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Abstract: Glycated hemoglobin A1c (HbA1c) is
routinely used as a marker of average glycemic
control, but it fails to provide data on hypo-
glycemia and glycemic variability, both of
which are associated with adverse clinical out-
comes. Self-monitoring of blood glucose
(SMBG), particularly in insulin-treated patients,
is a cornerstone in the management of patients
with diabetes. SMBG helps with treatment
decisions that aim to reduce high glucose levels
while avoiding hypoglycemia and limiting glu-
cose variability. However, repeated SMBG can
be inconvenient to patients and difficult to
maintain in the long term. By contrast, con-
tinuous glucose monitoring (CGM) provides a
convenient, comprehensive assessment of

blood glucose levels, allowing the identification
of high and low glucose levels, in addition to
evaluating glycemic variability. CGM using
newer detection and visualization systems can
overcome many of the limitations of an HbA1c-
based approach while addressing the inconve-
nience and fragmented glucose data associated
with SMBG. When used together with HbA1c
monitoring, CGM provides complementary
information on glucose levels, thus facilitating
the optimization of diabetes therapy while
reducing the fear and risk of hypoglycemia.
Here we review the capabilities and benefits of
CGM, including cost-effectiveness data, and
discuss the potential limitations of this glucose-
monitoring strategy for the management of
patients with diabetes.
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INTRODUCTION

Glycated Hemoglobin A1c as a Marker
of Glycemic Control

Identified in the mid-1960s, and subsequently
recognized for its role in metabolic control,
glycated hemoglobin A1c (HbA1c) is the
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foremost indicator of blood glucose control [1].
Its value in type 1 diabetes (T1D) and type 2
diabetes (T2D) was established in landmark
studies, which showed that reducing HbA1c to
close-to-normal levels decreases the risk of dia-
betes-related conditions (including short- and
long-term microvascular complications such as
retinopathy and neuropathy and long-term
macrovascular diseases such as coronary artery
disease and stroke) [2–7], hence the recom-
mendations for its use as a measure of glycemic

control [8, 9]. Standardized assays provide an
easy, reliable, and relatively inexpensive means
of obtaining HbA1c measurements [10], which
are familiar to both healthcare providers and
patients [1].

HbA1c measurement does, however, have
limitations (Table 1) [11–13]. HbA1c values
indicate the average glucose concentrations
over a period of 8–12 weeks, so an HbA1c of 7%,
for example, reflects an average glucose con-
centration of approximately 154 mg/dl

Table 1 Advantages and disadvantages of glucose monitoring techniques [11–13]

Advantages Disadvantages

HbA1c - Easy to measure

- Inexpensive to perform

- Widely used and familiar

- Standardized test

- Only provides an approximate measure of glycemia

over the previous 8–12 weeks

- Does not reflect hypoglycemia, glycemic variability, or

glucose excursions

- Unreliable in certain conditions (e.g., renal failure,

anemia)

SMBG - Accurate measure of capillary glucose concentrations

- Relatively inexpensive

- Easy to train patients

- Widely used and familiar

- Subject to user error and misrecorded data

- Requires training or checking

- Provides limited data at a single point in time

- Sporadic measurements limit clinical effectiveness

- Multiple daily testing needed to effectively alter

management and achieve good glycemic control

(limited by patient tolerance)

- Inconvenient and painful

- Variable quality of glucose test strips (damaged or

expired strips)

CGM - Provides a comprehensive picture of variations in

glucose levels, including at times when they would

normally not be measured (e.g., while sleeping, during

exercise)

- No ‘missed’ readings

- Provides a wide range of metrics to help guide and

individualize diabetes management

- Simple to use; sensor remains in place for several days

- Pre-calibrated systems remove the need for daily

fingersticks

- More expensive than SMBG

- Relatively complex to understand; requires training

and time for familiarization

- Needs high levels of compliance and interaction

- Many models require multiple daily fingersticks for

calibration with SMBG

- Sensor is always on the body; requires regular

replacement (every 3–14 days, depending on model)

CGM continuous glucose monitoring, HbA1c glycated hemoglobin A1c, SMBG self-monitoring of blood glucose
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(8.6 mmol/l), but may represent a range of
123–185 mg/dl (6.8 - 10.3 mmol/l), and this
range broadens as HbA1c values increase [14].
However, a broader range of 50–258 mg/dl
(2.8–14.3 mmol/l) would also reflect an average
of 154 mg/dl, but would indicate a very differ-
ent glucose response during the measurement
period. Moreover, HbA1c values give no indi-
cation of intra- or inter-day fluctuations in
blood glucose [15] or of episodes of hyper-
glycemia and hypoglycemia; patients with
similar values can in fact have very different
patterns of glycemic variability (Fig. 1) [15, 16].
HbA1c can also be affected by factors unrelated
to glycemia (e.g., conditions affecting erythro-
cyte turnover, iron deficiency, genetics, and
race) [17].

This article is based on previously conducted
studies and does not contain any work per-
formed by any of the authors with human par-
ticipants or animals.

Self-Monitoring of Blood Glucose
and Current Limitations

When the first blood glucose monitors for self-
testing were developed in the early 1970s, con-
cerns over their practicality, accuracy, and pre-
cision limited their use by patients [18], but
monitors are now compact and convenient,
providing results in a few seconds from only
0.3–1 ll of blood [15, 18]. Self-monitoring of
blood glucose (SMBG) is fast, relatively

Fig. 1 Differences in glycemic variability over 15 days for
two patients with similar HbA1c levels. BG blood glucose,
GV glycemic variability, HbA1c glycated hemoglobin A1C

Reproduced from Kovatchev and Cobelli [16] � 2016 by
the American Diabetes Association

Adv Ther (2019) 36:579–596 581



inexpensive, and generally accurate [18],
although low-cost meters and strips are usually
less accurate and have higher lot-to-lot vari-
ability [19].

SMBG facilitates self-management and the
involvement of patients in care. SMBG results
can guide patients on nutrition and exercise,
hypoglycemia prevention, and adjustment of
medication to individual circumstances [8].
More frequent SMBG has been linked to lower
HbA1c levels in patients with T1D [20] and in
insulin-treated patients with T2D [21, 22], but is
believed to be of limited value in those patients
with T2D who are not using insulin [23].
Although SMBG frequency should be dictated
by individual needs and goals, the American
Diabetes Association recommends SMBG for
most patients on intensive insulin regimens
[i.e., those using multiple doses or continuous
subcutaneous insulin infusion (CSII), known as
the insulin pump] and further recommends its
use to guide treatment decisions for patients on
less-intensive regimens or noninsulin therapy
[8].

The limitations of SMBG (Table 1) [11–13]
largely relate to its perceived intrusiveness: it
requires fingersticks several times daily [8],
which can be time consuming, inconvenient,
and painful, consequently leading to poor
compliance [24] and impaired quality of life.
SMBG data can be misreported, often because
manually entered data are accidentally or
deliberately incorrect (e.g., to show favorable
results or to hide hyperglycemia or hypo-
glycemia) [25–28]. Misreporting in clinical
studies is often due to data entries that cannot
be correlated with a corresponding meter read-
ing [28], and many physicians are familiar with
logbooks that are filled out ‘retrospectively’ in
the waiting room. Patients using SMBG need
instruction and regular evaluation of their
technique and use of their data to adjust ther-
apy [8], which is a time-consuming process for
healthcare providers. Ultimately, SMBG can
provide only a ‘snapshot’ of a patient’s glycemic
status at the time of sampling that, as for
HbA1c, may not identify glucose excursions
[11, 12].

Hypoglycemia

Attainment of near-normal HbA1c levels can be
challenging for patients, largely because tight-
ening glycemic control increases the risk of
hypoglycemia [8, 9, 29]. In a recent observa-
tional study, 97.4% of patients with T1D, and
78.3% of patients with T2D, had experienced
hypoglycemia; this experience, and fear of
future hypoglycemia episodes, may lead
patients to eat defensively, restrict exercise, miss
work or school, or skip insulin doses [30].
Hypoglycemia, however, is not restricted to
insulin use. Sulfonylureas are also associated
with increased risk of hypoglycemia, particu-
larly in older patients and those with significant
renal insufficiency, which may raise questions
regarding their use in these populations
[31, 32]. Due to concerns regarding occurrence
of hypoglycemia with sulfonylurea therapy,
glucose testing is recommended, an additional
burden that can limit the use of these agents.

Hypoglycemia negatively affects many
aspects of a patient’s quality of life. It is associ-
ated with inadequate glycemic control, injuries
due to falls or accidents (including traffic acci-
dents) [8], and other serious complications.
Long-term risks include diminished cognition
(a particular concern for elderly patients) [8]
and increased cardiovascular morbidity [33, 34].
Recurrent hypoglycemia may also negatively
affect cognitive performance in children with
T1D and in adults with long-standing diabetes
[35, 36], whereas severe hypoglycemia can lead
to seizure, coma, or death [8, 37–40] and has
been linked to increased mortality in both
clinical trials [41, 42] and in clinical practice
[39].

Fear of hypoglycemia is a major barrier to
glycemic control as it results in reluctance to
adhere to or intensify therapy and in avoidance
strategies relating to food and exercise that can
adversely affect glycemic management [43].
However, recognition of hypoglycemia, espe-
cially if asymptomatic (‘silent’) or nocturnal,
can be problematic [44], particularly for patients
who only sporadically test their glucose levels
using SMBG.
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Glycemic Variability

Glycemic variability, characterized by the
amplitude, frequency, and duration of fluctua-
tions in blood glucose, can be expressed in
terms of standard deviation, mean amplitude of
glucose excursions, and coefficient of variation
(CV) (Table 2) [45–47]. The CV is a measure of
short-term within-day variability [45]; gener-
ally, a value\ 36% defines stability, whereas a
value C 36% reflects instability with signifi-
cantly increased risk of hypoglycemia [47].

In the short and medium term, wide gly-
cemic variability is associated with adverse
clinical outcomes (e.g., microvascular and
macrovascular complications, increased mor-
tality, and longer hospital stays) [48–50]. The
extent of this variability has been associated
with two different components of dysglycemia,
namely chronic sustained hyperglycemia and
acute dysglycemic fluctuations (peaks and
nadirs). In the case of chronic sustained

hyperglycemia, there is excessive and acceler-
ated protein glycation, whereas in the case of
acute dysglycemic fluctuations there is
increased oxidative stress [51].

Minimizing glycemic variability thus appears
to be a sensible treatment goal alongside that of
reducing glycemic burden as measured by
HbA1c, but only recently has accurate and reli-
able measurement of glycemic variability
become possible [15, 52]. Real-time measure-
ment of glucose levels 24 h per day is possible
using continuous glucose monitoring (CGM).
While CGM was initially expected to revolu-
tionize intensive insulin therapy, progress has
been gradual, largely because of issues of cost
and reliability, and difficulties in use, as well as
lack of a standardized format for data display
and uncertainty about the best use of the copi-
ous data [53].

Technologic developments have made CGM
devices easier to use, more reliable, and more
cost effective; for example, some systems warn

Table 2 Metrics used in CGM

Metrics Definition Advantages/limitations

Standard deviation

[45]

A measure of variance of glucose levels Directly calculated by all devices

Coefficient of

variation [45]

A measure of short-term within-day variability,

independent of the mean value; percentiles represent

deviations about the median, thus distinguishing

stable from labile glycemic control

Easy to calculate from standard

deviation and mean glucose level

Mean amplitude of

glucose excursions

[45]

A measure of short-term within-day variability Obtained indirectly, through

calculation

Precision absolute

relative deviation

[46]

Indicates the similarity of two sensor traces simultaneously

recorded from a single CGM system worn by one subject

Easy to compute and interpret, but

lacks detailed information

Continuous glucose-

error grid analysis

[46]

Provides a clinical assessment of accuracy by comparing

CGM and SMBG results

Readings must be obtained at least

every 15 min

Mean absolute

relative difference

[47]

Indicates the similarity of CGM and reference blood

glucose results; expressed as the average of absolute errors

between all CGM values and matched reference values

Provides a single value that represents

the overall accuracy of the CGM

system

CGM continuous glucose monitoring, SMBG self-monitoring blood glucose
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patients when blood glucose falls (or may fall)
below or rises above set levels [53]. Most man-
ufacturers recommend frequent recalibration
using capillary blood glucose meters and
reagent strips to maintain sensor accuracy [54];
failure to do so may result in inappropriate and
risky treatment decisions.

The identification of the most clinically
useful CGM metrics and the increased use of
standardized, simplified data presentation allow
the newer systems to provide clear and visual
information upon which physicians and
patients can base management decisions [53].

Current Status of CGM

CGM can be considered an advance on SMBG
(Table 1) [11–13]. It provides a comprehensive
picture of glycemic variability and allows glu-
cose fluctuations to be linked to events such as
meals, exercise, sleep, and medication intake—
information that can help guide diabetes man-
agement [47].

CGM uses a fixed sensor with a subcuta-
neous, glucose-oxidase platinum electrode that
measures glucose concentrations in the inter-
stitial fluids [13]. However, a time lag between
the measurement and display of the result due
to a physiologic delay (while glucose diffuses
from the vascular space to the interstitial fluid)
[55, 56] can adversely affect accuracy and
hamper the detection of hypoglycemia, partic-
ularly during rapid changes. The delays are
smaller in adolescents than in adults, increase
with age, and differ between devices for the
same subject [56].

CGM devices either continuously track the
glucose concentration and provide near real-
time data or retrospectively show continuous
measurements intermittently (i.e., when the
user looks at the device). Intermittent devices
include ‘flash’ systems, from which stored data
can be uploaded at any time [47]. Their overall
high cost can be offset by patients having
intermittent blinded glucose sensors with a
single reader kept by the attending healthcare
professional (termed ‘professional’ CGM sys-
tems). Data are not seen in real time but are
downloaded after a set period [57]; 14 days is

the recommended period of time as this is the
estimated minimum time of monitoring needed
to obtain an accurate assessment of long-term
glucose control [58].

The advantage of real time over intermittent
CGM is that it can warn users of impending
hypoglycemia or hyperglycemia. Data may be
masked/blinded (unavailable to the patient and
retrospectively viewed by the physician) or
unmasked/unblinded (available to the patient
and remotely to physicians and caregivers,
either in real time or retrospectively) [47, 59].
Although blinding may be preferred to avoid
influencing patient behavior and to help
understand patients’ usual habits [57], an
unblinded system may facilitate improvements
in glycemic variability and help patients avoid
hypoglycemia and hyperglycemia [60], and
immediate feedback can help patients learn to
manage the effects of food, exercise, and medi-
cation [57]. Therefore, some healthcare provi-
ders argue that real-time CGM should replace
blinded methodologies, noting that blinding
can result in increased risk and potential for
harm in cases of unrecognized severe hypo-
glycemic episodes [12]; in addition, a retro-
spective evaluation of patients with T1D and
TD2 using blinded CGM for 3 days did not show
significant differences in pre- and post-study
HbA1c levels [61].

Regardless of its type, CGM provides a mea-
sure of the time for which blood glucose is
within the target range (‘time in range’)
[70–180 mg/dl (3.9–10 mmol/l)] and of the
duration and severity of hypoglycemia; it can
alert to low glucose at level 1 [\54–70 mg/dl
(3.0–3.9 mmol/l) with or without symptoms],
level 2 [\ 54 mg/dl (3.0 mmol/l) with or with-
out symptoms], and level 3 (severe hypo-
glycemia with cognitive impairment, when
external assistance is needed for recovery) [47].

Overall, the new CGM devices are simpler,
less expensive to use, and more accurate than
older devices, and they require fewer or no daily
calibrations against SMBG data [62]. Sensor
accuracy is assessed through metrics such as the
precision absolute relative deviation (PARD),
continuous glucose error–grid analysis (CG-
EGA), and mean absolute relative difference
(MARD) (Table 2) [45–47]; a potentially
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overwhelming range of blood-glucose metrics
can be provided by these systems [63]. A study
comparing the accuracy of CGM and that of a
capillary blood glucose meter built into the
reader in insulin-treated patients with T1D or
T2D revealed a MARD of 11.4% for CGM with
stability of readings over 14 days of use [64]. A
discrepancy of 10% between CGM and refer-
ence values has thus been proposed as sufficient
to permit effective use of CGM without SMBG
[47, 63], but this value is not based on outcome
data. However, a study that used data on CGM,
CSII, SMBG, and meals from patients with T1D,
together with computer simulations, to deter-
mine the level of accuracy needed to forgo
SMBG readings estimated an in silico MARD of
10% [65].

The use of standalone CGM systems is sup-
ported by data from an open-label, randomized
trial conducted in 226 adults with T1D and
point-of-care HbA1c B 9.0%. Compared with
CGM plus SMBG, use of CGM alone had no
negative effect on time in range, and time in
hypoglycemia was not significantly different
between groups. One severe hypoglycemic
event occurred in the CGM plus SMBG group,
but there were no reported hypoglycemic
events in the CGM alone group [66].

Standardized, easily understood data display
formats are increasingly being used, such as the
Ambulatory Glucose Profile (AGP) system [17],
which provides summary statistics, graphs
showing 24-h glucose and daily glucose (pooled
over multiple days), and insulin doses (Fig. 2)
[17, 67]. The AGP system can help primary care
physicians and patients decide how best to
increase the glucose time in range without
increasing the risk of hypoglycemia [57], since
observed glucose excursions, for example, can
be related to events such as the timing and
content of meals, type of exercise, medications
(e.g., prandial insulin), or periods of stress or
illness [68].

Several CGM devices are commercially
available (Table 3) [69, 70]. Unblinded, real-
time CGM systems with hyperglycemia or
hypoglycemia alerts may be particularly useful
for patients with hypoglycemia unawareness
[71], whereas personal or professional ‘flash’
CGM systems may be attractive to other groups

given their longer sensor life, ease of use, rela-
tively low cost, and no need for calibration [11].

Possible Benefits of CGM

Several studies have comprehensively demon-
strated the benefits of CGM in patients with
T1D, who show consistently improved glycemic
control with fewer hypoglycemic events
[72–79]. In a trial conducted in 322 adults and
children with well-controlled T1D
(HbA1c = 7.0–10%) who were predominantly
receiving CSII, CGM use resulted in a significant
improvement in all glycemic measures, includ-
ing HbA1c reduction, at 26 weeks. This reduc-
tion was significantly greater than that achieved
with SMBG in patients aged [25 years (mean
difference in change: - 0.53%; 95% confidence
interval: - 0.71%, - 0.35%; P\0.001) [72]. A
subsequent analysis of the same group of
patients showed that CGM significantly
reduced HbA1c and time spent out of range
(377 vs. 491 min/day; P = 0.003) and was asso-
ciated with a numerical reduction in time spent
in hypoglycemia compared with the control
group (median 54 vs. 91 min/day; not statisti-
cally significant) [73]. Data from the DIAMOND
study showed that use of CGM (vs. usual care,
which was SMBG C 4 times daily) for 24 weeks
resulted in a greater decrease in HbA1c (mean
reduction from baseline: 1.0% vs. 0.4%;
P\ 0.001) and a shorter duration of hypo-
glycemia (median duration of blood glu-
cose\70 mg/dl: 43 min/day vs. 80 min/day;
P = 0.002) [76].

Other studies have assessed the effectiveness
of CGM in helping individuals with impaired
hypoglycemia awareness or history of severe
hypoglycemia [80–82]. In a 24-week study,
improvements in hypoglycemia awareness and
reductions in the number of severe hypo-
glycemic events were similar whether subjects
used SMBG or CGM or whether they were
treated with multiple daily injections (MDIs) of
insulin or CSII [80]. Furthermore, in a 16-week
study of patients with T1D and impaired
awareness of hypoglycemia who received CSII
or MDIs of insulin, CGM resulted in fewer sev-
ere hypoglycemic events (P = 0.003), more time
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in normoglycemia (P\ 0.0001), and less time in
hypoglycemia (P\0.0001) vs. SMBG [81]. A
recent trial has shown that, in high-risk subjects
with T1D treated with MDIs of insulin, the use
of CGM reduced the incidence of hypoglycemic
events by 72% (P\0.0001) compared with
SMBG [82].

CGM may also help elucidate patients’
responses to different insulin formulations and
other hypoglycemic agents. A study of patients
with T1D treated with two concentrations of
insulin glargine used CGM to evaluate several
aspects of glycemic control. Patients were ran-
domly assigned to inject insulin glargine 100 or
300 U/ml in the morning or the evening for

Fig. 2 Ambulatory glucose profile for use in CGM devices. IQR interquartile range, CGM continuous glucose monitoring
From: http://www.agpreport.org/agp/agpreports

586 Adv Ther (2019) 36:579–596

http://www.agpreport.org/agp/agpreports


8 weeks and then in the evening (if previously
morning) or morning (if previously evening) at
the same dose for 8 more weeks. CGM revealed a
24-h glucose profile that was more consistent,
with fewer glucose fluctuations, with insulin
glargine 300 U/ml vs. the 100 U/ml preparation,
regardless of time of injection. Patients using
insulin glargine 300 U/ml also had fewer episodes
of confirmed severe nocturnal hypoglycemia [83].
In addition, the use of CGM in the investigational
evaluation of a sodium-glucose co-transporter 2
inhibitor as adjunctive treatment in patients with
T1D demonstrated the clinical value of the agent
beyond HbA1c control through improvement of
time in range [84].

Although conflicting data exist, clinical trials
have shown that use of CGM not only reduces
HbA1c and hypoglycemia, but it may also
attenuate the fear of hypoglycemia and dia-
betes-related stress and improve quality of life
[79, 85–88]. A real-world study of adults with
T1D using CSII who started CGM showed
decreased hospitalizations due to hypoglycemia

and/or ketoacidosis and reduction in hospital
stays and work absenteeism after 1 year [89].

Data in T2D are more limited but neverthe-
less provide evidence of greater benefits of CGM
over SMBG in glycemic control for patients
receiving MDI of insulin [77, 90] or other regi-
mens [91, 92]. In a 52-week randomized trial in
patients with T2D treated with various regimens
(except prandial insulin), the mean decline in
HbA1c at 12 weeks was 1.0% (± 1.1%) with
CGM for four 2-week cycles (2 weeks on, 1 week
off) and 0.5% (± 0.8%) with SMBG (P = 0.006)
[91]. In the DIAMOND study, patients with T2D
who received MDI of insulin showed a mean
HbA1c reduction of 1.0% with CGM vs. 0.6%
with usual care (adjusted difference: - 0.3%;
P = 0.005); there were no meaningful differ-
ences in time spent in hypoglycemia or changes
from baseline in insulin dose [76]. Older adults
(aged C 60 years) with T1D or T2D in the DIA-
MOND study also had significantly greater
reductions from baseline in HbA1c with CGM
vs. SMBG (0.9 ± 0.7% vs. - 0.5 ± 0.7%,

Table 3 US FDA-approved CGM systems

System Data type Sensor life Calibration Data direct to smart
device?

Low/high blood
sugar warning?

Medtronic iPro2 [69] Blinded 6 days At least 4 per day No; application available for

patient to log events

No

Dexcom G4

PLATINUM [69]

Blinded or

unblinded

7 days Every 12 h (or

when

prompted)

No Yes

Dexcom G5 Mobilea

[69]

Unblinded 7 days Every 12 h (or

when

prompted)

Yes; data can be shared

remotely

Yes

Dexcom G6 [70] Unblinded 10 days Not needed Yes; data can be shared

remotely

Yes (alarms can be

customized)

Abbott FreeStyle

Libre Pro (flash)

[69]

Blinded up to

14 days

Not needed No No

Abbott FreeStyle

Libre (flash)a, b [69]

Unblinded 10–14 days Not needed Yes No; shows glucose

trends

a May be used to replace blood glucose measurement through fingersticks
b Abbott Freestyle Libre 2, with optional real-time alarms, has recently secured CE mark in Europe
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adjusted difference in mean change:
- 0.4 ± 0.1%; P\ 0.001) [93].

Recent data show the benefits of ‘flash’ CGM.
Its use in two randomized clinical trials reduced
the time spent in hypoglycemia by 38% in
patients with well-controlled T1D [94] and by
43% in insulin-treated adults (56% for those
aged C 65 years) with T2D [95]. Both reductions
were significantly greater than those seen with
SMBG. A real-world study of patients with T1D
or T2D showed greater reductions in HbA1c
levels with ‘flash’ CGM vs. SMBG, with a more
marked difference between groups in T1D [96].
A recent large-scale (of more than 50,000 users),
real-world study has further shown that the
number of glucose checks using ‘flash’ glucose
monitoring is inversely associated with time
spent in hypoglycemia or hyperglycemia and
positively correlated with time spent in eug-
lycemia [97]. However, the I HART CGM study
showed that switching from ‘flash’ to real-time
CGM has a greater favorable impact on hypo-
glycemia for adults with T1D at high risk of
hypoglycemia (reduction in percentage time in
hypoglycemia from 5% to 0.8%) [98], indicating
that ‘flash’ CGM would not be indicated for this
specific patient population. In addition, a direct
comparison of glucose concentration measured
by ‘flash’ vs. CGM systems showed overall lower
values for the ‘flash’ system compared with
SMBG, with discrepancies between systems seen
during hypoglycemia [99]. This further high-
lights the need for frequent collection of glu-
cose data to optimize glycemic control and
minimize the risk of hypoglycemia.

There is also evidence on the clinical effec-
tiveness of integrated CGM and insulin pump
systems (sensor-augmented pump therapy) for
the management of T1D. These systems warn of
abnormal blood glucose levels so that the user
can adjust the insulin infusion rate. More recent
devices can automatically stop insulin delivery
for up to 2 h (and then the insulin infusion
basal rate is restored) if they predict a hypo-
glycemic episode. A systematic review showed
that attainment of HbA1c\ 7% and improved
quality of life at 6 months of follow-up were
reported in a higher proportion of patients
using integrated CSII plus CGM systems than in

those using SMBG or CSII plus SMBG and MDI
[100].

It is important to note that the benefits of
CGM were shown in clinical trials with treat-
ment adherence rates higher than 85%
[73, 76, 101], but the compliance rate in
patients with T1D in the real world is much
lower (for example, only 8–17% for patients
treated in specialty clinics) [102, 103]. In the US,
CGM is least used by adolescents and young
adults (\ 10%) and most used in adults aged
26–49 years (23%) [104]. Barriers to routine
CGM use include limited accuracy, inadequate
reimbursement/cost, educational needs, patient
annoyance due to frequent alarms, insertion
pain, body image issues, and interference with
daily life [103].

Guidelines on the Use of CGM

CGM recommendations by professional bodies
vary and are more consistent for T1D than for
T2D (Table 4) [8, 47, 67, 105]; they are, in gen-
eral, conservative. The broadest and most recent
guidelines are those from an international panel
of physicians, researchers, and experts in CGM
technology, who recommend CGM alongside
HbA1c monitoring to assess glycemic status and
inform adjustments to therapy in all patients
with T1D and in patients with T2D receiving
intensive insulin therapy but not reaching tar-
gets, especially if hypoglycemia is problematic
[47].

Glycemic control should be assessed on the
basis of key metrics provided by CGM, includ-
ing glycemic variability, time in range, time
above range (i.e., hyperglycemia), and time
below range (i.e., hypoglycemia). These metrics
should be obtained from 70 to 80% of all pos-
sible readings made during C 14 days of CGM
[47].

Recent guidelines have highlighted the need
to consider outcomes beyond HbA1c control,
such as a standard time in range, as an endpoint
in clinical trials [53, 106]. This is supported by
advocacy groups and the US Food and Drug
Administration [107].

In general, despite mounting evidence of its
effectiveness, only a small proportion of
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patients have access to CGM. This is mainly due
to cost/reimbursement issues, an absence of
specific guidelines on CGM use, and the com-
plexity of the technology. Additional real-world
cost-effectiveness data are needed to support
routine use of CGM. Once technologic
improvements produce easier-to-use devices
with easy-to-understand data displays that are
more cost effective than SMBG, CGM can be
used alongside HbA1c monitoring to guide
management strategies that better achieve
optimal and stable glycemic control with a low
risk of hypoglycemia [17].

Cost Effectiveness of CGM Devices

Overall, CGM is more effective than SMBG but
is associated with higher costs [100, 108]. A
meta-analysis showed that the most cost-effec-
tive use of CGM is probably for people with T1D
and continued poor glycemic control despite
intensified insulin therapy [109]. A cost-effec-
tiveness analysis of data from the DIAMOND
study showed that, in adults with T1D and

elevated HbA1c (C 7.5%), CGM increased costs
compared with SMBG but was a lifetime cost-
effective intervention when clinical benefits
(HbA1c reduction, daily strip use, and fre-
quency of non-severe hypoglycemia) were
taken into account [110]. Similarly, for high-risk
patients with T1D and impaired hypoglycemia
awareness, the economic impact of CGM is
counteracted by lower hypoglycemia-related
costs, reduced SMBG strip use, avoidance of
HbA1c-related complications, and reduced
insulin pump use [111]. CGM is also known to
be cost effective in the management of patients
with T2D not treated with prandial insulin
[112].

Future of CMG

Closed-loop systems (‘artificial pancreas’),
which consist of a CGM monitor and an insulin
pump that delivers insulin through a standard-
ized algorithm, have recently emerged as a
means to attain glucose control in T1D. A sys-
tematic review and meta-analysis of

Table 4 Current guidelines for the use of CGM in the management of patients with diabetes

ADA [8] AACE/ACE [66] Endocrine Society [105] International consensus
[47]

CGM in conjunction with

intensive insulin regimens

is a useful tool to lower

HbA1c in adults with

T1D who are not meeting

glycemic targets

CGM may be a useful tool

in those with hypoglycemia

unawareness and/or

frequent hypoglycemia

episodes

CGM is recommended for

adult and pediatric

patients with T1D

(particularly for those with

history of severe

hypoglycemia and

hypoglycemia

unawareness) and to assist

in the correction of

hyperglycemia in patients

not at goal

No recommendations in

patients with T2D because

of limited data

RT-CGM is recommended

for adults with T1D (with

HbA1c levels above target

or with well-controlled

glycemia) who are willing

and able to use these

devices on a nearly daily

basis

Short-term, intermittent use

of RT-CGM is suggested

for adult patients with

T2D (not on prandial

insulin) who have HbA1c

levels C 7% and are willing

and able to use the device

CGM should be considered

in conjunction with

HbA1c monitoring for

glycemic status assessment

and therapy adjustment in

all patients with T1D or

T2D receiving intensive

insulin therapy who are

not attaining glucose

targets, especially if the

patient is experiencing

problematic hypoglycemia

CGM continuous glucose monitoring, HbA1c glycated hemoglobin A1c, RT-CGM real-time continuous glucose monitoring,
T1D type 1 diabetes, T2D type 2 diabetes
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randomized studies evaluating artificial pan-
creas systems in adult and pediatric patients
with T1D in the outpatient setting showed
improved glucose control, with higher time in
target, compared with conventional pumps
[113]. While these systems ensure a smooth
glucose profile overnight with low risk of
hypoglycemia, user input is usually required
during meal times. Some devices are exploring
fully automated options, but these run higher
risk of hypoglycemia vs. systems requiring input
of information on meal activity [114].

CONCLUSIONS

Although HbA1c remains the cornerstone of
glycemic status monitoring, even ‘good’ gly-
cemic control may include substantial blood
glucose fluctuations and excursions into
hyperglycemia and hypoglycemia, both of
which are associated with short- and long-term
complications. Hypoglycemia in particular rep-
resents a key challenge to safely achieving and
maintaining glycemic targets.

SMBG gives an indication of glycemic vari-
ability, but each measurement provides only a
‘snapshot’ of blood glucose levels, and glucose
excursions may be missed. The need for repe-
ated daily fingersticks limits its usefulness, and
‘forgotten’ logbooks or meters and incomplete
or inaccurate SMBG data may leave physicians
without the information they need to optimize
their patients’ glycemic control.

CGM has demonstrated the importance of
glycemic variability and its association with
hypoglycemia independently of HbA1c values.
In both clinical trials and in the real-world set-
ting, CGM was effective in reducing glucose
levels and hypoglycemia as well as in attenuat-
ing diabetes stress and improving quality of life
vs. usual care, but treatment compliance is key
for effectiveness. Modern, easy-to-use CGM
systems, particularly devices that do not require
regular calibration, and simplified data displays
could overcome many of the limitations of
HbA1c monitoring and SMBG.

In summary, CGM provides physicians with
the ability to improve on conventional meth-
ods of blood glucose monitoring and offers

valuable additional data to inform better and
safer decision-making.
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