Type I error rates, for the control and null IDE scenarios arising
because adjusting for baseline fails to account for mathematical coupling; and since this is
shown to be highly biased, it is not meaningful to interpret the IDE scenario or truncated
sample evaluations as indicating the presence of a genuine IDE.

Truncated sample datasets

Oldham’s method and MLM also yielded equivalent results for the control group (i) and
null IDE intervention group (ii) within the truncated sample datasets. However, in both
groups the estimated IDE was severely biased by RTM in the truncated sample dataset. In
the null IDE group, Type I error rateswere 100% for bothOldham’smethod andMLM.This
clearly demonstrates how the recruitment of a study sample according to high initial value
of the outcome (as with weight-management studies) can bias the estimated IDE for both
these methods. In the scenario simulated to have a ‘true’ IDE of −0.39, estimation within
the sampled dataset was 0.13. In this instance, the presence of RTM biased the methods
to a sufficient extent to reverse the predicted direction of effect for the IDE; instead of a
‘fanning-in’ IDE, both Oldham’s method and MLM would estimate a ‘fanning-out’ IDE.
This is due to the dominant adverse effects of RTM which overwhelm the ‘true’ IDE (the
impact of RTM working in the opposite direction to the simulated IDE).

An alternative approach

Our statistical analysis demonstrates that ‘adjusting for baseline’ is biased even in the
population samples (i.e. in the absence of RTM), and so should not be used to iden-
tify IDEs. We have also shown Oldham’s method and MLM cannot robustly identify
IDEs in truncated samples (i.e. wherever RTM is present). We now propose an alterna-
tive approach for identifying IDEs in samples selected on the basis of high initial values.
This approach is predicated upon the simple fact that IDEs occur only after an interven-
tion, and so can only genuinely occur in an intervention group; whilst RTM would be
present in both intervention and control groups of any truncated sample. We exploited
this premise to develop an approach that isolates IDEs from RTM by contrasting analyses
in an intervention group using data from a control group.

To attempt to isolate an IDE from RTM using both Oldham’s method and MLM, the
datasets from the ‘true IDE’ (iii) and ‘null IDE’ (ii) intervention scenarios were con-
trasted with the dataset from the control scenario (i). To contrast the scenario datasets
using Oldham’s method, pairwise contrasts for each method were obtained using Fisher’s
z-transformation [16] and student’s t-test to yield associated p-values for both population
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and threshold selected/truncated samples. To contrast the scenario datasets using a multi-
level model, control and intervention scenario data were combined and analysed using two
nestedmultilevel models: one where the covariance of random intercept and random slope
for each scenario was independently estimated (i.e. allowed to differ, as would be appropri-
ate were an IDE to exist), and one where this covariance was forced to be identical for both
scenarios (as would be appropriate were no IDE to exist). The correlations derived in the
first multilevel model were differenced, and the nested models were evaluated using the
likelihood ratio test (and restricted maximum likelihood method) [17] to yield a p-value.
All correlation differences and p-values were stored.

Table 3 summarises the IDEs estimated by differencing correlations obtained when con-
trasting control and intervention scenario datasets using Fisher’s z-transformation and
t-test, as well as the alternative approach of using the likelihood ratio test [17] to con-
trast nested multilevel models. Oldham’s method andMLM overcame the adverse impacts
of RTM when a control group was introduced to evaluate evidence for an IDE through
statistical testing – Type 1 error rates for all methods being in the region of 5%. Bothmeth-
ods correctly estimated IDE correlations for the population dataset. However, no method
could correctly estimate the magnitude of the IDE correlations in these samples, even
though Oldham’s method and MLM were less biased than adjusting for baseline within
the truncated sample dataset.

Fisher’s z-transformation and t-test appeared to be slightly less robust when evaluating
separate group applications of Oldham’s method or MLM (6.7% Type 1 error) compared
to the likelihood ratio test for nested models of combined group MLMs (5.2% Type 1
error). However, when this was explored with sensitivity analyses (Appendix), there was
no consistency in the small differences observed between each approach. In contrast, for

Table 3. The proportion of associated p-values ≤ 0.05 (i.e. the Type I error rate under the null of no
IDE; or the statistical power for a true IDE) for the analyses of population and truncated sample datasets,
with ‘adjusting for baseline’, Oldham’s method and two MLM approaches: (i) using separate models to
contrast correlations between control and interventiongroups using Fisher’s z-transformation and t-test;
and (ii) using combined control and intervention group models with the likelihood ratio test of nested
models for random intercept / slope covariances allowed to differ, or constrained to be equal, across
groups.

Population Study Subsample

Method / Dataset

Difference in IDE
Correlations (95%

CrI)
% Statistically
Significant

Difference in IDE
Correlations (95%

CrI)
% Statistically
Significant

Adjusting for baseline
Control vs. No IDE 0.00 (−0.04, 0.04) 4.6 0.00 (−0.12, 0.12) 5.0
Control vs. True IDE −0.33 (−0.36,−0.30) 100.0 −0.21 (−0.33,−0.09) 93.9

Oldham’s Method
Control vs. Null IDE 0.00 (−0.04, 0.04) 4.7 0.00 (−0.11, 0.11) 6.7
Control vs. True IDE −0.39 (−0.43,−0.36) 100.0 −0.26 (−0.38,−0.13) 98.8

MLM (separate groups)
Control vs. Null IDE 0.00 (−0.04, 0.04) 4.7 0.00 (−0.11, 0.11) 6.7
Control vs. True IDE −0.39 (−0.43,−0.36) 100.0 −0.26 (−0.38,−0.13) 98.8

MLM (combined groups)
Control vs. Null IDE 0.00 (−0.04, 0.04) 4.8 0.00 (−0.11, 0.11) 5.2
Control vs. True IDE −0.39 (−0.43,−0.36) 100.0 −0.26 (−0.38,−0.13) 99.8
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the simulated IDE the statistical power attained was highest for the likelihood ratio test
(99.8%), and slightly less for contrastingOldham’smethod or separateMLMs (98.8%). This
pattern of relative strengths in statistical power was found to be consistent (Appendix).

Discussion

‘Adjusting for baseline’ consistently identified large and statistically significant IDEs in
datasets deliberately simulated to have no IDE. This was even the case in the absence of
RTM, illustrating how this approach is always inappropriate, as previously stated [1,2].

In the ‘null IDE’ scenario, Oldham’s method and multilevel modeling yielded reason-
able Type 1 error rates for the population dataset, correctly indicating that there is no IDE.
However, both methods gave rise to very high Type 1 error rates of 100% for the truncated
sample datasets, implying the presence of an IDE. As the ‘null IDE’ datasets were simu-
lated not to have an IDE, our analysis demonstrates how both methods mistake the effects
of RTM as an IDE.

By introducing a control group that is truncated in the same way as the study sample,
and is therefore prone to the same impacts of RTM as the intervention group, we restored
unbiased Type I error rates for the ‘null IDE’ scenario. Contrasting correlations in the con-
trol and intervention groups using Oldham’s method and MLM gave the expected Type I
error rate for all methods. This indicates that our alternative approach is robust, and pro-
vides a solution to the challenges of detecting IDEs in samples selected on the basis of a high
initial value of the outcome variable. The MLM approach of analysing combined control
and intervention data, then testing nested models with and without constrained covari-
ances between groups using the likelihood ratio test, was the most powerful overall of all
methods considered. The key point, however, was that for either method to be effective, a
control group was required.

When seeking to estimate the magnitude of the IDE estimated by Oldham’s method
and/or MLM, considering the separately derived correlations for control and intervention
groups was robust within the population dataset.

Since our datasets were simulated with the ‘true’ IDE operating in the opposite direction
to the RTM, the estimated IDE correlation for the IDE scenario was sufficiently biased to
have its sign reversed (Table 2: ‘true’ IDE correlation was −0.39 but estimated as 0.13 in
the truncated sample datasets using either Oldham’s method or MLM). If the ‘true’ IDE
were to operate in the same direction as the effects of RTM we hypothesise that the overall
estimated IDE correlation would not be reversed, but instead enhanced. For either direc-
tion of an IDE, the impacts of RTM are likely to be substantial and will prevent reliable
estimation of the magnitude of a genuine IDE. Thus, even with a control group, it is not
possible to estimate the IDE correlation within a truncated sample dataset; it is only possi-
ble to ‘test’ if there is sufficient evidence that an IDE is present. The direction of IDE must
then be ascertained by inspecting intervention and control groups to establish in which the
‘fanning in’ or ‘fanning out’ is greater.

Focusing on testing for the presence of an IDE, rather than estimating its magnitude,
places the emphasis on study size and statistical power. For an adult weight management
studywith a population IDEof 1 kg/m2 sd reduction (corresponding to 0.6 kg/m2 sd reduc-
tion in the truncated sample dataset), Oldham’s method andMLMmade use of the control
group to provide good statistical power (even though Oldham’s method utilises only the



BIOSTATISTICS & EPIDEMIOLOGY 181

first and last measure of a longitudinal dataset). Sensitivity analysis shows that smaller
intervention effects (e.g. a mean BMI reduction of just 2 kg/m2), smaller IDEs (e.g. a sd
reduction of just 0.2 kg/m2) and stronger autocorrelation (e.g. rho = 0.95) all diminish
the statistical power – power diminishing to around 36% for the Fisher’s z-transformation
and to around 39% for the likelihood ratio test in themost stringent scenario (seeAppendix
Table A4b). To improve statistical power, MLM can make good use of any additional lon-
gitudinal measures available. MLM can also be used to explore longitudinal data with
multiple pre-intervention measures provided there is at least one post-intervention mea-
sure. The approach involves estimating separate IDEs for the pre-intervention period and
the post-intervention period, such that the study sample operates as its own control.

Greater serial autocorrelation in the outcome leads to weaker adverse impacts of RTM.
Furthermore, the extent of RTM in the study dataset depends on the selection thresh-
old/level of truncation adopted. The extent of bias in any IDE estimate thus depends on the
frequency of the longitudinal measures adopted and on the selection criteria used to trun-
cate the population sample. Both serial autocorrelation and sample selection are study- and
context-specific; their impact on different studies were explored through sensitivity anal-
yses (see Appendix). Unsurprisingly, RTM had greater adverse impacts on the validity of
Oldham’s method andMLM in samples where the outcome exhibited lower serial autocor-
relation, or where samples were derived from more extreme sample selection/truncation.
Nevertheless, relatively high serial autocorrelation values (e.g. 0.9) and modest sampling
thresholds/truncation (e.g. above/below the mean) yielded sizeable bias due to RTM, with
Type 1 error rates >90% for both Oldham’s method and MLM under the null of no IDE.

A key assumption throughout this study is that the outcome in the control group
is homoscedastic. This is not true in some contexts: for instance, weight-management
programs in children will observe that weight is heteroscedastic in the absence of inter-
vention due to children’s underlying growth trajectories. While beyond the scope of this
study, evaluating the robustness of models evaluating IDEs for outcomes known to exhibit
homoscedasticity in the non-intervention population is an important area for further
consideration.

The methodological findings of this paper are highly relevant to all studies explor-
ing IDEs in samples recruited/truncated above (or below) a threshold. However, in the
context of weight-loss studies, the implications are particularly important because stud-
ies recruiting participants with very high BMIs often do not recruit control participants.
For example, in Janicke et al.’s [18] systematic review of randomised controlled trials, they
excluded 54 of 278 papers selected for full-text review because they lacked appropriate con-
trol groups. Likewise, Benestad et al.’s [19] study noted a similar lack of adequate control
groups in observational (i.e. non-experimental) weight-loss studies. For studies in samples
recruited on high initial value that lack a control group, any subsequent claim of a relation-
ship between change and baseline is at best biased, but is more likely to be meaningless or
completely misleading.

Conclusion

This paper evaluates three established methods (adjusting for baseline, Oldham’s method,
andMLM) commonly used to evaluate IDEs in longitudinal analyses of change in samples
selected on the basis of a high initial value of the outcome variable. We have shown that
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‘adjusting for baseline’ performs poorly in multiple scenarios. We have demonstrated that
Oldham’smethod andmultilevelmodeling perform robustly in samples that reflect the full
population distribution of values, but these methods are not robust in samples that select
based on high/low initial values of the outcome, due to the adverse impacts of regression
to the mean. Both Oldham’s method and multilevel modeling can nonetheless robustly
detect the presence of IDEs in studies that select according to high initial value, provided
contrasts are made between the intervention group and a control group. We have shown
that it is not possible to estimate the size of an IDE; it is only possible to ‘test’ for the presence
of an IDE. We have also concluded that the direction of any IDE must be ascertained by
inspecting the ‘fanning-in’ or ‘fanning-out’ of outcome values within the intervention and
control groups.

To conclude, a control dataset is needed to robustly identify IDEs in the presence of
RTM. Failure to recognise the consequences of mathematical coupling and RTM are likely
to lead to incorrect estimates of the relationship between change and baseline in samples
based on truncated (high/low) initial values of the outcome variable.
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Appendix

Theoretical illustration of regression-to-the-mean

For a population of adults with a baseline measure of body mass index (BMI) denoted by x, and
follow-up BMI a short interval later (e.g. a few weeks) denoted by y, we assume x and y follow a
bivariate normal distribution:

BMI = N(M,Σ), whereM =
[
μx
μy

]
andΣ =

[
σ 2
x ρxy

ρxy σ 2
y

]
,

for baseline (μx) and follow-up (μy) mean BMI; baseline (σx) and follow-up (σy) BMI standard
deviations; and Pearson correlation coefficient (ρxy) between baseline and follow-up BMI.

If we sample baseline BMI above a threshold, tx, for corresponding z-score, z = (tx − μx)/σx,
we obtain a lower-bounded, singularly truncated bivariate distribution of BMI, denoted

{
x̌, y̌

}
, with

properties [20]:

σx̌ =
√
1 + z

R(z)
− 1

R2(z)
,

σy̌ =
√
1 + ρ2

xyz
R(z)

− ρ2
xy

R2(z)
,

ρx̌y = ρxy

√
R2(z) + zR(z) − 1

R2(z) + ρ2
xy(zR(z) − 1)

,

where

R(z) = e
x2
2

∫ ∞

x
e

−t2
2 dt

is known as the Mills’ ratio [21].

Figure A1. The estimated ratio of follow-up standard deviation (σy̌) to baseline standard deviation (σx̌)
in a lower-bounded, singularly truncated bivariate distribution of adult bodymass indexmeasures (BMI)
sampled for baseline BMI above threshold z-scores (z), for a population whose bivariate correlation of
baseline with follow-up BMI measures (ρxy) range between 0.05 and 0.95.
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Under the null assumption of no intervention differential effect (IDE), i.e. there no exogenous
influences that affect the mean or standard deviation of BMI measures, then σx = σy and the ratio
σy/σx ≡ 1 for the population. In the lower-bounded, singularly truncated bivariate distribution,
however, the corresponding ratio, σy̌/σx̌, is no longer unity but varies according to ρxy and z, as
demonstrated in Figure A1.

For any truncation, σy̌/σx̌ > 1, and the extent of biased assessment of an IDE increases as
the truncated sample dataset becomes more restricted to higher baseline thresholds. Bias is
more extreme for smaller bivariate correlations between baseline and follow-up BMI measures.
Even for a correlation of 0.95, truncation above the population mean (z-score = 0) yields a
σy̌/σx̌ = 1.082, indicating that follow-up BMI standard deviation is 8.2% larger than baseline BMI
standard deviation (i.e. a fanning out of BMI from baseline), which is entirely due to regression to
the mean. For sample truncation above BMI ≥ 30, i.e. selecting those formally identified as ‘obese’
(z-score = 0.72), follow-up BMI will have a standard deviation 14.8% larger than baseline BMI
standard deviation due entirely to regression to the mean.

Sensitivity analyses

To undertake sensitivity analyses, three additional scenarios were considered to complement the
default (Sim 1) in the main text (see Table A1). To expedite matters, simulations were repeated 1,000
times only (this took a full day of processing time for each different scenario) as performing 10,000
simulations, albeit more precise in estimating Type 1 errors and statistical power, would not affect
any conclusions drawn. Corresponding findings for each simulation are summarised in Tables A2a
to A4b.

Table A1. The simulation parameters considered for each scenario.

Sim 1 Sim 2 Sim 3 Sim 4

kg/m2

Population baseline mean BMI 26.4 26.4 26.4 26.4
Population follow-up mean BMI 22.0 23.0 23.0 24.4
Population baseline standard deviation 5.0 4.0 4.0 4.0
Population follow-up true IDE standard deviation 4.0 3.5 3.5 3.8
Recruitment BMI threshold 30.0 30.0 26.4 26.4

Correlation
Population baseline-follow-up BMI correlation 0.85 0.95 0.90 0.95
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Table A2a. Median and 95% credible interval (95% CrI: 2.5% to 97.5% quantiles) of IDE correlations
and the proportion of associated p-values ≤ 0.05 (Type I error rate under the null of no IDE or statistical
power for a true IDE) for the analyses of BMI population and study subsample in simulation 2 (Table A1),
with adjustment for baseline, Oldham’s method and multilevel modeling applied separately to control
group, intervention group with no IDE, and intervention group with a true IDE.

Population Study Subsample

Method / Dataset
IDE Correlation

(95% CrI)
% Statistically
Significant

IDE Correlation
(95% CrI)

% Statistically
Significant

Adjusting for baseline
Control −0.16 (−0.18,−0.13) 100.0 −0.07 (−0.16, 0.01) 38.0
Null IDE −0.16 (−0.18,−0.13) 100.0 −0.07 (−0.16, 0.01) 38.2
True IDE −0.53 (−0.54,−0.51) 100.0 −0.27 (−0.36,−0.19) 100.0
Oldham’s Method
Control 0.00 (−0.03, 0.03) 5.9 0.26 (0.18, 0.34) 100.0
Null IDE 0.00 (−0.03, 0.03) 4.2 0.26 (0.18, 0.34) 100.0
True IDE −0.39 (−0.42,−0.37) 100.0 0.04 (−0.05, 0.13) 15.5
MLM (separate groups)
Control 0.00 (−0.03, 0.03) 5.9 0.26 (0.18, 0.34) 100.0
Null IDE 0.00 (−0.03, 0.03) 4.2 0.26 (0.18, 0.34) 100.0
True IDE −0.39 (−0.42,−0.37) 100.0 0.04 (−0.05, 0.13) 15.5

Table A2b. The proportion of associated p-values ≤0.05 (Type I error rate under the null of no
IDE and statistical power for true IDE) for the analyses of BMI population and study subsample in
simulation 2 (Table A1), with adjusting for baseline, Oldham’s method and two multilevel modeling
approaches: (i) separatemodels contrasting correlations between control and intervention groups using
Fisher’s z-transformation and t-test; and (ii) combined control and intervention group models with the
likelihood ratio test of nested models for random intercept / slope covariances allowed to differ or
constrained to be equal across groups.

Population Study Subsample

Method / Dataset

Difference in IDE
Correlations (95%

CrI)
% Statistically
Significant

Difference in IDE
Correlations (95%

CrI)
% Statistically
Significant

Adjusting for baseline
Control vs. Null IDE 0.00 (−0.04, 0.04) 4.3 0.00 (−0.12, 0.12) 4.1
Control vs. True IDE −0.37 (−0.40,−0.34) 100.0 −0.20 (−0.31,−0.08) 90.6

Oldham’s Method
Control vs. Null IDE 0.00 (−0.04, 0.04) 4.9 0.00 (−0.12, 0.11) 4.9
Control vs. True IDE −0.40 (−0.43,−0.36) 100.0 −0.22 (−0.34,−0.10) 94.5

MLM (separate groups)
Control vs. Null IDE 0.00 (−0.04, 0.04) 4.9 0.00 (−0.12, 0.11) 4.9
Control vs. True IDE −0.40 (−0.43,−0.36) 100.0 −0.22 (−0.34,−0.10) 94.5

MLM (combined groups)
Control vs. Null IDE 0.00 (−0.04, 0.04) 4.9 0.00 (−0.12, 0.11) 5.2
Control vs. True IDE −0.40 (−0.43,−0.36) 100.0 −0.22 (−0.34,−0.10) 97.5
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Table A3a. Median and 95% credible interval (95%CrI: 2.5% to 97.5%quantiles) of IDE correlations and
the proportion of associated p-values≤ 0.05 (Type I error rate under the null of no IDE or statistical power
for a true IDE) for the analyses of BMI population and study subsample in simulation 3 (Table A1), with
adjusting for baseline, Oldham’s method and multilevel modeling applied separately to control group,
intervention group with no IDE, and intervention group with true IDE.

Population Study Subsample

Method / Dataset
IDE Correlation

(95% CrI)
% Statistically
Significant

IDE Correlation
(95% CrI)

% Statistically
Significant

Adjusting for baseline
Control −0.22 (−0.25,−0.20) 100.0 −0.13 (−0.22,−0.05) 86.4
No IDE −0.22 (−0.25,−0.20) 100.0 −0.13 (−0.23,−0.05) 86.0
True IDE −0.49 (−0.51,−0.47) 100.0 −0.32 (−0.39,−0.24) 100.0

Oldham’s Method
Control 0.00 (−0.03, 0.03) 5.9 0.23 (0.14, 0.31) 100.0
Null IDE 0.00 (−0.03, 0.03) 4.2 0.23 (0.14, 0.31) 99.8
True IDE −0.29 (−0.32,−0.27) 100.0 0.01 (−0.07, 0.11) 7.8

MLM (separate groups)
Control 0.00 (−0.03, 0.03) 5.9 0.23 (0.14, 0.31) 100.0
Null IDE 0.00 (−0.03, 0.03) 4.2 0.23 (0.14, 0.31) 99.8
True IDE −0.29 (−0.32,−0.27) 100.0 0.01 (−0.07, 0.11) 7.8

Table A3b. The proportion of associated p-values≤0.05 (Type I error rate under the null of no IDE and
statistical power for true IDE) for the analyses of BMI population and study subsample in simulation
3 (Table A1), with adjusting for baseline, Oldham’s method and two multilevel modeling approaches:
(i) separate models contrasting correlations between control and intervention groups using Fisher’s
z-transformation and t-test; and (ii) combined control and intervention groupmodelswith the likelihood
ratio test of nested models for random intercept / slope covariances allowed to differ or constrained to
be equal across groups.

Population Study Subsample

Method / Dataset

Difference in IDE
Correlations (95%

CrI)
% Statistically
Significant

Difference in IDE
Correlations (95%

CrI)
% Statistically
Significant

Adjusting for baseline
Control vs. Null IDE 0.00 (−0.04, 0.03) 4.5 0.00 (−0.12, 0.12) 4.6
Control vs. True IDE −0.26 (−0.30,−0.23) 100.0 −0.18 (−0.30,−0.07) 87.3

Oldham’s Method
Control vs. Null IDE 0.00 (−0.04, 0.04) 4.9 0.00 (−0.12, 0.11) 4.6
Control vs. True IDE −0.30 (−0.33,−0.26) 100.0 −0.21 (−0.33,−0.08) 91.3

MLM (separate groups)
Control vs. Null IDE 0.00 (−0.04, 0.04) 4.9 0.00 (−0.12, 0.11) 4.6
Control vs. True IDE −0.30 (−0.33,−0.26) 100.0 −0.21 (−0.33,−0.08) 91.3

MLM (combined groups)
Control vs. Null IDE 0.00 (−0.04, 0.04) 4.9 0.00 (−0.12, 0.11) 4.3
Control vs. True IDE −0.30 (−0.33,−0.26) 100.0 −0.21 (−0.33,−0.08) 94.9
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Table A4a. Median and 95% credible interval (95%CrI: 2.5% to 97.5%quantiles) of IDE correlations and
the proportion of associated p-values≤ 0.05 (Type I error rate under the null of no IDE or statistical power
for a true IDE) for the analyses of BMI population and study subsample in simulation 4 (Table A1), with
adjusting for baseline, Oldham’s method and multilevel modeling applied separately to control group,
intervention group with no IDE, and intervention group with true IDE.

Population Study Subsample

Method / Dataset
IDE Correlation

(95% CrI)
% Statistically
Significant

IDE Correlation
(95% CrI)

% Statistically
Significant

Adjusting for baseline
Control −0.16 (−0.18,−0.13) 100.0 −0.10 (−0.18,−0.01) 58.9
Null IDE −0.16 (−0.18,−0.13) 100.0 −0.10 (−0.19,−0.01) 58.9
True IDE −0.31 (−0.34,−0.29) 100.0 −0.19 (−0.27,−0.11) 99.6

Oldham’s Method
Control 0.00 (−0.03, 0.03) 5.9 0.16 (0.08, 0.25) 95.4
Null IDE 0.00 (−0.03, 0.03) 4.2 0.16 (0.07, 0.25) 94.0
True IDE −0.16 (−0.19,−0.14) 100.0 0.06 (−0.03, 0.15) 26.7

MLM (separate groups)
Control 0.00 (−0.03, 0.03) 5.9 0.16 (0.08, 0.25) 95.4
Null IDE 0.00 (−0.03, 0.03) 4.2 0.16 (0.07, 0.25) 94.0
True IDE −0.16 (−0.19,−0.14) 100.0 0.06 (−0.03, 0.15) 26.7

Table A4b. The proportion of associated p-values ≤0.05 (Type I error rate under the null of no
IDE and statistical power for true IDE) for the analyses of BMI population and study subsample in
simulation 4 (Table A1), with adjusting for baseline, Oldham’s method and two multilevel modeling
approaches: (i) separatemodels contrasting correlations between control and intervention groups using
Fisher’s z-transformation and t-test; and (ii) combined control and intervention group models with the
likelihood ratio test of nested models for random intercept / slope covariances allowed to differ or
constrained to be equal across groups.

Population Study Subsample

Method / Dataset
Difference in IDE

Correlations (95% CrI)
% Statistically
Significant

Difference in IDE
Correlations (95% CrI)

% Statistically
Significant

Adjusting for baseline
Control vs. Null IDE 0.00 (−0.04, 0.04) 4.3 0.00 (−0.13, 0.12) 5.9
Control vs. True IDE −0.16 (−0.20,−0.12) 100.0 −0.10 (−0.21, 0.03) 33.2

Oldham’s Method
Control vs. Null IDE 0.00 (−0.04, 0.04) 4.9 0.00 (−0.12, 0.12) 5.7
Control vs. True IDE −0.16 (−0.20,−0.13) 100.0 −0.10 (−0.22, 0.03) 36.2

MLM (separate groups)
Control vs. Null IDE 0.00 (−0.04, 0.04) 4.9 0.00 (−0.12, 0.12) 5.7
Control vs. True IDE −0.16 (−0.20,−0.13) 100.0 −0.10 (−0.22, 0.03) 36.2

MLM (combined groups)
Control vs. Null IDE 0.00 (−0.04, 0.04) 4.9 0.00 (−0.12, 0.12) 5.3
Control vs. True IDE −0.16 (−0.20,−0.13) 100.0 −0.10 (−0.22, 0.03) 39.0
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