
ARTICLE

Laboratory layered latte
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Inducing thermal gradients in fluid systems with initial, well-defined density gradients results

in the formation of distinct layered patterns, such as those observed in the ocean due to

double-diffusive convection. In contrast, layered composite fluids are sometimes observed in

confined systems of rather chaotic initial states, for example, lattes formed by pouring

espresso into a glass of warm milk. Here, we report controlled experiments injecting a fluid

into a miscible phase and show that, above a critical injection velocity, layering emerges over

a time scale of minutes. We identify critical conditions to produce the layering, and relate the

results quantitatively to double-diffusive convection. Based on this understanding, we show

how to employ this single-step process to produce layered structures in soft materials, where

the local elastic properties vary step-wise along the length of the material.
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Pattern forming systems are some of the intriguing and
spectacular phenomena throughout science and technol-
ogy1–4. In nature, patterns in fluid media, such as the waves

on the surface of deep water5, 6, oscillations in flames7, large-scale
von Kármán vortex streets in clouds8, and the symmetric yet
complex shape of snow flakes9, constitute some of the earliest
self-organized systems, which have attracted human curiosity and
initiated scientific exploration. A considerable class of spatial
patterns in fluids are structured due to thermal effects, which
trigger hydrodynamic instabilities10–12. For example, well-known
instabilities triggered by thermal effects, such as Rayleigh-Bérnard
convection13–15, are often found in systems with well-defined
initial conditions.

In a fluid system, when thermal gradients are introduced in the
presence of an initial well-defined density gradient, distinct
layered patterns are observed similar to those sometimes found in
the ocean due to double-diffusive convection16–20. Surprisingly,
we observe distinct horizontal layers formed after haphazardly
pouring espresso into a glass of warm milk. Pouring forces a
lower-density liquid (espresso) into a higher-density ambient
(milk). The downward liquid inertia caused by pouring is
opposed by buoyancy. The dynamics is similar to the fountain
effect21, 22, which characterizes a wide range of flows driven by
injecting a fluid into a second miscible phase of different density.

Here we perform controlled model experiments, injecting
warm dyed water from the top into a cylindrical tank filled with
warm salt solution. The mixture cools down at room temperature
and multiple horizontal layers emerge over several minutes. We
use light intensity in the digital images of the fluid in the tank,
after the injection, to quantify the distribution of the mixture
density. We show that the formation of horizontal layers is a
result of double-diffusive convection, where the salinity and
temperature gradients are applied vertically and horizontally,
respectively. The presence of the circulating flows within the
layers is confirmed via particle image velocimetry (PIV) experi-
ments and numerical simulations. Furthermore, we report that
the formation of the horizontal layers is controlled by the injec-
tion velocity, i.e. layers emerge only when the injection velocity is
higher than a critical value. Finally, we propose a single-step
procedure for fabricating multi-layer soft materials based on our
understanding of the model system.

Results
Layered latte. A glass of latte is made by pouring a cup of
espresso into a glass of warm milk. Since the two liquids are
miscible, the result of pouring is an espresso-milk mixture at the
top of the glass, while the bottom may only contain milk, if no
additional stirring is applied (Fig. 1a). In fact, although the initial
state of the mixture is complex and chaotic (Fig. 1b), there are
conditions where the mixture cools at room temperature and
exhibits an organized layered pattern (Fig. 1c, see Supplementary
Movie 1). These stable layers, whose structures may be main-
tained for at least tens of minutes (Fig. 1d), or even several hours,
contain different concentrations of espresso and hence exhibit
distinct visible boundaries.

Experimental model. In order to investigate the mechanisms
leading to the layering of the mixture, we performed controlled
experiments in a model system comprised of a low-density jet of
dyed water (density ρw ¼ 0:992 ´ 103 kgm�3 at TH ¼ 40 �C,
injection volume VI ¼ 30ml) entering a tank filled with relatively
higher-density brine (9.1 wt% sodium chloride solution, ρs ¼
1:056 ´ 103 kgm�3 at TH ¼ 40 �C, 340.9 ml). The jet enters from
the top (Fig. 1e) and the solution is then left to cool at room
temperature Tatm ¼ 22 �C.

Experimental observations. When the dyed water is injected into
the higher-density salt solution, a downward jet is generated.
However, the penetration of this liquid jet into the salt solution is
opposed by the buoyant force pushing the lower-density liquid jet
back to the top of the tank (Fig. 2a, c). As a result, a mixture is
formed, in which the dyed water is mixed with the salt solution
and is separated from the original salt solution at the bottom of
the tank. In addition to buoyancy, the mixing is mainly governed
by inertia with the Reynolds number defined as Re ¼ Ud=2ν �
Oð100Þ (U is the injection velocity, d is the diameter of the needle
and ν is the kinematic viscosity of the fluid), while diffusion does
not play a significant role during the injection. The Schmidt
number is Sc ¼ ν=κs � 300 (κs is the mass diffusivity of the salt),
indicating that the momentum diffusion is far faster than the salt
diffusion during both the injection and layering (if any) processes.
The Schmidt number for the milk and espresso system is
approximately 104 � 1, and so the system is similar to the model
salt and water system, in which momentum diffusion dominates.
At relatively low injection velocities (Fig. 2a, b), the mixture of
dyed water and salt solution (initially at TH ¼ 40 �C) remains
unchanged as it cools down at room temperature. However,
above a critical injection velocity, multiple layers similar to those
observed in the glass of latte (Fig. 1a–d) are formed in the mixture
several minutes after the injection (Fig. 2d). Once formed, the
layers are not influenced by external mechanical disturbances,
and can recover even after gentle stirring. As the cooling
continues, these layers may merge and form thicker structures,
which can last for days before being entirely eliminated by
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Fig. 1 Pattern formation in an injection-driven system inspired by a layered
latte. a–d Formation of horizontal layers in a glass of latte. a A small volume
(VI ¼ 30 ml) of espresso (temperature TH ¼ 50 �C) is poured into 150ml
of warm milk (TH ¼ 50 �C). b Espresso and milk form a mixture, which
exhibits chaotic dynamics caused by the injection. The resulting espresso-
milk mixture remains at the top of the container due to buoyancy. c As the
mixture cools down to room temperature, Tatm ¼ 22 �C, multiple horizontal
layers of different espresso concentrations are formed. d These horizontal
layers maintain their structures over time (see Supplementary Movie 1). e
Schematic of model experiments. Dyed water (0.01 wt% methylene blue
hydrate) and sodium chloride solution (9.1 wt%) are heated in a water bath
at TH ¼ 40 �C. Then the heated dyed water is injected vertically downward
through a needle of diameter d into the salt solution using a syringe pump,
which allows controlling the flow rate and thus the injection velocity U of
the dyed water. Finally, all of the liquid in the tank cools down at room
temperature and layers are observed. The cooling begins as soon as the
injection starts and lasts for at least several minutes
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diffusion (Supplementary Fig. 1). The layers can be observed
in the milk and espresso or in the salt and water mixture, only
when the initial temperature is different from the room
temperature.

We quantify the concentration of the salt in the mixture using
the concentration of the blue dye as an indicator (Supplementary
Fig. 2). Therefore, the local intensity of the blue dye in the digital
images (Fig. 2a–d) can be correlated with the local density of the
mixture. The dashed lines in Fig. 2e represent the initial density
profiles for two different injection speeds, while the solid lines
refer to the density profiles 30 min later. For both experiments the
dashed lines exhibit continuous monotonically increasing density
profiles, when moving from the top to the bottom of the mixture.
While the density profiles before and after the injection at a
low velocity U ¼ 0:17m s�1 (black) remain almost identical, the
density profile 30 min after the injection at a higher velocity U ¼
0:37m s�1 (blue) exhibits clear steps indicating the formation of
horizontal layers. After the high-velocity injection, the density in
a single layer is constant, implying that the liquid within a layer is
uniformly mixed. Moreover, the discontinuities in the density
profile are clearer near the top of the mixture, where the gradient
of the density is smaller than that of the bottom layers. We
postulate that this layered state is reached due to the double-
diffusive convection, which is well known in layer formation in
open water systems such as oceans or lakes18–20, 23, 24. In our
experiment, the double-diffusive convection results from the
combination of heat transfer to the surroundings from the warm

liquid, and a density gradient generated in the mixture from the
initial pouring or injection.

A directional heat transfer phenomenon in a mixture with an
initial density gradient has been observed previously in other
systems to lead to the formation of well-defined layers in fluid
mixtures due to double-diffusive convection18–20, 23, 24. In
particular, when a given temperature difference is created
between two vertical walls bounding a fluid with an initial
vertical density gradient, the fluid near the cold wall is cooled and
thus gets denser and sinks. The sinking of the liquid due to the
heat transfer will however be suppressed as the cooler liquid close
to the wall reaches a zone of a similar density in the mixture.
Therefore, the downward-moving liquid starts flowing inwards
away from the cold wall as it can no longer proceed in the vertical
direction. A similar motion but in the opposite sense is created
close to the warmer wall. Consequently, closed streamlines are
formed in the fluid circulating between the cold and the warm
sources23. Within the circulation cells, the fluid mixes uniformly,
and thus the density is fairly constant, while each circulation cell
acquires a different density.

In order to verify the postulate of double-diffusive convection
as the cause of layering in our confined injection-driven system,
we performed experimental (Fig. 2f, g) and numerical analyses
(Fig. 2h, i) of the time-dependent flows (see details in Methods,
Supplementary Figs 3, 4 and Supplementary Discussion). Both
approaches document the formation of recirculating patterns in
the form of axisymmetric rings between the wall and the center of
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Fig. 2 Evidence for double-diffusive convection in the model experiments and simulations. a−d Dyed water (0.01 wt% methylene blue hydrate, 30.0ml) is
injected into 9.1 wt% sodium chloride solution (340.9ml) with two different injection velocities: U ¼ 0:17ms�1 (a, b) and U ¼ 0:37ms�1 (c, d). a, c
correspond to the dynamics during the injection and (b, d) to the mixture 30min later. The distinguished boundaries of the layers are marked and
enumerated. e The density profiles of the mixtures presented in a−d. The dashed lines refer to the density profiles 1 min after the injection, and the solid
lines refer to those observed 30min later. The black and the blue lines refer to the results at injection velocities U ¼ 0:17ms�1 and U ¼ 0:37ms�1,
respectively. Vertical steps (solid blue line) indicate layers in the mixture, and their boundaries are enumerated according to those in d, where z ¼ 0 refers
to the top of the mixture. f, g Particle streak-lines (f) and the velocity vectors (g) measured in PIV experiments for U ¼ 0:37ms�1, 10 min after the
injection. The vertical dashed line refers to the axis of the cylindrical domain, and the horizontal dashed line marks the bottom of the mixture. h, i Numerical
results (details in Methods, Supplementary Figs 3 and 4 and Supplementary Discussion) show the density distribution (h) as well as the velocity vectors
and the vorticity magnitude ω (i), 10 minutes after the injection with U ¼ 0:37ms�1. The scales for the length and the velocity magnitude are identical in g
and i
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the tank. The boundaries separating these circulation cells overlap
with the limits of the layers in the mixture.

Critical injection velocity. The circulation cells are the results of
the competition between the horizontal thermal gradient and the
vertical density gradient generated by the fluid injection, i.e., the
thermal gradient triggers the fluid to rise or sink close to the
boundaries, while the vertical density gradient opposes this
motion and subsequently stabilizes the flow. In our model
experiments, layers are observed only above a critical injection
velocity Uc (Fig. 2a–d and Supplementary Fig. 5). At higher
injection velocities, the depth of penetration of the liquid jet
increases, and similarly the thickness of the mixture H increases,
indicating that the dyed water mixes with a larger volume of salt
solution. For a fixed volume of injected water (VI ¼ 30 ml), we
found that the volume of the resulting mixture VM increases

linearly with the injection velocity U for the range of parameters
studied here. Consequently, the mixing level and the density
gradient in the mixture of volume VM are controlled by the
injection velocity.

We define an average density gradient Δρ=H in the mixture,
where Δρ is the magnitude of the density difference between the
bottom and top of the mixture. Also, Δρ=H indicates the average
resistance imposed by the salinity gradient against the formation
of a convection cell due to the thermal gradient and is a function
of U . Our experimental measurements show that Δρ=H decreases
with increasing U due to enhanced mixing (Fig. 3a). We find that
for U>Uc � 0:21m s�1 the resistance from salinity can no longer
compete with the thermal gradient, thus circulation cells appear
and multiple layers emerge.

The competition between the thermal cooling and the salinity
gradient in this double-diffusive convection, where the horizontal
temperature gradient is orthogonal to the vertical salinity
gradient, is characterized by the Rayleigh number,

Ra ¼ gαΔT
νκ

αΔT
ð�dρ=dzÞ=ρw

h i3
, where g is the gravitational acceleration,

α is the coefficient of fluid volume expansion, ΔT is the
temperature difference in the fluid, ν is the kinematic viscosity of
the fluid, κ is the thermal diffusivity of the fluid and
ð�dρ=dzÞ=ρw is the normalized salinity gradient in the mixture18.
In a system with an initial linear salinity gradient and an imposed
horizontal temperature gradient, the critical Rayleigh number Rac
for initiation of an instability and formation of the layers has been
found to be around Rac � 1:5´ 104 experimentally18. Note that
in a conventional double-diffusive convection problem, a linear
density gradient is imposed at the initial stage and the
temperature gradient is created between two vertical bounding
walls by setting different constant temperatures18, 24. The initial
and boundary conditions leading to the layers in a glass of latte
and our model experiments are, however, different from those in
the traditional problem: (1) the density gradient is caused by the
injection and is not constant in the mixture (Fig. 2e) and (2) the
temperature gradient is not constant during the experiments as
the core of the liquid cools down continuously. Therefore, to
characterize our system and to calculate Ra, we chose to use the
minimum density gradient over the typical thickness of the layers
(around 5 mm) at the corresponding injection velocity and the
maximum temperature gradient. We found that the critical
Rayleigh number in our experiments closely matches the value
reported in the literature for an idealized configuration Rac � 104

(Fig. 3b). Consistent with our observations, Rac indicates that the
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Fig. 4 Single-step fabrication of soft layered gels. a Horizontal layers (in
different colors) are created from an agarose solution in a single-step
process by injecting 100ml 4 wt% agarose solution with 0.0015 wt%
methylene blue hydrate into 100ml 9.1 wt% NaCl solution containing
0.002 wt% fluorescein sodium salt. Boundaries of the layers are marked
with dashed lines. The layers differ from one another in softness due to the
different concentrations of agarose, i.e. the bottom layers are softer than
those at the top. b–d Cylindrical gel slabs, which are cut from different
layers in the gel, show different mechanical properties. Therefore, applying
the same vertical load on the slabs results in different degrees of
compression and thus indicates the different Young’s moduli of the gel in
these horizontal layers
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layering is obtained only when U is above Uc. Consideration of
the dynamics in a proper dimensionless framework requires an
analysis with at least both the Froude and Reynolds numbers,
which is a topic of on-going research. In addition, when layering
occurs, the expected length scale (thickness) of a layer is
approximately ðαΔTÞ=½ð�dρ=dzÞ=ρw�.

Application to soft materials. The double-diffusive convection
and the formation of the layers are simply controlled by the
thermal and salinity gradients in the fluid systems discussed
above, which implies no conceptual restriction on applying this
principle to more complex fluid systems, such as thermally
established soft gels. There are various approaches for generating
layered soft materials, but most of these approaches are currently
multi-step processes, where solid layers are usually formed
sequentially25. Nevertheless, based on the understanding outlined
above, we can make multiple layers in soft materials (UltraPureTM

Agarose, Invitrogen) simply by a single step of injecting
(U � 1m s�1>Uc) a hot gel solution into a denser solvent and
cooling the mixture at room temperature (Fig. 4, see the gel recipe
in Supplementary Methods). To further demonstrate the presence
of the horizontal layers in the gel, we performed experiments with
the same recipe but measured the light intensities in the digital
images of the gel rather than the elastic properties (see Supple-
mentary Fig. 6 and Supplementary Discussion). While cooling,
horizontal layers are first formed in the agarose solution, which is
subsequently solidified to a layered gel below the gelation tem-
perature. The Young’s moduli in the final layered state formed
from the same agarose solution vary systematically with the
vertical position (50 kPa at the bottom compared to 230 kPa at
the top), which implies that the concentration of agarose in dis-
tinct layers is different. Further, the difference of concentration in
the gel layers leads to a difference of porosity in these layers, so
the concentration and the diffusion rate of additives will be dif-
ferent. This single-step, single-chemistry method can facilitate the
fabrication of multiple-layered structures in food science25, tissue
engineering26, 27, and other applications in materials science.

Methods
Model experiment setup. In our model experiments with salt solutions, blue dye
(methylene blue hydrate, Sigma-Aldrich, 0.01 wt%) is added to the water jet to
visualize the mixing of the two liquids. Dyed water is injected downwards using a
syringe pump (Harvard Apparatus PHD 2000) through nozzles of circular cross-
section, with inner diameters d ¼ 1:2; 1:8; 2:4 mm, into a polystyrene cylindrical
tank with diameter D ¼ 8 cm (Fig. 1e). Working liquids are brought to the final
temperature (TH ¼ 40± 1 �C) in a water bath. We controlled the flow rate of the
injected water and consequently the inlet velocity U using the syringe pump. After
the injection, the tank is cooled down at room temperature. The appearance and
evolution of the layers are visualized by placing the tank in between a LED panel
and a camera, while the flow velocities in the mixture are obtained by following
tracer particles in the PIV experiments.

Density profile in the mixture. We performed a calibration procedure to correlate
the local intensity of the blue dye in the digital images to the local concentration c
(mass ratio) of injected dyed water containing 0.01 wt% methylene blue hydrate
(see Supplementary Fig. 2). Therefore, we calibrated the local intensity of the blue
dye to obtain the local mass ratio of injected dyed water in the mixture, and then
calculated the local density in the mixture by considering ρ ¼ cρw þ ð1� cÞρs,
where ρw is the density of water and ρs is the density of the salt water initially in the
tank.

Flow visualization and PIV. The water injected from the top of the tank is labelled
with blue dye; therefore the concentration of the dye indicates the amount of water
and consequently the salt concentration in the mixture as the blue jet mixes with
the salt solution in the tank. The depth of the mixture and the layers formed at
higher flow rates are determined by placing the tank in front of a large LED panel
and capturing color images of the mixtures over a long period of time (up to 3 days,
see Supplementary Fig. 1).

In order to quantitatively visualize the structure of the flow in the mixture, the
liquid in the tank is seeded with tracer particles (PSP-20, diameter 20 μm, Dantec
Dynamics). The plane of symmetry in the cylindrical tank is illuminated with a

green light sheet (thickness of ≈1 mm) created by placing a laser line lens (PL0160,
Thorlabs) in front of a green laser (BioRay 520, Coherent). Images are captured
using a DSLR camera and a macro lens at the rate of 30 frames per second. The
standard deviation of the light intensity for each pixel in the sequence of the
recorded grey-scale images is calculated to determine the path lines of the particles
in the mixture (Fig. 2f). Moreover, the ensemble cross-correlation scheme is
applied to the sequence of grey-scale images to measure the local velocities in the
PIV analyses28. Square interrogation windows of 32 ´ 32 pixels corresponding to
grid cells of 1 × 1 mm2 with an overlap of 50% are used to obtain the velocity
vectors, such as those presented in Fig. 2g.

Numerical simulations. We consider double-diffusive convection of an incom-
pressible flow of a Newtonian fluid inside a cylindrical container (after the injec-
tion). The density ρ of the fluid varies with the temperature T and the salinity S
following the Boussinesq approximation

ρ ¼ ρ0 1þ βðS� S0Þ � αðT � T0Þ½ �; ð1Þ

where ρ0, S0 and T0 denote, respectively, the density, salinity and temperature of
the reference state and β (respectively α) indicates the solutal (respectively thermal)
expansion coefficient. In the case of small-density variations as in our case, this
approximation is well justified. Other parameters of the problem include the
thermal diffusivity κ, kinematic viscosity ν of water, solutal diffusivity κs and
gravitational acceleration g.

We choose the radius R of the cylinder, κ=R and ρκ2=R2 to scale the length,
velocity and pressure, respectively. We introduce the non-dimensional temperature
θ and salinity σ as

θ ¼ ðT � TmaxÞ=ðTmax � TminÞ; ð2Þ

σ ¼ ðS� SmaxÞ=ðSmax � SminÞ; ð3Þ

where Tmax=min represents the maximum and minimum temperature and likewise
for Smax=min. The non-dimensional equations have the form

∇ � U ¼ 0; ð4Þ

∂U
∂τ

þ U � ∇U ¼ �∇Pþ Pr∇2U þ RaTPrðθ � NσÞez; ð5Þ

∂θ
∂τ

þ U � ∇θ ¼ ∇2θ; ð6Þ

∂σ
∂τ

þ U � ∇σ ¼ 1
Le

∇2σ; ð7Þ

where U , P and τ are the non-dimensional velocity, pressure and time, respectively;
Pr ¼ ν=κ is the Prandtl number, RaT ¼ gαðTmax � TminÞR3=ðκνÞ the thermal
Rayleigh number, Le ¼ κ=κs the Lewis number and N ¼ αðTmax � TminÞ=βðSmax �
SminÞ indicates the buoyancy ratio.

We solve the governing equations Eqs. 4–7 in the ðr; zÞ cylindrical coordinates
by employing the commercial finite element solver COMSOL. The assumption of
azimuthal independence is verified a posteriori by comparing the numerical and
experimental results. We use approximately 6000 quadrilateral elements (validated
with 30,000 quadrilateral elements) to discretize the computational domain, and
the near-wall mesh is carefully refined in order to resolve the thermal boundary
layers. Quadratic elements are adopted for ðU ; θ; σÞ and linear elements for P. It is
worth noting that any options for numerical diffusion in the COMSOL’s CFD
module have been deactivated.

We now describe the boundary conditions (BCs). They are illustrated in the
sketch of the computational domain consisting of four boundaries: the axis (left),
walls (right and bottom), and the free-slip surface (top) (see Supplementary Fig. 3).
On the two walls we impose the no-slip BCs Ur ¼ Uz ¼ 0, on the axis Ur ¼ 0, and
on the top surface we apply zero normal velocity Uz ¼ 0 and zero tangential stress
ðI� nnÞ � ½ð∇Uþ ð∇UÞTÞ � n� ¼ 0, where n is the outward-pointing normal
vector. Zero-flux n � ∇σ ¼ 0 is imposed for the salinity σ on all the boundaries. The
same condition applies for the temperature θ except for the right wall, which is
modeled as a conductive BC transferring the heat inside the container towards the
ambient air due to the temperature difference. The conductive BC reads
n � ∇θ ¼ Nuðθatm � θÞ, where θatm is the non-dimensional air temperature; also,
Nu ¼ hR=k denotes the Nusselt number, where h and k correspond to the heat
transfer coefficient and heat conductivity. Finally, as the initial condition, we
choose the initial density profile measured in the experiments after mixing by the
injection.

Our implementation has been validated against ref. 29 and our 2D planar
version against ref. 30. The reader is also referred to ref. 31 for other flow cases
where the results of COMSOL simulations show excellent agreement with the
asymptotic analysis.
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Calculating the Rayleigh number. We calculated the Rayleigh number Ra ¼
gαΔT
νκ

αΔT
ð�dρ=dzÞ=ρw

h i3
for the stability of thermal convection in a salinity gradient due

to lateral heating18. In our calculation, the gravitational acceleration is
g ¼ 9:8m s�2, while the kinematic viscosity and the thermal diffusivity of fluid are
ν ¼ 6:6 ´ 10�7 m2 s�1 and κ ¼ 1:5 ´ 10�7 m2 s�1, respectively at TH ¼ 40 �C. The
coefficient of fluid volume expansion is α ¼ 3:9 ´ 10�4 K�1 at TH ¼ 40 �C. The
temperature difference in the fluid is ΔT ¼ 2 �C, which is the maximum tem-
perature difference measured (by attaching thermocouples) between the center and
the wall of the container during cooling at room temperature. Also, ð�dρ=dzÞ is
the minimum of the local salinity gradient in the mixture and varies with the
injection velocity U . We calculated the local slopes of the density gradient curves
(Fig. 2b), over a height of δz ¼ 5 mm, which represents the minimum thickness of
layers that we observed in our experiments. We divided this local slope by the
density of water to obtain the local salinity gradient in the mixture ð�dρ=dzÞ=ρw.
The minimum value of ð�dρ=dzÞ=ρw in the mixture is used to calculate the
Rayleigh number (Fig. 3b).

Data availability. The datasets generated during and analyzed during the current
study are available at http://github.com/xuenan1203/Laboratory-Layered-Latte.
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