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Precis: This report provides practical guidance on the methods and reporting of VOI analysis

for assessing the value of research to inform decisions in different contexts.

Highlights:

• Value of Information (VOI) analysis provides a framework for quantifying the value of

acquiring additional information to reduce uncertainty in decision-making. Quantifying

the expected improvement with new information requires an assessment of the scale and

consequences of uncertainty in terms of pay-offs. Acquiring information, however, can

be costly. Therefore, the value of new information is compared to the cost of acquiring

the information to determine whether it is worthwhile.

• This report provides practical guidance on the methods and reporting of VOI analysis.

The methods are presented in generic form to allow them to be adapted to any specific

decision making context. This means that even in health care systems where economic

considerations are not explicitly incorporated into decision making, the same methods

can be applied.

• This report provides eight recommendations for good practice when planning, undertak-

ing or reviewing VOI analyses. The primary audience for the report are methodologists

and/or analysts who are responsible for undertaking VOI analysis to inform decision-

making.
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Abstract1

The allocation of health care resources among competing priorities requires an assessment2

of the expected costs and health effects of investing resources in the activities, and on the3

opportunity cost of the expenditure. To date, much effort has been devoted to assessing the4

expected costs and health effects, but there remains an important need to also reflect the con-5

sequences of uncertainty in resource allocation decisions and the value of further research to6

reduce uncertainty. Decision-making with uncertainty may turn out to be suboptimal, resulting7

in health loss. Consequently, there may be value in reducing uncertainty, through the collec-8

tion of new evidence, to better inform resource decisions. This value can be quantified using9

Value of Information (VOI) analysis. This report, from the ISPOR VOI Task Force, describes10

methods for computing four VOI measures: the Expected Value of Perfect Information (EVPI),11

Expected Value of Partial Perfect Information (EVPPI), Expected Value of Sample Information12

(EVSI) and Expected Net Benefit of Sampling (ENBS). Several methods exist for computing13

EVPPI and EVSI, and this report provides guidance on selecting the most appropriate method14

based on the features of the decision problem. The report provides a number of recommenda-15

tions for good practice when planning, undertaking or reviewing VOI analyses. The software16

needed to compute VOI is discussed, and areas for future research are highlighted.17

Keywords: value of information, value of research, decision making, study design, EVPI,18

EVPPI, EVSI, ENBS.19

Running title: Value of Information Analytical Methods.20
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Box 1: Background on the Task Force Process

The proposal to initiate an ISPOR Value of Information Good Practices Task Force was evaluated

by the ISPOR Health Science Policy Council and then recommended to the ISPOR Board of

Directors for approval. The task force was comprised of international subject matter experts

representing a diverse range of stakeholder perspectives (academia, research organizations,

government, regulatory agencies and commercial entities). The task force met approximately

every five weeks by teleconference and in person at ISPOR conferences. All task force members

reviewed many drafts of the report and provided frequent feedback in both oral and written

comments. To ensure that ISPOR Good Practices Task Force Reports are consensus reports,

findings and recommendations are presented and discussed at ISPOR conferences. In addition,

the first and final draft reports are circulated to the task force’s review group for a formal review.

All reviewer comments are considered. Comments are addressed as appropriate in subsequent

versions of the report. Most are substantive and constructive at improving the report.
21

Introduction22

Health care resource allocation decisions are made with uncertainty. Decision-makers, tasked23

with selecting among competing alternative options, need to determine the pay-offs associated24

with each option before making a choice, but these pay-offs are based on imperfect knowl-25

edge. This inevitably means that decisions based on the available information may turn out to26

be suboptimal. Suboptimal decisions can lead to unintended effects such as adverse health27

consequences to individuals, when expected benefits of an activity are not realized, and to the28

population, when the resources committed to the activity are transferred away from other activ-29

ities. Acquiring more information could reduce uncertainty and the associated consequences30

of suboptimal decision-making.31

Value of Information (VOI) analysis provides a framework for quantifying the value of acquir-32

ing additional information to reduce uncertainty in decision-making. Quantifying the expected33

improvement with new information requires an assessment of uncertainty and the scale of the34

consequences of that uncertainty in terms of pay-offs. Acquiring information, however, can35

be costly. Therefore, the value of new information is compared to the cost of acquiring the36

information to determine whether it is worthwhile.37

This report is the second report of the ISPOR Value of Information Analysis Emerging Good38

Practices Task Force. It provides details of the various methods used to assess the value39

of research, as well as practical guidance for selecting the appropriate method for the deci-40

sion problem of interest. These methods are presented in generic form to allow them to be41

adapted to any specific decision making context. The primary audience for this report are42
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methodologists and/or analysts who are responsible for undertaking VOI analysis to inform43

decision-making. It compliments the first report of the ISPOR VOI Task Force [1], which in-44

troduced the concept of VOI analysis, outlined the role of VOI for supporting different types of45

research decisions, and provided an overview of the steps for conducting and reporting VOI46

analysis.47

Characterization of uncertainty48

The outcomes of VOI analysis are always conditional on the characterization of the decision49

problem and the specification of judgements about the relevant uncertainties. This means that50

the extent to which VOI analysis is sufficient to quantify the value of further research depends51

critically on how well the uncertainties have been characterized. With this in mind, this report52

first characterizes the sources of uncertainty.53

The starting point for VOI analysis is typically a decision-analytic model that represents judge-54

ments about the relationship between outputs that are relevant for decision making (e.g., costs55

and health outcomes) and input parameters derived from clinical, epidemiological, registry,56

and/or economic studies. Uncertainty in decision-analytic models can be broadly character-57

ized as relating to either model input parameters or model structure; although this distinction58

is not always meaningful since model structural choices can be parametrized.59

Parameter uncertainty60

Decision-analytic models typically use information from a variety of sources, such as random-61

ized controlled trials (RCTs), observational studies, registries or expert opinion. Model input62

parameters usually correspond to unknown ‘population’ quantities, and finite-sized studies pro-63

vide imprecise estimates of these quantities. Uncertainty about the ‘true’ population parameter64

values is represented by probability distributions [2].65

Probability distributions should be assigned to all uncertain parameters (including those with66

little or no information from which to estimate the parameter), otherwise the parameter value67

is assumed to be known with certainty. When a model has more than one input parameter,68

careful consideration should be given to any dependencies between parameter values. If69

parameters are dependent, then judgements about the values of those parameters should be70

represented via a joint, correlated probability distribution. Guidelines exist to aid the selection71

of distributions for parameters [3].72

Statistical and methodological choices can also introduce uncertainty about parameter values73

when it is not clear which choice of method or statistical distribution is preferred. For exam-74

ple, choices made regarding methods used to synthesize data from multiple sources, type of75

survival distribution for extrapolation of study data, or weighting scheme used for pooling opin-76
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ions elicited from multiple experts [4, 5]. Uncertainty in parameter values can also arise due77

to missing data, poor quality data, and study estimates that are biased or confounded [6–9].78

When the most appropriate technique for data analysis or synthesis is unclear and choices79

or assumptions are required, the choice of technique should be parametrized and uncertainty80

about the choice included in the VOI analysis. Guidelines exist to aid characterization of un-81

certainty about methodological choice [10,11].82

Good practice recommendation 183

Uncertainty in parameter input values should be characterized using probability distri-84

butions, and any dependency between parameters represented by a joint, correlated85

probability distribution.86

Structural uncertainty87

A model’s structure relies on scientific judgements or assumptions about the underlying de-88

cision problem. As the model structure, or functional form, is an approximation of real world89

processes and relationships, the choice of model structure gives rise to structural uncertainty90

as a result of uncertain model error [2,12]. Quantifying structural uncertainty is difficult and is91

often ignored, which is equivalent to assuming that the model is perfect.92

Where possible, structural uncertainty should be characterized. Several methods for handling93

structural uncertainty have been described in the literature. These include: 1) scenario analy-94

sis (reporting of alternative models based on different plausible structural assumptions [13]); 2)95

model structure parametrization (adding parameters to the model that define alternative struc-96

tural choices [14]); 3) model averaging (weighting the outcomes from a set of plausible models97

based on fit to observed data or expert opinion [15, 16]); or 4) model discrepancy analysis98

(the direct quantification of uncertainty about the difference between the model evaluated at99

its ‘true’ input values, and the true value of the output quantity, either by calibration to external100

data or through expert elicitation [12,17]).101

Good practice recommendation 2102

Clearly describe any important model structural uncertainties. Where possible, struc-103

tural uncertainty should be quantified and included in the VOI analysis.104

Probabilistic analysis105

Once characterized, a complete assessment of uncertainty in all parameters, structural and106

analysis techniques is achieved through Monte Carlo probabilistic analysis (referred to as107

‘Probabilistic Sensitivity Analysis’ in the health economics literature). Probabilistic analysis108

is used to propagate the impact of uncertainty in model input parameters through to uncer-109
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tainty about model outputs. This involves repeatedly sampling values at random from each of110

the parameter input distributions and running the model, using the selected set of values, to111

provide a corresponding set of model outcomes of interest for each decision option being eval-112

uated. The results of many sampled simulations allows for estimation of the expected (mean)113

model outputs for each decision option and the uncertainty around these outputs [3].114

Good practice recommendation 3115

Use probabilistic analysis to provide an appropriate quantification of uncertainty in116

model outputs.117

Value of Information analysis118

Decision-making with uncertainty119

Decision-making with uncertainty involves choosing between alternative decision options based120

on imperfect information. In decision theory, a risk-neutral decision-maker would choose be-121

tween the alternative options based on the one that maximizes the expected pay-off [18].122

However, any decision made with uncertainty creates the potential for adverse consequences123

as the expected pay-off of the chosen option may not be realized in practice. Some decision-124

makers may be averse to this risk, preferring an option with a small guaranteed pay-off to an125

uncertain outcome with a larger expected pay-off [19, 20]. Careful selection of the attitude to126

risk that aligns with the decision-maker’s perspective is required for VOI analysis [21].127

In this report, VOI analysis is presented from the perspective of a risk-neutral decision-maker. It128

follows that a decision based on expectation is used to establish the decision option that offers129

maximum expected pay-off based on current knowledge. VOI analysis is used to address the130

question of whether further research is needed to reduce the uncertainty in the decision.131

Key concepts, definitions and notation132

VOI starts by assuming that a decision-maker is faced with a set of mutually exclusive decision133

options, indexed d in the decision space D. Next, it is assumed that a decision model, denoted134

U(d,θ), predicts the utility for decision option d given p uncertain parameters θ = {θ1, . . . , θp}.135

The uncertainty about the ’true’ unknown values of θ is represented by the joint probability136

distribution, π(θ).137

By specifying the model as a general utility function, the analysis can be tailored to any spe-138

cific decision-making context by choosing an appropriate utility metric. In Health Technology139

Assessment, where decision options represent alternative treatment interventions, the utility140

function is often defined as net health benefit or net monetary benefit.141
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The expected value of learning, with certainty, the ‘true’ values of all model parameters θ142

(i.e., eliminating all parameter uncertainty) is referred to as the Expected Value of Perfect143

Information (EVPI). The EVPI is equivalent to the expected costs of uncertainty associated144

with making the decision based on the current evidence.145

The expected value of acquiring new information about a subset of parameters of interest is146

used to identify the parameters that are important in driving the decision uncertainty. The set147

of parameters of interest is denoted by θi and the remaining complementary set of parameters148

by θc, such that together {θi,θc} = θ. The expected value of learning, with certainty, the149

parameters of interest θi is the Expected Value of Partial Perfect Information (EVPPI) for θi150

(also known as the Expected Value of Perfect Parameter Information).151

Perfect information about parameters is usually not achievable with a finite sample size, but it is152

possible to conduct a study to provide some information about the parameters. The expected153

value of a data collection exercise that will result in data X, where X will be informative for θi is154

referred to as the Expected Value of Sample Information (EVSI). The EVPPI for θi is an upper155

limit on the EVSI for any study that is informative about θi.156

Optimum decision option with current knowledge157

With current knowledge, the best that a risk-neutral decision-maker can do is to choose the158

decision option that gives the highest expected utility. The utility associated with this option is:159

max
d∈D

Eθ{U(d,θ)}, (1)

where Eθ(·) represents expectation (mean) taken with respect to π(θ).160

Expected Value of Perfect Information (EVPI)161

If all uncertainty about θ could be eliminated with perfect information, the decision-maker would162

know the values of all parameters θ = θ
∗ with certainty and, therefore, would choose the option163

that maximizes the utility, conditional on knowing θ
∗. This has utility:164

max
d∈D

U(d,θ∗). (2)

However, when a decision is made about whether to conduct further research, θ∗ is not known.165

Therefore, the expected value of a decision when uncertainty is resolved with perfect informa-166

tion is found by averaging the maximized utility over the joint distribution of θ. This is the167

expectation of (2), i.e.,168

Eθ{max
d∈D

U(d,θ)}. (3)

The EVPI is the difference between the expected value of a decision made with perfect infor-169

mation and the expected value of a decision made with current knowledge, i.e., the difference170
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between (3) and (1),171

EVPI = Eθ{max
d∈D

U(d,θ)} −max
d∈D

Eθ{U(d,θ)}. (4)

Expected Value of Partial Perfect Information (EVPPI)172

If all uncertainty about a subset of parameters, θi, could be resolved with perfect information,173

the decision-maker would know the ‘true’ values θi = θ
∗
i with certainty when choosing be-174

tween the alternative decision options. However, the values of the remaining (complementary)175

parameters θc remain uncertain. Therefore, the decision option is selected based on the one176

that maximizes expected utility, conditional on the values θ
∗
i . This has utility:177

max
d∈D

Eθc|θ∗

i
{U(d,θ∗

i ,θc)}, (5)

where Eθc|θ∗

i
(·) represents expectation taken with respect to π(θc|θ

∗
i ). When the decision178

about conducting further research to provide information about these parameters is made, the179

values of θ∗
i are unknown. Therefore, the expectation of (5) is computed:180

Eθi

[

max
d∈D

Eθc|θi{U(d,θi,θc)}

]

. (6)

The EVPPI for θi is the difference between (6) and (1):181

EVPPI(θi) = Eθi

[

max
d∈D

Eθc|θi{U(d,θi,θc)}

]

−max
d∈D

Eθ{U(d,θ)}. (7)

EVPI and EVPPI can be multiplied by the size of the beneficiary population to give population182

EV(P)PI values. The population EV(P)PI provides an expected upper bound on the value183

of further research that would eliminate uncertainty about all (or subsets of) parameters. A184

population EV(P)PI that is less than the estimated costs of any research study is a sufficient185

condition for establishing that research is not of value. A population EV(P)PI that is greater186

than the estimated cost of the research study is a necessary, but not sufficient, condition for187

establishing that research is potentially of value. In order to establish a sufficient condition for188

further research, the costs of conducting the new study must also be considered.189

Expected Value of Sample Information (EVSI)190

In the absence of perfect information, if data X were to become available the decision-maker191

would choose the option that maximizes the utility, conditional on knowing X. This has utility:192

max
d∈D

Eθ|X{U(d,θ)}. (8)

However, the data X are not collected when the decision to conduct further research is made.193

Therefore, the expected value of a decision taken with sample information is obtained by aver-194

aging the maximized expected utility of (8):195

EX

[

max
d∈D

Eθ|X{U(d,θ)}

]

. (9)
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The EVSI for the data collection exercise that yields X is the difference between (9) and (1):196

EVSI = EX

[

max
d∈D

Eθ|X{U(d,θ)}

]

−max
d∈D

Eθ{U(d,θ)}. (10)

As with EVPI and EVPPI, EVSI can be multiplied by the size of the beneficiary population to197

yield a population EVSI value.198

Expected Net Benefit of Sampling (ENBS)199

The difference between the population EVSI value and the cost of the data collection exercise200

is the Expected Net Benefit of Sampling (ENBS). The ENBS is a measure of the net value201

of any particular study. Under the assumption that the proposed study is relevant only to the202

decision problem at hand and has no wider value, then ENBS ≥ 0 is a necessary condition203

for conducting the study. The ENBS is powerful for guiding choices about study characteris-204

tics such as sample size and length of follow up, with the optimal design being the one that205

maximizes the ENBS [22,23].206

The costs of research not only include the costs of the study itself, but also the opportunity207

costs to individuals while the research is underway, e.g., some participants will receive a non-208

optimal intervention during the study [24].209

Estimation of VOI measures210

EVPI Computation211

In the simplest case of a two-decision option problem in which the difference in utility be-212

tween options is assumed to be normally distributed, an exact analytic expression for EVPI213

exists [25, 26]. However, for most problems an analytic solution cannot easily be derived, and214

sampling-based methods are required. For models that generate a non-linear relationship be-215

tween inputs and outputs, such as those for which Eθ{U(d,θ)} 6= U{d,Eθ(θ)}, a deterministic216

analysis, in which the model is evaluated at the mean values of its parameters, will gener-217

ate an incorrect estimate of expected utility. Monte Carlo probabilistic analysis is used, which218

approximates Eθ{U(d,θ)} by:219

1

N

N
∑

n=1

U(d,θ(n)), (11)

where θ
(n), n = 1, . . . , N are samples drawn from the joint distribution π(θ). Monte Carlo sim-220

ulation is also used to approximate the first term in the EVPI expression, Eθ{maxd∈D U(d,θ)}221

via222

1

N

N
∑

n=1

max
d∈D

U(d,θ(n)). (12)
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Expression (12) can be computed using the single set of N samples from π(θ) that are used223

to approximate the baseline expected utility of (11). Therefore, the computation of EVPI is224

a ‘single loop’ Monte Carlo scheme, and does not require additional sampling beyond that225

required for a probabilistic analysis - note that ‘loop’ here calls into mind the for-loop program-226

ming construct that is used to execute repeatedly a set of instructions. Algorithm 1 describes227

the single-loop scheme for computing EVPI.228

Algorithm 1

Single loop Monte Carlo scheme for computing EVPI

1. Sample a value from the distribution of the uncertain parameters.

2. Evaluate the utility function for each decision option using the parameter values generated

in step 1. Store the values.

3. Repeat steps 1 to 2 for N samples (e.g., 10,000). This is the probabilistic analysis sample.

4. Calculate the expected (mean) utility value of the N samples for each decision option.

5. Choose the maximum of the expected utility values in step 4 and store. This is the ex-

pected utility with current knowledge.

6. Calculate the maximum utility of the decision options for each of the N samples generated

in step 3.

7. Calculate the mean of the N maximum utilities generated in step 6. This is the expected

utility when uncertainty is resolved with perfect information.

8. Calculate the EVPI as the difference between the expected utility when uncertainty is

resolved with perfect information (step 7) and the expected utility with current knowledge

(step 5).
229

EVPPI Computation230

An analytic solution for EVPPI rarely exists and sampling-based methods are required. The231

first term in the EVPPI expression (7) contains a nested expectation, which means that the232

Monte Carlo approach requires a nested ‘double-loop’ solution:233

Eθi

[

max
d∈D

Eθc|θi{U(d,θi,θc)}

]

≃
1

K

K
∑

k=1



max
d∈D

1

J

J
∑

j=1

{

U(d,θ
(k)
i ,θ(j,k)

c )
}



 . (13)

For the parameters of interest, k = 1, . . . ,K samples, θ
(k)
i , are drawn from the distribution234

π(θi) in the ‘outer loop’ of simulation. An ‘inner loop’ of simulation is then used to sample from235

the complementary parameters, conditional on the value of θ
(k)
i . For the complementary pa-236

rameters, j = 1, . . . , J samples, θ
(j,k)
c , are drawn from the conditional distribution π(θc|θ

(k)
i ). If237

θi and θc are independent, then sampling from the conditional distribution π(θc|θ
(k)
i ) reduces to238

sampling from the marginal distribution π(θc). Algorithm 2 describes the double-loop scheme239

for estimating EVPPI.240
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Algorithm 2

Double-loop Monte Carlo scheme for computing EVPPI

1. Sample a value from the distribution(s) of the target parameter(s) of interest.

2. Sample a value from the distributions of the remaining (‘complementary’) uncertain pa-

rameters, conditional on the value of the target parameter(s) sampled in step 1. If the

target and complementary parameters are independent, the sample for this step can be

drawn from the prior distribution of the complementary parameters.

3. Evaluate the utility function for each decision option using the parameter values generated

in steps 1 and 2, and store the resulting utility values.

4. While holding the parameter value from step 1 constant, repeat steps 2 and 3 for J sam-

ples. This represents the inner loop of simulation.

5. Calculate the mean of the utility values across all J samples for each decision option and

store.

6. Repeat steps 1 to 5 for K values from the distribution of the target parameter(s) (step 1)

and store the outputs from step 5. This represents the outer loop of simulation.

7. Calculate the mean utility for each decision option across all K samples of the output loop

stored in step 6.

8. Choose the maximum of the mean utilities calculated in step 7 and store. This is the

expected utility with current knowledge about the target parameter(s) of interest.

9. Calculate the maximum utility of the decision options (i.e., the maximum of the inner loop

means) for each of the K samples of the output stored in step 6.

10. Calculate the mean of the K maximum utility values generated in step 9. This yields

the expected utility when uncertainty is resolved with perfect information about the target

parameter(s) of interest.

11. Calculate the EVPPI as the difference between the expected utility when uncertainty is

resolved with perfect information about the parameter(s) of interest (step 10) and the ex-

pected utility with current knowledge (step 8).
241

Note that the selection of the sample size of the inner loop (J) is crucial as double-loop EVPPI242

computation can provide biased estimates when the sample size is small [27]. Nested double-243

loop sampling schemes can be computationally expensive. One of the key determinations244

for reducing the computational burden is whether the model is linear or multilinear in the245

complementary parameters θc. A model is linear in complementary parameters, θc1 and θc2 , if246

it can be written as a sum of these parameters, e.g., U(θ) = θc1θ
2
i1
+ θc2θi2 , where θi1 and θi2247

are parameters of interest. A model is multilinear in the complementary parameters if it can be248

written in sum-product form of the complementary parameters, e.g., U(θ) = θc1θc2θ
2
i1
+θc3θi1θi2 .249

If these conditions hold (and there is no correlation between the complementary parameters250

that are multiplied together), the double loop sampling scheme can be replaced by a single251

loop, where the mean values of the complementary parameters are used to avoid the need for252

the inner loop of simulation.253
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The general forms of model for which a single-loop approach is justified are described else-254

where [28]. Where applicable, single loop methods are to be preferred to reduce Monte Carlo255

error [27, 29, 30]. Algorithm 3 describes the single-loop Monte Carlo scheme for estimating256

EVPPI.257

Algorithm 3

Single-loop Monte Carlo scheme for computing EVPPI

1. Sample a value from the distribution of the target parameter(s) of interest.

2. Evaluate the utility function for each decision option using the value for the target pa-

rameter(s) from step 1 and the mean values of the remaining uncertain parameters (or

functions of them [28]). Store the values.

3. Repeat steps 1 and 2 for N samples.

4. Calculate the mean of the N utility values for each decision option.

5. Follow steps 5-8 of the algorithm for computing EVPI (algorithm 1).
258

EVPPI can also be computed using a regression-based method that uses a non-parametric,259

or other flexible regression, method to estimate the inner expectation of expression (6). The260

regression-based method only requires the single set of samples that is generated by the261

probabilistic analysis. Algorithm 4 describes the single-loop regression-based scheme for es-262

timating EVPPI.263

Algorithm 4

Single-loop regression-based scheme for computing EVPPI

1. Generate the probabilistic analysis sample using steps 1-3 of the algorithm for computing

EVPI (algorithm 1).

2. For each of the decision options, regress the estimates of utility on the parameter values

of the target parameter(s) of interest.

3. Calculate the regression fitted values for each decision option.

4. Follow steps 5-8 of the algorithm for computing EVPI (algorithm 1).
264

A review of alternative methods for computing EVPPI is available elsewhere [31], while Figure265

1 of the supplementary appendix provides guidance on the choice of computation method266

based on model features.267

Good practice recommendation 4268

When using the nested double-loop method to compute EVPPI, choose inner and outer269

loop simulation sizes to ensure acceptable bias and precision.270

Good practice recommendation 5271
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When using the single-loop methods to compute EVPPI, check that the underlying as-272

sumptions of the method hold.273

EVSI Computation274

EVSI can be computed analytically if the difference in utility between decision options is as-275

sumed to be normally distributed, and the proposed data collection exercise is expected to276

lead to a known reduction in the variance of the incremental utility [26, 32]. However, an an-277

alytic solution cannot easily be derived for most problems and sampling-based methods are278

usually required.279

For sampling-based methods, EVSI relies on the generation of plausible datasets from a pro-280

posed new study. The parameters θ can usually be partitioned into two sets: a set, θi, for281

which judgements will be informed by the newly collected data, X, and a complementary282

set θc such that {θi,θc} = θ. Plausible datasets can be obtained by first sampling values283

θ
(k)
i , k = 1, . . . ,K from the prior distribution of the model parameters π(θi). Then, conditional284

on each value θ
(k)
i , a sample from the ‘likelihood function’ (i.e., the probability distribution for285

new data, conditional on the parameters) X(k) ∼ π(X|θ
(k)
i ) is generated. The two sources of286

information are then combined to form a posterior distribution for the model parameters given287

the new sample data and the prior knowledge about the model parameters.288

When defining the likelihood for data generation, consideration should be given to how the data289

from the study would actually be analysed in the study in order to inform parameters π(θi). For290

example, the likelihood that is expected to be used in the statistical analysis of the data would291

be a naturally good candidate for the likelihood used to generate plausible datasets. The292

analyst should also consider any mechanisms that may result in corrupted, biased or missing293

(e.g. censored) data.294

When the likelihood is chosen such that the updated posterior distribution is in the same family295

as the prior (e.g., a beta prior updated by binomially distributed data results in a beta posterior)296

the prior is called a conjugate prior for the likelihood function. Conjugacy has computational297

advantages because it results in a known posterior distribution that is easy to sample from.298

The likelihood function that results in conjugacy is often (but not always) the natural choice for299

the data generating mechanism.300

The first term in the EVSI expression contains a nested expectation, which means that the301

basic Monte Carlo approach to EVSI requires a nested ‘double loop’ solution:302

EX

[

max
d∈D

Eθ|X{U(d,θ)}

]

≃
1

K

K
∑

k=1



max
d∈D

1

J

J
∑

j=1

{

U(d,θ(j,k))
}



 , (14)

where parameters θ
(j,k), j = 1, . . . , J are sampled from the posterior distribution π(θ|X(k)) in303

an inner loop, conditional on samples X
(k), k = 1, . . . ,K in an outer loop.304
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Algorithm 5 describes the double loop Monte Carlo scheme for estimating EVSI.305

Algorithm 5

Double-loop Monte Carlo scheme for computing EVSI

1. Define the proposed study design (sample size, length of follow-up etc). Determine the

data generating distribution (the likelihood) under this design.

2. Sample a value from the prior distribution of the parameter(s) that will be informed by new

data.

3. Sample a plausible dataset from the distribution defined in step 1, conditional on the value

of the target parameter(s) sampled in step 2.

4. Update the prior distribution of the target parameter(s) with the plausible dataset from step

3 to form the posterior distribution for the target parameter(s). Sample a value from this

posterior distribution, which may require Markov chain Monte Carlo sampling if the prior

and likelihood are not conjugate.

5. Sample a value from the prior distribution of the remaining uncertain parameters.

6. Evaluate the utility function for each decision option using the parameter values from steps

4 and 5 and store the results.

7. Repeat steps 4 to 6 J times. This represents the inner loop of simulation.

8. Calculate the mean of the utility values across all J samples for each decision option in

step 7 and store.

9. Repeat steps 2 to 8 for K values from the prior distribution of the parameters. This repre-

sents the outer loop of simulation.

10. Calculate the mean utility values for each decision option across all K samples of the

output stored in step 9.

11. Choose the maximum of the expected utility values in step 10 and store. This is the

expected utility with current knowledge.

12. Calculate the maximum utility of the decision options (i.e. the maximum of the inner loop

means) for each of the K samples of the output stored in step 9.

13. Calculate the mean of the K maximum utility values generated in step 12. This is the

expected utility with new sample information about the target parameter(s) of interest.

14. Calculate the EVSI as the difference between the expected utility with new sample infor-

mation (step 13) and the expected utility with current knowledge (step 11).

15. Repeat steps 1-14 to calculate EVSI for different study designs (e.g., studies with different

sample sizes or lengths of follow-up).
306

As with EVPPI, one of the key determinations for reducing the computation of EVSI is whether307

the model is linear or multilinear in either θi or θc (or both). For EVSI, the computation can308

also be reduced if an analytic expression exists for the posterior mean Eθi|X(θi) given the new309

data. If these conditions hold, the double loop scheme can be replaced with a single loop in310

which the mean values for the posterior distribution for the parameter(s) of interest are used311

under certain conditions [33, 34]. Algorithm 6 describes the single loop Monte Carlo scheme312
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for estimating EVSI.313

Algorithm 6

Single loop Monte Carlo scheme for computing EVSI

1. Define the proposed study design (sample size, length of follow-up etc). Determine the

data generating distribution (the likelihood) under this design.

2. Sample a value from the prior distribution of the parameter(s) that will be informed by new

data.

3. Sample a plausible dataset from the distribution defined in step 1, conditional on the value

of the parameter(s) sampled in step 2.

4. Update the prior distribution of the target parameter(s) of interest with the new data in step

3 to form the posterior distribution. Analytically compute the expectation (mean value) of

this posterior distribution. This will be possible if the prior and likelihood distributions are

conjugate.

5. Evaluate the utility function for each decision option using the posterior mean estimate

of the target parameter(s) and the mean values of the remaining uncertain parameters.

Store the values.

6. Repeat steps 2 to 5 for N samples from the prior distribution of the target parameter(s) of

interest.

7. Calculate the mean utility values for each decision option across all N samples of the

output stored in step 5.

8. Choose the maximum of the expected utility in step 7 and store. This is the expected utility

with current knowledge about the target parameter(s) of interest.

9. Calculate the maximum utility of the decision options for each of the N samples of the

output stored in step 5.

10. Calculate the mean of the N maximum utility values generated in step 9. This is the

expected utility with new sample information about the target parameter(s) of interest.

11. Calculate the EVSI as the difference between the expected utility with new sample infor-

mation (step 10) and the expected utility with current knowledge (step 8).

12. Repeat steps 1-11 to calculate EVSI for different study designs (e.g., studies with different

sample sizes or lengths of follow-up).
314

Several other methods for computing EVSI exist. As with EVPPI, EVSI can be computed315

directly from the probabilistic analysis sample using regression-based methods [30, 35]. A316

non-parametric regression is used to estimate the inner expectation of the first term of the317

EVSI expression (10), and the method becomes a single loop. The method relies on there318

being a low dimensional summary statistic for the new data s(X), a good choice being the319

summary statistic that would be reported if the study was actually conducted. The method320

makes the assumption that the relationship between s(X) and the conditional expectation321

Eθ|s(X){U(d,θ)} is smooth, which is likely to be a reasonable assumption in most models.322
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EVSI can also be approximated using importance sampling, with only a single set of prior323

parameter samples and the corresponding probabilistic analysis sample [36]. This requires324

repeated evaluation of the likelihood function, and the scheme is expected to be most use-325

ful when the utility function is computationally expensive compared to the likelihood function.326

More recently, a Gaussian approximation method, which has similarities to the regression-327

based scheme, and a moment matching method have been proposed [37, 38]. These meth-328

ods have the advantage that, once the EVSI has been computed for a single proposed study,329

the EVSI values for a range of different study sample sizes can be easily computed. Given330

the different methods available for computing EVSI, Figure 2 of the supplementary appendix331

provides guidance on the choice of EVSI computation method based on model features.332

Good practice recommendation 6333

Choose the data generating distribution for the EVSI computation to reflect how the334

data would be analysed if the proposed new study were conducted.335

Good practice recommendation 7336

When simulating datasets, model the processes that are expected to result in censoring,337

missing data and measurement bias in order to mimic the true data generating process.338

Reporting of results339

Information generated by research is used to inform decisions for the population of individuals340

who could potentially benefit from the information. This depends on the size of the beneficiary341

population whose decision choice will be informed by the additional research (e.g., the preva-342

lent cohort with the disease and/or the future incident cohort) and on the time horizon over343

which the information generated by research is useful. The VOI population estimate is deter-344

mined by multiplying the per-person VOI estimate by the size of the beneficiary population over345

the anticipated time horizon:346

Population VOI = VOI per-person ×
T
∑

t=0

It

(1 + d)t
, (15)

where It is the incidence in time period t, T is the time horizon, and d is the discount rate for a347

single time period [39].348

An estimate of the size of the beneficiary population is typically derived from epidemiological349

data. The benefits of future research are only realized when the study findings are reported350

[26]. However, some study participants who are enrolled in the optimal arm of a research351

study will also receive the benefits of the optimal intervention while the study is conducted352

[24]. The size of the beneficiary population also depends on the perspective of the study and353
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whether information might be generalizable to multiple jurisdictions [40]. Gradual uptake or354

implementation of research findings should also be considered when determining the size of355

the relevant population [41].356

Estimating the time horizon, T , over which the additional evidence remains informative is more357

challenging. Information generated by research is not valuable indefinitely because future358

changes are expected to occur over time that impact on the value of information [39,42]. The359

impact of these complex and uncertain processes is impossible to quantify with certainty, but360

some assessment is possible based on historical evidence and anticipated future changes,361

e.g., patent expiration, upcoming innovations, and other evaluative research underway. The362

value of research should also be discounted over this time horizon so that more weight is363

given to decisions that are informed by the research in the near term and less weight given to364

decisions informed in the more distant future.365

VOI is expressed in units of utility, which is typically net health benefit or net monetary benefit366

when a cost-effectiveness model has been employed. Because both net health and mone-367

tary benefit depend on the valuation of health opportunity cost (as expressed by the cost-368

effectiveness threshold), VOI should be reported for explicit thresholds of interest, or presented369

in graphical form as a function of the cost-effectiveness threshold. Figure 3 of the supplemen-370

tary appendix illustrates the presentation of EV(P)PI.371

Population EVSI should be reported in a similar way to EV(P)PI, but with the additional report-372

ing of information governing the research design, e.g., sample size, allocation of participants373

within the study, length of follow-up, endpoints included in the design. This includes the report-374

ing of the parameter prior distribution and likelihood function used to estimate EVSI. The costs375

of collecting the sample information should be clearly reported for the calculation of ENBS.376

This includes the fixed cost of the proposed research, the variable costs associated with the377

study design, and the expected opportunity costs while the research is underway [24]. Figure378

4 of the supplementary appendix illustrates the presentation of EVSI and ENBS.379

Good practice recommendation 8380

When reporting VOI results, clearly state all underlying assumptions.381

Other modeling considerations382

Minimal modeling383

Most commonly VOI analysis is applied when a decision-analytic model is available to charac-384

terize uncertainty and the need for further evaluative research. However, many organizations385

responsible for making research prioritization decisions lack the time and resources to under-386
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take formal decision modeling. In these circumstances, it may be necessary to adopt a minimal387

modeling approach, which allows for rapid estimation of the value of further research without388

the need for constructing a full disease and/or decision-analytic model [43,44].389

Minimal modeling may be used as a substitute for full modeling when a clinical study is avail-390

able that directly characterizes uncertainty in comprehensive measures of outcome that are391

sufficient to inform the decision maker’s utility for all relevant decision options [43]. This is392

possible when:393

• The clinical study captures all important differences in outcomes between the decision394

options being evaluated;395

• The endpoints that are important for the decision occur during the study;396

• No age-specific competing causes of death or other events occur after the study ends.397

Clinical studies that report intermediate endpoints are also amenable to minimal modeling if398

intermediate outcomes can be mapped to comprehensive outcome measures using a simple399

model with a few parameters.400

Minimal modeling offers a practical means for estimating the value of further research quickly,401

and offers a transparent and efficient method for setting research priorities [43,44]. However, it402

has a number of notable limitations. First, minimal modeling may involve an over-simplification403

of complex clinical processes. The extent to which the approach adequately addresses the404

decision problem is important, and the analyst should make clear all the assumptions un-405

derpinning the analysis. Second, the EVPPI cannot be computed for quantities that are not406

parametrized within the model. Third, it is difficult to adapt a minimal model that is based on a407

specific study to address a different, but related decision problem [43].408

VOI for endpoints other than cost-effectiveness409

Some decision-making bodies exclude economic considerations from their decision-making410

process and, instead, use a utility function based on health outcomes alone. VOI analysis may411

be applied directly to the results of standard meta-analysis (or a single study) on a specific412

outcome measure [45, 46]. This approach places the focus on an endpoint of interest, e.g.,413

distribution of values describing uncertainty about the relative effect of an intervention on mor-414

tality. The VOI is then estimated in terms of that endpoint, e.g., number of deaths avoided.415

However, it does lead to difficulty in interpreting VOI outcomes across diverse decision prob-416

lems.417

Importantly, VOI analysis is relevant to different types of health care systems and decision-418

making contexts. It should not be regarded as restricted to situations where decision-analytic419

models or estimates of cost-effectiveness are available.420
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Software resources421

Decision-analytic models are implemented in a range of software, including spreadsheets,422

modeling programs such as TreeAge (TreeAge Software, Inc., Williamstown, MA, USA) or423

SIMUL8 (SIMUL8 Corporation, Boston, MA, USA), statistical environments such as R or Stata424

(StataCorp LLC, TX, USA), or general purpose programming languages such as Python or425

C++. Whether or not the VOI analysis can be conducted using the same software as that426

used to implement the decision-analytic model will depend on the choice of VOI computation427

method.428

Compared with spreadsheets (which are noted for their perceived transparency), programming429

languages provide faster execution times and vastly increased flexibility. The analyst must430

write code, but many programming languages have specialist libraries that can reduce this431

burden (e.g. the BCEA [47] and heemod [48] packages in R). Analysts can also use web tools432

such as the Sheffield Accelerated Value of Information (SAVI) app [49] and BCEAweb [47,50],433

an online version of the BCEA R package. The introduction of these software solutions have434

allowed VOI analysis to be computed quickly; however, the analyst should always ensure that435

the underlying assumptions of the methods hold when using and interpreting the results.436

Future research directions437

The following areas have been identified where future research in VOI is warranted:438

Optimising the value of research to reduce structural uncertainties. Structural uncertainty is439

rarely quantified in model-based analysis. Not quantifying structural uncertainty implies that440

the model is a perfect representation of real world processes and relationships. VOI analysis441

for structural uncertainty has been explored previously in [12] and [14], but methods in this442

area are underdeveloped.443

Optimising study design. The set of potential study designs for a given research problem may444

be large. The design space may contain a range of sample sizes, allocations across treatment445

arms, follow-up duration, stopping rules, etc. [22]. Calculating EVSI for every combination of446

designs is likely to be computationally demanding [51], and methods are needed to increase447

computational efficiency. A related challenge is EVSI computation for trials with adaptive de-448

signs, in which aspects of the trial design itself are conditional on the data simulated in the449

EVSI calculation. The sequence in which different types of research studies should be con-450

ducted also represents an area that has received little attention to date [52].451

Computation of EVSI in complex modeling settings. When evidence from a new research452

study informs functions of model parameters, more complex situations are created, which453

increase the computational burden. Complex modeling situations arise from dynamic trans-454
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mission modeling. EVSI computation also relies on the ability to generate plausible datasets455

from a distribution that reflects the data generating process. This can be difficult if the process456

is complex (e.g., when there is bias, censoring, missingness, data corruption or measurement457

error).458

Identifying the appropriate time horizon for VOI. The ‘correct’ time horizon for research de-459

cisions (expression 15) is unknown since it is a proxy for uncertain future changes [39, 42].460

Identifying the appropriate time horizon for research decisions and incorporating uncertainty461

in the time horizon is an area that has received little attention to date.462

Conclusions463

This, second, report of the ISPOR VOI Task Force provides good practice guidance in the464

form of detailed algorithms for estimating EVPI, EVPPI and EVSI. It also provides information465

about efficient approaches and software available to support the implementation of VOI. Box 2466

provides a summary of the good practice recommendations, for conducting and reviewing VOI467

analyses, presented throughout this report.468

Box 2: ISPOR Value of Information Analysis Task Force Report’s Good Practice

Recommendations for Conducting and Reporting a VOI analysis

1. Uncertainty in parameter input values should be characterized using probability distribu-

tions, and any dependency between parameters represented by a joint, correlated proba-

bility distribution.

2. Clearly describe any important model structural uncertainties. Where possible, structural

uncertainty should be quantified and included in the VOI analysis.

3. Use probabilistic analysis to provide an appropriate quantification of uncertainty in model

outputs.

4. When using the nested double-loop method to compute EVPPI, choose inner and outer

loop simulation sizes to ensure acceptable bias and precision.

5. When using the single-loop methods to compute EVPPI, check that the underlying as-

sumptions of the method hold.

6. Choose the data generating distribution for the EVSI computation to reflect how the data

would be analysed if the proposed new study were conducted.

7. When simulating datasets, model the processes that are expected to result in censoring,

missing data and measurement bias in order to mimic the true data generating process.

8. When reporting VOI results, clearly state all underlying assumptions.
469
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Supplementary Appendix616

Model is multilinear in θc

AND
Parameters within any multiplica-
tive set within θc are independent

AND

Independence between θi and θc

The model can be
re-parametrized so that it

is multilinear in θc

AND

Independence between θi and θc

The model is non-linear in θc

but there is a Taylor Series
approximation for the expectation

of the non-linear function of θc
AND

Independence between θi and θc

The model is non-linear in θc

but there is a spline-based

approximation to the expectation

of the non-linear function of θc

The model is computationally

cheap to conduct with an accept-

able level of Monte Carlo error

Utility is a well-specified

smooth function of the

parameters of interest

Single-loop Monte Carlo scheme
Methods 1 & 2 in [28]

See Algorithm 3

Single-loop Monte Carlo scheme
Method 3 in [28]

See Algorithm 3

Single-loop Monte Carlo scheme
Method 4 in [28]

See Algorithm 3

Single-loop Monte Carlo scheme
Method 5 in [28]

See Algorithm 3

Double-loop Monte Carlo scheme
Box 1 in [53]

See Algorithm 2

Single-loop
regression-based scheme

[29, 54]

See Algorithm 4

Double-loop Monte Carlo scheme
Box 1 in [53].

Carefully consider min-
imum loop sizes [27].

See Algorithm 2

Yes

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

No

Figure 1: Process for choosing a method for computing the Expected Value of Partial Perfect

Information based on model features. Algorithm numbers refer to algorithms in this report.
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Model is multilinear
in all the parameters

AND
Parameters within any multi-
plicative set are independent

AND
Independence between θi and θc

AND

Analytic expression for

posterior mean E(θi|X)

The model is multilinear
in θi or θi but not both

OR

The model is multilinear in all pa-

rameters, but no analytic expres-

sion for posterior mean E(θi|X)

The model is of arbitrary form
AND

The model is
computationally cheap

AND

Sampling from the posterior

π(θi|X) is straightforward

The model is of arbitrary form
AND

Evaluating the likelihood is

straightforward

Each simulated dataset, X,
can be summarized with a low

dimensional summary statistic

Single-loop Monte Carlo scheme
[33] (using step C1)

See Algorithm 6

Various double-loop Monte

Carlo schemes [33]

General double-loop
Monte Carlo scheme
[33] (using step C4)

See Algorithm 5

Importance sampling-

based scheme [36]

Single-loop

regression-based scheme [30]

Consider ‘Gaussian approxi-

mation’ method [37] or ‘mo-

ment matching’ method [38]

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

Figure 2: Process for choosing a method for computing the Expceted Value of Sample Infor-

mation based on model features. Algorithm numbers refer to algorithms in this report.
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Figure 3: An illustration of population Expected Value of Perfect Information (EVPI) for all

model parameters and Expected Value of Partial Perfect Information (EVPPI) for two specific

parameters of interest, over a range of cost-effectiveness thresholds. The higher the EV(P)PI,

the larger the opportunity cost of a suboptimal decision. The EV(P)PI falls as one decision

option appears increasingly optimal, i.e., as the probability of error falls. Additional research

should only be considered if the EV(P)PI exceeds the expected cost of the research. In this

example, the EVPI exceeds the cost of research between the cost-effectiveness thresholds of

$19,000 and $38,000 per quality-adjusted life year (QALY).
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Figure 4: An illustration of population Expected Value of Sample Information (EVSI) and Ex-

pected Net Benefit of Sampling (ENBS) for a range of sample sizes of research study. The

EVSI increases with the sample size but at a declining rate. In this example, the marginal

costs of sampling are constant, as shown by the line indicating the cost of research study. The

ENBS reaches a maximum at an optimal sample size of 170.
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