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While people famously forget genuine memories over time, they also tend to mistakenly

over-recall equivalent memories concerning a given event. The memory phenomenon

is known by the name of episodic overdistribution and occurs both in memories of

disjunctions and partitions of mutually exclusive events and has been tested, modeled

and documented in the literature. The total classical probability of recalling exclusive

sub-events most often exceeds the probability of recalling the composed event, i.e., a

subadditive total. We present a Hamiltonian driven propagation for the Quantum Episodic

Memory model developed by Brainerd et al. [1] for the episodic memory overdistribution

in the experimental immediate item false memory paradigm [1–3]. Following the

Hamiltonian method of Busemeyer and Bruza [4] our model adds time-evolution of

the perceived memory state through the stages of the experimental process based

on psychologically interpretable parameters—γc for recollection capability of cues, κp

for bias or description-dependence by probes and β for the average gist component

in the memory state at start. With seven parameters the Hamiltonian model shows

good accuracy of predictions both in the EOD-disjunction and in the EOD-subadditivity

paradigm. We noticed either an outspoken preponderance of the gist over verbatim

trace, or the opposite, in the initial memory state when β is real. Only for complex β a

mix of both traces is present in the initial state for the EOD-subadditivity paradigm.

Keywords: episodic over distribution, disjunction fallacy, subadditivity, quantum cognition, Hamiltonian operator

1. INTRODUCTION - THE EPISODIC MEMORY

In an early effort to systematize the developing science of memory, Tulving [5] aimed to provide
operative definitions for presumed various categories of memory. Continuing a dichotomic
approach, he proposed to complement the previously coined “semantic” memory with the
“episodic” memory. While our “semantic” memory would allow us to regain facts and abstract
knowledge about our world, our “episodic” memory would let us recall personally lived events in a
specific spatio-temporal context from our past. While distinct, both were still considered partially
overlapping information processing systems. With Mandler’s [6] dual process approach it became
more clear to distinguish the more contrived recollection by details with respect to the recall of
facts [7]. In the dual recollection-familiarity process models a cue is processed respectively either
in terms of remembering an event’s details up to its genuine recollection, or by retrieving a feature
which is associated to the cue so it becomes familiar and conflated with a truly episodic memory.
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Jacoby [8] pointed out a confusion of the recollection-
familiarity process with the retrieval task itself. He urged for
explicit process dissociation providing two separate parameters
for the aspects of recollection—or intentional memory use—
and for familiarity—or automatic memory use—in the dual
process. In a further developed dual process approach the
“conjoint recognition” model of Brainerd et al. [9] proposes
separate parameters for the processes of; identity judgment,
similarity judgment, and response bias. The latter model
is able to implement the “fuzzy trace” theory (FTT) with
its identity vs. similarity distinction. Reyna and Brainerd
[10] crucially distinguishes verbatim and gist dimensions to
memories. Verbatim traces hold the detailed contextual features
of a past event, while gist traces hold its semantic—“fuzzy”—
details. Our brain would analyze a past event by accessing
its stored verbatim and gist trace in parallel. On the one
hand the verbatim trace of a verbal cue handles it “surface”
content—i.e., orthography and phonology for words—with its
contextual features, while the verbal cue’s gist trace will encode
“relational” content—i.e., semantic content for words—with its
contextual features. In more recent work the FTT model has
received a quantum probabilistic formalization to cope with
overdistribution in memory tests [1, 4, 11, 12]. While we
are essentially connecting to this line of research with our
present quantum model, a wide variety of recollection memory
models have been developed in the literature that are not
discussed here. We do refer to one specific semantic network
approach by Nelson et al. [13] and Bruza et al. [14] which also
infers quantum structures for its development. In essence their
model proposes a semantically associated network, in which
a target word is adjacent to all associated terms according
the natural language of its users. It has been shown best
prediction of memory performance is obtained by implementing
the network in a quantum superposition state of either complete
activation—amplitude 1—or non-activation—amplitude 0. The
model provides weighed directional word associations, and a
quantumlike entanglement between nodes is invoked to predict
parallel instead of serial activation of neighbors. We have not
included the Nelson andMcEvoymodel in our present discussion
since it has not been developed to explicitly implement a gist-
verbatim distinction with respect to which the EOD effect we
target here is developed.

The EOD effect. One striking phenomenon concerning
memory is the Episodic Over-distribution effect—or EOD. More
or less this effect expresses a person’s proneness to conflate
memories of distinct events. More precisely the effect points
out we tend to affiliate “alien” memories to true memories
concerning a given event, leading to an “exaggeration” of
memories concerning that event.

In Brainerd et al. [3] the disjunction fallacy is modeled
for the item false memory paradigm while the source false
memory version is covered in Brainerd et al. [15]. Brainerd et al.
[1] exposes the more common case of subadditivity of episodic
memory.

These EOD effects are shown in specifically designed
experiments: the item false memory experiment in 2015 is a
modification (also [2, 3, 9]) of a classical paradigm in which

a single “instruction” (or probe) would be given to measure
whether “a given cue is a target (or not).”

EOD–subadditivity. In the item false memory (IFM)
experiment three possible cues “old”—or o, “new-similar”—or
ns, and “new-dissimilar”—or nd are presented. These cues are
crossed with three “probes” namely o?, ns?, and nd?. These probes
“o?, ns?, and nd?,” respectively, enquire the participant “is this
probe old?” (studied before), “is this probe new but similar?”
(semantically related to the old cues but not literally among
them) and “is this probe new and dissimilar?” (has nothing to
do with with the studied cues, even not semantically). In this
experimental paradigm after exposure to an unidentified cue the
participant is enquired by one of three distinct probes.

In practice most of the IFM experiments turn out subadditive
acceptance probabilities:

p(o?)+ p(ns?)+ p(nd?) > 1. (1)

That is, the disjoint partial features are over recalled with respect
to its encompassing event. Notice that even if the law of total
probability would be satisfied Brainerd mentions the possible
issue of compensations; a systematic change in remembering ns
as such may compensate a reverse change to remember ns as o,
restoring the classical addition to 1.

EOD–disjunction fallacy. In the 2010-version of the IFM
experiment a disjunctive probe was presented to the participants
instead of the nd? probe. This probe questioned whether the
cue was either “old” or “new-similar,” leaving unnecessary the
answer to the question which one of both types the cue really was.
A comparison of acceptance probability under the disjunctive
probe o or ns? and the summed acceptance probabilities under
the separate probes o? and ns? revealed a subadditive relation

p(o?)+ p(ns?) > p(o or ns?). (2)

This relation amounts to a disjunction fallacy since both cue types
are mutually exclusive categories. The EOD effect was further
identified using the unpacking factor of [16]

p(o?)+ p(ns?)

p(o or ns?)
> 1. (3)

the excess value of the fraction above one gives a measure of the
amplitude of the effect.

Explanations of EOD effects. A number of theoretical
explanations have been provided to interpret this phenomenon:

The fuzzy trace theory was implemented in QEM—the
Quantum Episodic Memory model—by Brainerd et al. [1, 11].
By processing the perception of the verbatim and gist memory
trace as separate components of a state vector, QEM allows to
encompass the non-classical EOD probability effects of episodic
memory. This capacity, we will see in the next section, is
essentially due to the ubiquity of the gist component and its
implementation in the corresponding outcome projectors for
acceptance. Another quantum-like modeling perspective has
been proposed by Busemeyer and Bruza [4, Ch.6] which provides
unitary transformation matrices based on Feynman path analysis

Frontiers in Physics | www.frontiersin.org 2 June 2017 | Volume 5 | Article 23

http://www.frontiersin.org/Physics
http://www.frontiersin.org
http://www.frontiersin.org/Physics/archive


Broekaert and Busemeyer A Hamiltonian Quantum Like Model for EOD

and ordering of the gist/verbatim processing of cues, which we
will discuss below. Finally a complementarity based quantum-
like development was done by Denolf and Subadditivity [17], and
Denolf and Lambert-Mogiliansky [18]. Bohr’s complementarity
provides the gist–verbatim features by implementing for each
an alternative basis of the Hilbert space. Our Hamiltonian
development follows more closely the outline of the QEMmodel
for FTT.

We will at present not make comparisons to either Markovian
models [4, 19, 20] but focus on the possibility of Hamiltonian-
driven time propagation in QEM, and compare to the Feynman
path model and the original QEMmodel itself.

Experimental paradigms. A number of experimental
paradigms have been proposed to test the over-distribution effect
and the episodic disjunction effect. In this paper we mainly refer
to Brainerd et al. [1, 3] which build and expand on “item false
memory” and “source false memory” experimental paradigms,
but only the former IFM paradigm will be modeled here. We
shortly describe both paradigms of 2010 and 2015 for the IFM
case. As we have mentioned, each of these paradigms consist of
two consecutive stages.

2010 experimental paradigm. In the first stage participants
studied a set {o} of memory targets consisting of words from a
list of the Deese–Roediger–McDermott paradigm (DRM). The
presented DRM lists are abbreviated sequences of the original
15 semantically related words that all associate forward to one
common word. That latter word does not appear in the list and
is therefore known as the distractor [21, 22]. We will in our
approach not include the issue of the preliminary orienting task
based on qualifying adjectives as positive, neutral, or negative,
which “increase the processing of semantic content during
subsequent exposure to word lists” [3]. After this memorization
stage either immediate testing ensues or a time delay of a week is
inserted. Subsequently a cue is presented to the participant and
finally an instruction to respond to the cue is given.

Three possible types of cue are used; a studied target from
{o} consisting of a word from one of the 24 lists, a related non-
target from set {ns} consisting of words on the list but not learned
({o} ∩ {ns} = φ) and finally a new-dissimilar non-target from set
{nd}with words not related in any sense to the selected DRM lists
({nd} ∩ {ns} = φ = {nd} ∩ {o}).

These cues are crossed with one of three instructions per
participant1. Either; the first instruction o? (or old?) to accept
only an exact target from {o} and otherwise reject, or the second
instruction ns? (new-similar?) to accept only a related non-
target from {ns} otherwise reject, or a third instruction. The third
instruction is o or ns? (or old or new-similar? ) to accept either
an exact target from {o} or a related non-target from {ns} and
otherwise reject.

2015 experimental paradigm. The alternative version of the
IFM paradigm of Brainerd et al. [1] follows precisely the two
stages of the 2010-version except for the final stage. First the

1We adopted the notation of Brainerd et al. [1] in the context of Brainerd et al.

[3] as well. Always cues will be denoted o, ns, and nd for old, new-similar, and

new-dissimilar, and their respective enquiring probes are o?, ns?, and nd?. Memory

traces are denoted by V , G, and N for verbatim, gist, and neither.

participants studied cues c of memory target words (24 times 6 in
total). Then a time delay is either inserted or not. in the test phase
participants are first exposed to a cue which is either a studied
target from o, a new-similar non-target ns, or a new-dissimilar
non-target nd. Finally the participant is asked to respond to one
of three probes querying to which category the cue belongs; that
is o?, ns?, or nd?. In comparison to the 2010-paradigm the o or ns?
probe has been replaced by the nd? probe.

About the source false memory paradigm. In source false
memory experiments the experimental paradigm focuses on the
origin of the cue. It probes the source recollection in memory
of cues originating from either List 1 or List 2 and crossed with
probes List1?, List2?, and nd?. We will only focus our present
Hamiltonian based quantum model on the IFM setting, it is
however very possible to adapt the model to SFM requirements
as well.

Besides the QEM model, this specific paradigm has been
alternatively modeled by Denolf and Lambert–Mogiliansky using
Bohr’s quantum approach to consider gist and verbatim traces
as complementary properties, each trace represented by an
alternative bases of the same Hilbert space [18].

Experimental data in 2010 and 2015 paradigms. Since
Brainerd et al. [1] focuses on subadditivity with the probes o?,
ns?, or nd?, there is no interest in o or ns? thus it is not measured
nor reported. While vice versa [3] has a focus on the disjunction
fallacy, which reports o? , ns?, and o or ns? but does no reporting
of nd cue data. We therefore take the data of Brainerd et al.
[9] from which a full 3 × 3 grid of data can be reconstructed
using an intervention proposed by Busemeyer and Bruza
[4, p. 171].

In sum we have no data set which shows the subadditivity and
the disjunction effect at the same time. We will thus adapt the
parameters of the Hamiltonian model to each data set separately
(see Tables 1, 2). We adopt Busemeyer’s solution to complete
the data set in the paradigm for the EOD disjunction effect
by supplementing the nd probe data in the set through their
response biasmeasures bT , bR, and bT+R ([9]–Table 6).Moreover,
we will fit to the average values over six experimental conditions
here2. While for the EOD subadditivity effect we will use ([1],
Table 3, p. 233) in which we take the values for ns cue as
the averages of ns-critical and ns-related cues, distinguished by
Brainerd et al. [1].

2. QUANTUM MODELS

Probabilistic anomalies with respect to classical probability law
have in many cases been successfully covered by models using
quantum formalism, likewise the anomalies of EOD have been
modeled in quantum-like manner. We shortly present some of
these developments, mainly focussing on QEM.

2.1. The QEM Model by Brainerd et al.
Memory state vectors. QEM provides three orthogonal vectors
in Hilbert space, respectively one for (verbal) surface form,

2In the conjoint recognition model the probabilities for acceptance for unrelated

distractors are: pu,T = bT , pu,R = bR, and pu,T+R = bT+R , ([9], Equations 19–21).
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TABLE 1 | EOD-disjunction fallacy: Experimental and predicted acceptance probabilities by probe and cue in item false memory paradigm - immediate test [9].

Cue Source Probe Unpack. Conj. RMSE

o? ns? b?

o Exp 0.70 0.13 0.78 1.06 0.05 –

Pred β > 0 0.7137 0.1325 0.7770 1.09 0.07 0.0073

Pred β < 0 0.7302 0.1486 0.7180 1.22 0.16 0.0341

Pred-BB2012 0.70 0.16 0.83 1.04 0.03 0.0298

Pred-Br2015 0.7400 0.1300 0.7400 1.18 0.13 0.1112

ns Exp 0.32 0.66 0.71 1.38 0.27 –

Pred β > 0 0.3172 0.6609 0.7113 1.38 0.27 0.0073

Pred β < 0 0.3254 0.6431 0.7797 1.24 0.19 0.0341

Pred-BB2012 0.35 0.66 0.71 1.04 0.03 0.0298

Pred-Br2015 0.5633 0.5633 0.5633 2.00 0.56 0.1112

nd Exp 0.13 0.22 0.32 1.09 0.03 –

Pred β > 0 0.1459 0.2184 0.3183 1.14 0.05 0.0073

Pred β < 0 0.1343 0.2287 0.3308 1.10 0.03 0.0341

Pred-BB2012 0.07 0.22 0.33 0.88 −0.04 0.0298

Pred-Br2015 0.2250 0.2200 0.2250 1.98 0.22 0.1112

The experimental p(p?|c) are averages over six experimental conditions. Corresponding unpacking factor and “conjunction probability” values are listed. The Hamiltonian model has a

very good prediction RMSE = 0.0073 for β > 0, and a less good RMSE = 0.0341 for β < 0. Fitting attempts for a β ∈ C gravitated toward the β < 0 solution, i.e., phase(β) → π

and have therefore not been included. The predictions of the Feynman path based model [4] have an RMSE = 0.0298 and are indicated with Pred-BB2012. The re-calculated QEM

predictions [1] are indicated with Pred-Br2015 and have an RMSE = 0.1112.

one for semantical relatedness, and one for the case when
neither of both previous are relatedly present. In line with the
FTT these respective dimensions acquire probability amplitudes
that represent the participant’s mental state on the cue in the
experiment, which we order as (vc, gc, nc)

τ 3. The fact that these
features are expressed by orthogonal vectors, reflects that these
are perceived distinct properties of a word in memory. This
orthogonality property should be differentiated from associative
relationships of words like e.g., for a target word in a semantic
memory network [13], which dominantly hinges on related gist
but mostly leaves out related verbatim features. Brainerd et al.
[1] and Brainerd and Reyna [2] describe the “perceived memory
state” spanned by vectors in three-dimensional Hilbert space
corresponding to verbatim, gist, and non-matching dimensions
of the respective fuzzy traces for the set of words in the
experimental paradigm in the brain:

|Sc〉 = vc|V〉 + gc|G〉 + nc|N〉 (4)

Where c can be any cue type, o, ns, or nd, and each basis vector
corresponds to respectively the fuzzy trace of form (V), semantic
relation (G), and complete unrelatedness (N)4. According the

3We use the symbol τ to designate the transpose of a vector or matrix. Basically

transposition turns columns into rows and vice versa.
4We recall that state functions or vectors in quantum-like models for cognitive

processes will always represent averages of the participant group. Individual

memory state vectors are not envisaged in this approach: as all humans are

allegedly equal but rather existentially different the average state function does

not reflect the individual’s memory state. We emphasize the difference with the

situation in the micro-physical realm; e.g., the state function of an ensemble of

model requirements—exhaustiveness and exclusiveness of the
cues—the respective probabilities add up to unity

|vc|2 + |gc|2 + |nc|2 = 1. (5)

With these three normalizations constraints QEM requires the
parameters {vo, go, no, vns, gns, nns, vnd, gnd, nnd} of which six are
independent. We discuss some related fitting issues in QEM at
the end of Section (2).

Acceptance projectors. A probe o?, ns?, or nd? is
affirmatively—“yes” (y)—answered by applying the
corresponding projection operator

My,o? =





1 0 0
0 1 0
0 0 0



 , My,ns? =





0 0 0
0 1 0
0 0 0



 , My,nd? =





0 0 0
0 0 0
0 0 1





(6)
on the state |Sc〉. These respective projector matrices are simply
obtained by considering the final outcome vectors which they
need to produce. In VGN space the projector My,nd? should
lead to a vector proportional to (0, 0, 1), representing perception
of no related verbatim nor gist of the nd cue. The form of
this expected outcome vector (0, 0, 1) is directly related to the
projector expression Equation (6, c). Similarly the projector
My,ns?, Equation (6, b), is constructed from the expected outcome
vector (0, 1, 0) representing only perception of related gist in
the ns cue. For the projector matrix My,o? the outcome should

identically prepared electrons does reflect the behavior of an individual electron

since all electrons are equal, not just allegedly.
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TABLE 2 | EOD-subadditivity: Experimental and predicted acceptance probabilities by probe and cue in item false memory paradigm—immediate test [1].

Cue Source Probe Sum RMSE

o? ns? nd?

o Exp 0.53(0.19) 0.43(0.19) 0.26(0.16) 1.22 –

Pred β > 0 0.5626 0.4165 0.2237 1.20 0.0565

Pred β < 0 0.5523 0.4454 0.2966 1.29 0.0191

Pred β ∈ C 0.5273 0.4336 0.2540 1.21 0.0032

Pred-Br2015 0.6350 0.4300 0.3650 1.43 0.0963

ns Exp 0.42(0.26) 0.57(0.22) 0.31(0.22) 1.30 –

Pred β > 0 0.3415 0.6348 0.3338 1.31 0.0489

Pred β < 0 0.4184 0.5508 0.2899 1.26 0.0191

Pred β ∈ C 0.4226 0.5674 0.3130 1.30 0.0032

Pred-Br2015 0.560 0.560 0.440 1.56 0.0963

nd Exp 0.17(0.18) 0.34(0.22) 0.62(0.19) 1.13 –

Pred β > 0 0.2393 0.2765 0.5400 1.06 0.0489

Pred β < 0 0.1677 0.3244 0.6059 1.10 0.0191

Pred β ∈ C 0.1676 0.3403 0.6222 1.13 0.0032

Pred-Br2015 0.2967 0.2967 0.7033 1.30 0.0963

The experimental p(p?|ns) are the averages of critical and related distractor cues. The Hamiltonian model with β > 0 constraint has a prediction accuracy RMSE = 0.0489, the β < 0

constraint gives slightly improved RMSE = 0.0191, while for β ∈ C we have a strongly improved RMSE = 0.0032. The re-calculated QEM predictions [1] are indicated with Pred-Br2015

and have an RMSE = 0.0963.

lead into the space spanned by both related verbatim and gist
components for the perception of the o cue. The latter is a
two dimensional space spanned by the basis vectors (1, 0, 0) and
(0, 1, 0), and is the outcome space of projector Equation (6, a).
The β-parameter—present in the vector |o〉 for old cues—will
allow to navigate such vectors in this two-dimensional subspace,
altering the relative weight of the verbatim to gist components
(see functioning of β in the description of the initial state, below).

In the experimental paradigm for the EOD disjunction fallacy
the operatorMy,b? for the probe o or ns ? is used;

My,b? = My,o? +My,ns? −My,o?My,ns?

= My,o? (7)

since My,o?My,ns? = My,ns?. In QEM the memory state for
the experimental paradigm is posited to be |Sc〉 following the
exposure to cue c. After providing the probe p the state collapses
to the eigenvector of the projection operatorsMy,p: “the cue elicits
the memory state, and the probe determines the projector used to
answer [affirmatively to] the question.” ([1], p. 243).

The origin of EOD in QEM. Notice that the form of
the projectors My,o? and My,ns? show that subadditivity is
an immediate consequence of measuring the presence of the
common gist trace in both operations. Which also implies—
as Brainerd points out—the cases in which a gist trace would
be lacking will not produce subadditivity. Similarly, we could
remark that in the dual trace approach ns? is a subspace of
o?. Therefore, the operator for the disjunctive probe coincides
with the operator for the o? probe. As a consequence the EOD
disjunction fallacy is not due to an interference dynamics in
the QEM model, but follows from “double counting” the gist

component in the outcome of disjunctive probe. Also the EOD
subadditivity is due to this same double counting of gist. Both
subadditivity and the disjunction fallacy are therefore considered
‘’parameter-free” features of the QEM model [1]. In Section 2.3,
we will cover the origin of the EOD effect more extensively and
show how in our Hamiltonian approach of QEM one is not
restricted to subadditive nor fallacious disjunctive scenarios.

The initial state. A short discussion on the initial state
vector in the QEM model is needed since it plays an important
role, both in Brainerd et al.’s development of QEM and our
Hamiltonian driven version of the model. At the start of the
experiment the participants of the experiment are informed
about the equal probability by which each type of cue o, ns,
or nd, will be presented [1]. It can be easily seen however
that this is not possible to implement exactly without forcing
this initial perceived memory state to be voided of all of its
verbatim trace5. We claim a more appropriate representation of
this initial state is done by addressing this uncertitude on the level
of the probability amplitudes, not the probabilities themselves.
More specifically, we implement each component probability
amplitude is attributed equal weight 1/

√
N in the initial state

|ψ0〉 =
1

√
N

(

|o〉 + |ns〉 + |nd〉
)

, with ‖|ψ0〉‖ = 1. (8)

5Brainerd et al. [1, p. 239], mentions participants would have roughly

p(o) = p(ns) = p(nd) = 1/3 as baseline probabilities prior to study of {o}. Let
the initial state be represented in VGN space as (α,β , γ )τ . Using the appropriate

projection operators, Equation(6), we find p(o) = |α|2 + |β|2, p(ns) = |β|2 and

p(nd) = |γ |2. Equating them all to 1/3 requires α = 0, reducing the perceived

related verbatim trace to nought.
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where N is the vector’s normalization factor. This initial state
can be expressed in terms of perceived verbatim, gist, and
unrelated components. The o-state is composed of components
of verbatim and gist in the perceived memory according a
superposition of both; |o〉 = α|V〉+β|G〉 or explicitly normalized

(
√

1− |β|2,β , 0)τ , where β ∈ C
6. Thus both aspects V and G

contribute with a variable amplitude to the targeted cue o—which
a priori should have been expected since the relative magnitude
of both traces seem variably dependent on the particular instance
of the o-type cue. The memory states for ns and nd on the other
hand do not decompose over multiple traces, and coincide with
the unambiguous eigenvectors of the respective operators My,ns?

andMy,nd?, i.e., |ns〉 = |G〉 and |nd〉 = |N〉. The initial state prior
to cue and probe presentation can thus be expressed in terms of
orthogonal states for V , G, and N7:

|ψ0〉 =
1

√
N

(

α|V〉 + (1+ β)|G〉 + |N〉
)

, with |α|2 + |β|2 = 1

(9)
from which we find an expression of the normalization factor

N =
√

|α|2 + |1+ β|2 + 1 =
√

3+ 2ℜ(β)

of the initial state. Most importantly, we have a variable β in
our description, which stands for the average amplitude of gist
trace in the true target set {o} of the experimental paradigm. We
assume that o cues with little relevance to the participants will
correspond to low β , while o cues common to the participants
will increase β .

Given the participant is informed she will be exposed to an
equal amount of o, ns, and nd cues, overall she will expect an
excess of gist in comparison to verbatim or unrelated features.
A “constructive interference” in 1 + β with β > 0 would be
expected (when β ∈ R). In the present experimental paradigm
the cues are semantically forward related words (to its target
word) of the DRM lists, therefore we would expect low or
moderate associated gist traces here, certainly not really intense
gist traces as for instance the Madeleine-cue provoked in Marcel
Proust.

2.2. The Feynman Path Model for EOD by
Busemeyer et al.
The Feynman path model by Busemeyer and Trueblood [23] and
Busemeyer and Bruza [4, Ch. 6] introduces a four dimensional
Hilbert space to encompass the two orderings of the types of
process; verbatim before gist on o cues, and gist before verbatim
on ns and nd cues. This model thus provides a cue dependent
construction of the memory state.

6An explicit eigenvector |o(α,β)〉 ofMy,o? is given byMy,o?|o(α,β)〉 = |o(α,β)〉 =
[α,β , 0]τ = α|V〉 + β|G〉, with |α|2 + |β|2 = 1. Evidently there is a possible

denomination issue caused by the relative weight of both components, since

diminishing α will eventually turn an o state indiscernibly into an ns state.
7 The equally weighed initial state 1/N (

√

1− |β|2 , 1 + β , 1)τ was obtained by

giving each type of cue’s vector |o〉, |ns〉 and |nd〉 equal weight at start. Our

implementation however does neither reflect equal baseline probability of o, ns,

and nd in the participants memory state as aimed for by Brainerd et al. [1], also

here one cannot have p(o) = p(ns) = p(nd) at the start. For real-valued β , the

initial probabilities come at the closest for β = −2 +
√
3 at po = 0.59, pns = 0.22,

pnd = 0.41.

As in the QEM model, the Feynman path approach does not
concatenate reflection time periods. The exposure of the cue or
the probe to the participant does not engender a unitary time
evolution of the memory state. Notably this model provides cue-
dependence of evolution by ordering verbatim and gist stages
in the process of recollection and depends on interference of
probability amplitudes to form the acceptance probability in the
disjunctive b? probe. Busemeyer and Bruza [4] model requires
only 6 parameters for a satisfactory prediction of the 9 data
points of the disjunctive EOD paradigm. The predictions of
the Feynman path based model by Busemeyer et al. have been
included in the data (Table 1). A short comparative discussion of
the model’s prediction capacity is given at the end of Section 2.

We summarize the Feynman paths in this model and have
adapted the notation of Busemeyer and Bruza [4, Ch. 6] to
conform with the present context8. We inserted the question
mark to distinguish a probe—o?—from a cue o. The negation of a
probe is indicated by the tilde sign—e.g., õ?—and corresponds to
the negation of the instruction “Is this not an o cue?” This allows
to express the complementarity of the cases o? and õ? according:

|o〉〈o| + |õ〉〈õ| = I (10)

For o cues, verbatim is treated before gist, which means first o?
operates on the initial state |So〉 for o cues, then followed by the
operation of ns?:

p(o?|o) = |〈o|So〉|2,
p(ns?|o) = |〈ns|So〉|2 = |〈ns|o〉〈o|So〉 + 〈ns|õ〉〈õ|So〉|2,
p(b?|o) = p(o?|o)+ p(õ?|o)p(ns?|õ)

= |〈o|So〉|2 + |〈õ|So〉|2|〈ns|õ〉|2,
= 1− |〈ñs|õ〉|2|〈õ|So〉|2,

requiring two parameters; 〈ns|o〉 and 〈ns|õ〉.
For ns cues gist is treated before verbatim, then first ns? operates
on the initial state |Sns〉 for ns cues, followed by o?

p(o?|ns) = |〈o|Sns〉|2 = |〈o|ns〉〈ns|Sns〉 + 〈o|ñs〉〈ñs|Sns〉|2,
p(ns?|ns) = |〈ns|Sns〉|2,
p(b?|ns) = p(ns?|ns)+ p(ñs?|ns)p(o?|ñs)

= |〈ns|Sns〉|2 + |〈ñs|Sns〉|2|〈o|ñs〉|2,
= 1− |〈õ|ñs〉|2|〈ñs|ns〉|2,

requiring two more parameters 〈o|ñs〉 and 〈o|ns〉.
Also for nd cues gist is treated before verbatim

p(o?|nd) = |〈o|Snd〉|2 = |〈o|ns〉〈ns|Snd〉 + 〈o|ñs〉〈ñs|Snd〉|2,
p(ns?|nd) = |〈ns|Snd〉|2,
p(b?|nd) = p(ns?|nd)+ p(ñs?|nd)p(o?|ñd)

= |〈ns|Snd〉|2 + |〈ñs|Snd〉|2|〈o|ñd〉|2,
= 1− |〈õ|ñd〉|2|〈ñs|Snd〉|2,

8The original notation V for “verbatim,” R for “related,” and U for “unrelated” cues

are here replaced by o, ns, and nd, respectively. One should be attentive to the fact

that V stood for “is the cue verbatim?” (actually meaning old), it does not stand for

the verbatim trace of QEM.
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without new parameter requirements. The parameters appear as
elements of unitary transformations and must satisfy unitarity.

Leaving 〈ns|o〉 =
√

1− |〈ns|õ〉|2 = 〈ñs|õ〉 and 〈ñs|o〉 = −〈ns|õ〉⋆.
The initial state is described in a four dimensional Hilbert space,
in which the initial state depends on the presented cue:

|S〉 = |oo〉〈oo|S〉 + |õo〉〈õo|S〉 + |oõ〉〈oõ|S〉 + |õõ〉〈õõ|S〉,
= |nso〉〈nso|S〉 + |ñso〉〈ñso|S〉 + |nsõ〉〈nsõ|S〉 + |ñsõ〉〈ñsõ|S〉.

where the index represents the cue type. The first expression is
applicable for target cues from {o}, thus |So〉 (where the index
õ indicates either ns or nd). And the second expression for
the initial state is applicable when the cue is not a target but
comes from {ns} ∪ {nd}, thus for |Sns〉 and |Snd〉. Therefore,
〈oõ|So〉 = 〈õo|So〉 = 0 and 〈nso|Sõ〉 = 〈ñso|Sõ〉 = 0. A
simplification of the formalism is obtained by chosing the phase
ϕ of 〈ns|õ〉 and the phase θ of 〈o|ñs〉 equal to each other. This
choice corresponds to a simplification of the dynamics in the
subspaces of the 4-dimensional Hilbert space, in which the gist-
before-verbatim states and the verbatim-before-gist states differ.
Equating the phases on the transition components is considered
a compromise between reducing parameters and prediction
accuracy.
The final six parameters for the Feynman path
model for EOD of Busemeyer et al. then are
{〈o|So〉, 〈ns|Sns〉, 〈ns|Snd〉, |〈ns|õ〉|, |〈o|ñs〉|, θ}, where 〈o|So〉 =
√

p(o?|o), 〈ns|Sns〉 =
√

p(ns?|ns), 〈ns|Snd〉 =
√

p(ns?|nd),
while |〈ns|õ〉|, |〈o|ñs〉| and the phase angle θ are used to fit the
remaining six data points.

2.3. The Hamiltonian Driven QEM Model
AHamiltonian based quantum-like model allows the description
of temporal evolution of the perceived memory state of
participants through the stages of the experiment. Although,
the explicit time-dependence of states in this approach would
in principle allow response time predictions, the main goal is
to describe increasing and decreasing tendencies building up
toward the point of decision. We emphasize that while we let
“t” stand for time in our model, it is rather to be considered as
an indicative parameter for temporal ordering than “physical”
time [24].

States and probabilities. Following the Hilbert space
construction of the QEM model, the memory states are
conceived to have one component for accepting o (memory
target, old cues), one component for accepting ns (new
semantically related cues), and one component for accepting nd
(unrelated, new-dissimilar cues). Expressed on the orthogonal
basis vectors for the fuzzy traces the state function following the
VGN ordering of components is denoted as

9probe|cue(t) = [ψp|cV (t),ψp|cG(t),ψp|cN(t)]
τ ,

with

|ψp|cV |
2 + |ψp|cG|

2 + |ψp|cN |
2 = 1. (11)

A state vector is thus defined separately for each combination
of cue in {o, ns, nd} and probe in {o?, ns?, nd?} for partition

subadditivity and in {o?, ns?, o or ns ?} for disjunction EOD.
In contrast with Brainerd et al.’s QEM approach our method
results in nine different state vectors—for each the experimental
paradigms—that are obtained by adapting the Hamiltonian
depending on the choice of probe and the choice of cue. Under
a specific instruction probe and cue, the acceptance probabilities
are obtained by applying the projectors (Equation 6) to the final
state and take the modulus square of the outcome. All acceptance
probabilities for both paradigms are then explicitly given by:

p(o?|o) = |ψo?|oV |
2 + |ψo?|oG|

2, p(o?|ns) = |ψo?|nsV |
2

+ |ψo?|nsG|
2,

p(ns?|o) = |ψns?|oG|
2, p(ns?|ns) = |ψns?|nsG|

2,

p(nd?|o) = |ψnd?|oN |
2, p(nd?|ns) = |ψnd?|nsN |

2,

p(b?|o) = |ψb?|oV |
2 + |ψb?|oG|

2, p(b?|ns) = |ψb?|nsV |
2

+ |ψb?|nsG|
2,

(12)

and

p(o?|nd) = |ψo?|ndV |
2 + |ψo?|ndG|

2

p(ns?|nd) = |ψns?|ndG|
2

p(nd?|nd) = |ψnd?|ndN |
2

p(b?|nd) = |ψb?|ndV |
2 + |ψb?|ndG|

2 (13)

where the instruction o or ns? is denoted by shorthand b?—
for “both” o? or ns?. We have noted previously in FTT theory
under b? probe the amplitudes of the V component and
the G component both are in the acceptance subspace. This
leads to formal similarity but not numerical equivalence of the
probabilities p(o?|o) and p(b?|o)—idem for conditionalization on
probes ns and nd—since memory is description-dependent ([1,
3])9. The quantum model can thus provide explicit expressions
for both the unpacking factor and the subadditivity.

Unpacking factor and subadditivity. First we discuss the
expression for the subadditivity, Equation (1), for some cue c;

p(o?|c)+ p(ns?|c)+ p(nd?|c) = |ψo?|cV |
2 + |ψo?|cG|

2

+ |ψns?|cG|
2 + |ψnd?|cN |

2

= |ψo?|cV |
2 + |ψo?|cG|

2

+
(

|ψo?|cN |
2 − |ψo?|cN |

2
)

+ |ψns?|cG|
2 + |ψnd?|cN |

2

= 1+ |ψns?|cG|
2 + |ψnd?|cN |

2

− |ψo?|cN |
2 (14)

We remark that our Hamiltonian driven account of QEM
does not necessarily imply subadditivity of total acceptance
probability10. Mostly the QEM model will imply subadditivity

9Meaning probe-dependence by differing κb and κo in the second stage

propagation.
10Brainerd et al. [1, p. 19]) mentions: “[. . . ] a distinct memory state vector is

generated for each of the three types of cues, with corresponding amplitudes vC ,

Frontiers in Physics | www.frontiersin.org 7 June 2017 | Volume 5 | Article 23

http://www.frontiersin.org/Physics
http://www.frontiersin.org
http://www.frontiersin.org/Physics/archive


Broekaert and Busemeyer A Hamiltonian Quantum Like Model for EOD

of total acceptance probability as long as a gist component is
present in the memory state [1]. If however in some instance
the gist trace is weak and the unrelated trace N is strongly
description-dependent such that—unexpectedly—the probe o?
engenders stronger response than the probe nd?, it is possible to
have superadditivity in our Hamiltonian driven QEMmodel.

Next we shortly discuss the expression for the unpacking
factor, Equation (3), for some cue c, which we find by replacing
the respective acceptance probabilities by their modulus squared
amplitude components, Equations (12, 13);

p(o?|c)+ p(ns?|c)
p(b?|c)

= 1+
|ψns?|cG|2

|ψb?|cV |2 + |ψb?|cG|2

+

|ψo?|cV |2 − |ψb?|cV |
2 + |ψo?|cG|2

−|ψb?|cG|
2

|ψb?|cV |2 + |ψb?|cG|2
(15)

We thus remark that ourHamiltonianQEM approach will mostly
show an EOD disjunction fallacy when a gist component is
present in the memory state. However again, when the gist trace
is weak in the ns? condition and the verbatim V and gist trace
G are strongly description-dependent such that the probe b?
engenders stronger response than the probe o?, it is possible
to avoid EOD in the QEM model (rhs will be less than 1 as
the second fraction becomes very small and the final fraction
becomes negative and sufficiently dominant).

Subsequent reflection periods. The experimental paradigm
essentially shows two reflection periods in the participants; the
first period involves processing a cue from {o, ns, nd} after it is
presented, the second period concerns the processing of a probe
from {o?, ns?, nd?} after that one has been presented.

In the first period the participant will do a description-
independent effort to evolve the equally weighed initial state
(Equation 8)—a-expressed in VGN base (Equation 9)– as good
as the participant can to one that corresponds to the presented
cue. This type of reflection will be represented by a dedicated cue-
dependent Hamiltonian Hc, thus requiring three parameters in
total to cover the first stage of the full experimental paradigm.

In the second period the participant receives the probe
instruction and possibly changes her attitude toward the
perception in the first stage, allowing for description-dependent
processing. The input of new information by the probe in the
participant’s mind engenders a change of dynamics (e.g., [25]).
This second type of reflection will thus proceed along a different
Hamiltonian Hp? also requiring three parameters to cover the
experimental paradigm.

First reflection period. We specify now the Hamiltonians
describing the reflection of the first period following the
presentation of the respective cues. This stage will change the
memory state from an undecided equally weighed one to a

gC , and nC .” (see Equations 4, 5). Our present Hamiltonian take of the QEM

structure provides nine memory state vectors. Starting from one single initial state

our Hamiltonian dynamics provides a distinct state vector for each of the nine

configurations of the three cues crossed with the three probes. Therefore we have

nine normalization conditions of the vectors (Equation 11), and can have some

modulation in the unpacking factor and in the subadditivity expression.

state that reflects the recognition of the cue’s nature by the
participant. Since the Hamiltonian is the generator of change
over infinitesimal time we can model it to cause the required
transitions11.

Reflection following ns and nd cue. For the reflection
following the presentation of the cue we will construct a
superposition of 2× 2-dimensional Hadamard gates that transfer
probability amplitude mass toward the targeted components of
the state vector in VGN-space ([4, Ch. 8], [24, 26]). One can
see however that higher matrix powers of such Hamiltonians
will not show the simple closure of transitions we find when
using single parametrized Hadamard gates. Except for shedding
the possibility of simple analytical calculation of the unitary
evolution operator this does not alter the essence of the dynamics.
In the present model we will use parametrized Hadamard gates
with off-diagonal appearance of the parameter12. We derive
Hamiltonians for the presentation of the ns and nd cue based
on their respective target states (0, 1, 0)τ and (0, 0, 1)τ . On the
presentation of an ns cue to the participant the amplitude mass
has to shift from verbatim trace to gist trace and from the
unrelated trace to the gist trace. In the perceived memory state
vector of the VGN-space this means the Hamiltonian must
transfer amplitude from 1st to 2nd entry and from 3rd to 2nd
entry of the perceived memory state vector:

Hns(γns) = G12(γns)+ G32(γns),

=
1

√

γ 2
ns + 1





−1 γns 0
γ ⋆ns 2 γns
0 γ ⋆ns −1



 . (16)

Where γns will be the parameter describing the participant’s
ability to recognize an ns cue (γns ∈ R).
Similarly when an nd cue is presented to the participant the
amplitude mass has to shift according the targeted vector from,
from verbatim to unrelated and from gist to unrelated. This
means that the dedicated Hamiltonian must transfer amplitude
from 1st to 3rd entry and from 2nd to 3rd entry of the perceived
memory state in VGN-space.

Hnd(γnd) = G13(γnd)+ G23(γnd),

=
1

√

γ 2
nd

+ 1





−1 0 γnd
0 −1 γnd
γ ⋆
nd
γnd

⋆ 2



 . (17)

11Applying the Hamiltonian to the initial state gives a first-order approximation of

the change of the state vector for an infinitesimal time interval:

ψδt − ψ0 ≈
iδt

h̄
Hψ0

This allows us to design the Hamiltonian according the needs of the cognitive

process.
12E.g.,:

G21(h) =
1

√

1+ |h|2





1 h 0

h⋆ −1 0

0 0 0



 with G21(h)
2 =





1 0 0

0 1 0

0 0 0



 .

This modification retains the rotation effects of the operator and squares to

the unity operator in VG-space. A main advantage of the present form is the

oscillations of probability over time stop when the parameter is set equal to zero.
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Where γnd will be the parameter describing the participant’s
ability to recognize an nd cue, (γnd ∈ R).

Reflection following o cue. The Hamiltonian for the dynamics
after o cue presentation to the participant is again based on its

target state vector (
√

1− |β|2,β , 0)τ . When the o cue is presented
to the participant the amplitude mass has to shift from unrelated
to verbatim and from unrelated to gist. In this case with the o
cue however, both processes must not occur at the same rate. The
dedicated Hamiltonian has to transfer amplitude form 3rd to 1st
and from 3rd to 2nd with the respective rates

√

1− |β|2 and β in
accordance with the target vector state. Moreover the initial gist
component needs to be redistributed according the target vector
as well, leading to a complementary transfer from 2nd to 1st entry

with rate
√

1− |β|2:

Ho(γo,β) = G21(γo
√

1− |β|2)+ G31(γo
√

1− |β|2)
+ G32(γoβ). (18)

Where γo will be the parameter describing the participant’s ability
to recognize an o cue, (γo ∈ R, β ∈ C)13.

Second reflection period. Following the reflection period after
the presentation of the cue, the participant is presented with
a probe stemming from o?, ns?, nd? and matches it with
her recollection memory state post first stage. This comparison
can either lead to an affirmation of the probe or a challenge.
Coincidence of perceived cue and probe may induce to some
degree a tendency to affirm one’s memory state, while contrasting
cue and probe may to some degree induce a challenge or
cognitive dissonance. We remark that affirmation and challenge
are relative; in an o-run a participant with an ns-recollection will
consider the o?-probe as a challenge rather than a confirmation.
The terms affirmation and challenge clearly take their meaning
only for the inter-participant average of acceptance probabilities,
not in general for individual intra-participant occasions (see
Table 3). In the second reflection period the probe thus either
affirms or challenges the recollection effort of the first stage,
dynamically this corresponds to either an amplified continuation
of the first stage dynamics or a reversed evolution with regard to
the probe:

Ho?(κo, γ0,β) = Ho(κoγo,β), (19)

Hns?(κns, γns) = Hns(κnsγns), (20)

Hnd?(κnd, γnd) = Hnd(κndγnd), (21)

Hb?(κb, γo, γns,β) = Hb(κbγo, κbγns,β). (22)

Where κ is the parameter expressing affirmation (κ > 0) or
challenge κ < 0 of the cue by the probe when the parameter
γc > 0, and the other way round when γc < 0. Multiplication
of the driving parameter γc leads to a modified composed
parameter κpγc in the Hamiltonian to affirm or mitigate the
participant’s initial recollection of the cue. We want to emphasize
that the second stage Hamiltonians for the probes are thus
structured exactly in the same way as the Hamiltonians for

13With β a complex number one must take care to keep the Hadamard gate

Hermitian.

TABLE 3 | Affirmation and challenge of cues by probes; + sign indicates

corresponding features, − sign indicates challenge.

o? ns? nd? b?

o +VGN +GN −V −VGN +VG −N

ns +GN −V +VGN +V −GN +GN −V

nd −VGN +V −GN +VGN −VG +N

The subindex indicates the conflicting or affirming feature.

the corresponding cues, except that the driving parameters γ
are modulated by multiplying them with dedicated tweaking
parameters κ .

Reflection following b? probe. While it is not needed in
the first reflection stage, under the disjunctive probe b? in the
second stage a dedicated Hamiltonian, Equation (22), is still
required. Also the Hamiltonian proper to the exposure of the b?
probe is based on its target state vector (

√

1− |β|2, 1 + β , 0)τ .
This consists of the actions of Ho(γo) and Hns(γns) where the
parameters in the corresponding gates have been added, or
subtracted if the transport is in opposite direction14;

Hb(γo, γns,β) = G21(γo
√

1− |β|2 − γns)+ G31(γo
√

1− |β|2)
+ G32(γns + βγo) (23)

The Hamiltonian for the b? probe thus uses three parameters
γo, γns and β which it inherits from the Hamiltonians for its
component probes o? or ns?.

Unitary evolution and time of measurement. An issue with
quantum-like models is the typical appearance of oscillations
of probability over time. These oscillations in the evolution are
essentially due to the inherent periodicity of a finite dimensional
and energetically closed quantum system. Simply put, such
systems will always evolve back to their initial state and do over
the exact same itinerary in their Hilbert space—ad infinitum.
Evidently, in the domain of cognition, when quantum-like
modeling of experimental paradigms is done, only within-period
evolution should be given meaningful interpretation [24]. In that
sense a guideline for the time of measurement would be to keep
the reflection times short with respect to the full period. Another
option to arrest the characteristic probability oscillation is to
include a third stage in the experimental paradigm driven by
a ‘grab coat and leave’ Hamiltonian, which would be dedicated
to freeze the perceived memory state (set all driving parameters
γ equal to zero). More elegantly a termination should be
formalized to damp thememory state vector back into its baseline
uninformed state by using Lindblad evolution for an open system
(e.g., [27, 28] Broekaert et al., under review).

A number of alternative criteria could be put forward to
decide this instance of measurement, though at present we keep
to an ad hoc cut to the unitary time propagation as proposed
by Busemeyer et al. [23] and Busemeyer and Bruza [4]15. With

14One must take into account G12(γ ) = −G21(−γ ).
15Choice t = π

2 corresponds to a first extremum when significant parameters in

the Hamiltonian are set equal to zero, i.e., when the actual psychological dynamics

is “turned off” in the model.

Frontiers in Physics | www.frontiersin.org 9 June 2017 | Volume 5 | Article 23

http://www.frontiersin.org/Physics
http://www.frontiersin.org
http://www.frontiersin.org/Physics/archive


Broekaert and Busemeyer A Hamiltonian Quantum Like Model for EOD

the intent of the possibility of tweaking the observed acceptance
probabilities by description dependence in the second reflection
period, we have taken the ad hoc reflection durations of both
stages somewhat shorter; π3 for each stage.

The first stage ends at t = π
3 , the unitary operator of the

second stage picks up there after. The vector of the perceived
memory state at time t after probe presentation is then obtained
by propagating the initial state, Equation (9), by the concatenated
Schrödinger propagators;

9p|c(t) = e−iHp?te−iHc
π
3 90, and

90 =
1

√

3+ 2ℜ(β)
(
√

1− |β|2, (β + 1), 1)τ (24)

Also the second stage ends at t = π
3 , after the first stage. Time

evolution prior to the second stage can be obtained by deleting
the propagator of the second stage and letting the first propagator
have the argument t. The acceptance probabilities p(p?|c) can
then be derived using their expressions, Equations (12, 13),
in terms of state vector components and will be fitted to the
observed data by SSE optimization of the seven free parameters
of our Hamiltonian driven QEMmodel.

3. FITTING THE MODELS TO THE EOD
DATA

The data fitted post-hoc parameters for Brainerd et al.’s

QEM.QEMprovides three amplitudes per cue {vc, gc, ndc}, which
satisfy normalization (Equation 5). Therefore six numbers should
cover the experimental data sets. Our prescription for acceptance
probabilities, Equations (12, 13), coincide with Brainerd et al. [1,
p. 243]:

||MO,y|SC〉||2 = |vC|2 + |gC|2||Mns,y|SC〉||2

= |gC|2||MND,y|SC〉||2 = |nC|2

and in the same logic we have in QEM, see Equation (7);

||MB,y|SC〉||2 = ||MO,y|SC〉||2 = |vC|2 + |gC|2.

We notice that in QEM we will always predict
p(o?|C) ≥ p(ns?|C), which is of course only the case for
the o cue data. Since the modulus square amplitudes are
positive numbers, data with p(o?|C) < p(ns?|C) cannot be
accommodated in the original version of QEM.

Similarly in the disjunction paradigm QEM would always
predict p(o?|C) = p(ns?|C), which is not apparent in
the experimental disjunction data (Table 1) and certainly
not so for ns and nd cues. Without any other means to
fine tune the acceptance probabilities we would expect low
accuracy of prediction for them, while we expect pronounced
total probability and unpacking factor in the subadditivity
paradigm and the disjunction paradigm respectively, Tables 1, 2.
Optimized QEM parameters appear in Tables 4, 5.

The data fitted parameters of the Feynman path basedmodel.

The Feynman path model required six parameters to obtain

the nine acceptance probabilities of disjunction paradigm ([4],
Ch. 6). The model allows to reproduce very well the general
required pattern of acceptance probabilities at RMSE = 0.0298,
which turn out the precise EOD effects, except for the new
dissimilar cues {nd}, Table 1. In the latter case the unpacking
factor turns out smaller than 1, i.e., the conjunction value turns
out negative.

The Feynman path model was not adapted yet to the
subadditivity paradigm, but since it uses interference of
amplitudes and reversed gist/verbatim processing depending on
the type of cue, the model should be applicable in that paradigm
as well.

The data fitted Hamiltonian driven QEM parameters. With
both experiments reporting different data for similar expressions,
we have fitted the Hamiltonian model to each separately16. For
the EOD-disjunction paradigm the model obtained closely fitted
parameters to the experimental data, with RMSE = 0.0073 with
β > 0. When β < 0 constraint was imposed a less good RMSE =
0.0341 was obtained. The nine predicted probabilities p(p?|c) by
the parameters of Table 6 are shown in Table 1.

For the EOD-subadditivity paradigm the model obtained a
less efficient fit of parameters to the experimental data, with
RMSE = 0.0565 for β > 0. When β < 0 the parameter fit allowed
an improved RMSE = 0.0191. The Hamiltonian model for the
EOD-paradigm allowed a very good data fit using complex β at
RMSE = 0.0032. We recall that complex numbers consist of a
modulus and a phase, therefore one complex parameter should
actually be counted as two real parameters. We shortly comment
on this issue in the discussion, Section 4. The nine predicted
probabilities p(p?|c) following the parameters of Table 7 for the
three cases are shown in Table 2.

The temporal evolution of acceptance probabilities. With
the optimized values of the driving parameters calculated, the
temporal progression of the acceptance probability can be
graphed (Figures 1–5). The dashed lines represent the first-stage
evolutions when the participant is shown the cue for recognition,
while the full lines represent the second-stage evolutions when
the probes enquire for accepting the type of a cue. The ultimate
instance of measurement happens at the end of the second stage
(t = 2π/3). In all graphs, in the first stage the color indicates
the “probability value” of the traces; red codes for perceiving the
cue’s unrelated features (N), orange codes for perceiving the cue’s
gist (G) and green codes for perceiving the cue’s verbatim and gist
(V + G)—one can quickly check that for the same cue the dashed
red and dashed green values add up to 1 at each moment in the
first stage. Evidently these first stage “probability values” should
not be conflated with the participants acceptance probabilities.
Only after the probe has enquired the participant do these values
evolve as the nine acceptance probabilities. It is worthwhile to
note that the optimalization of parameters has returned initial
states which either contain no gist or no verbatim perception
in the cases with real-valued β (at t = 0 respectively; orange
has almost value zero or, green and orange almost coincide).
Only when β is complex-valued does the initial value show

16Matlab’s fmincon function on SSE was used with a 3621 (β ∈ R) or 3622 (β ∈ C)

grid for the initial vector in the parameter space.
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TABLE 4 | EOD-disjunction paradigm: Optimized fit of independent QEM

parameters providing RMSE = 0.1112, (vc, gc ∈ R
+).

vo go vns gns vnd gnd

0.7810 0.3606 0.0008 0.7506 0.0708 0.4690

TABLE 5 | EOD-subadditivity paradigm: Optimized fit of independent QEM

parameters providing RMSE = 0.0963, (vc, gc ∈ R
+).

vo go vns gns vnd gnd

0.4528 0.6557 0.0025 0.7483 0.0012 0.5447

substantial gist and verbatim trace. We have provided two graphs
for the EOD-disjunction paradigm (Figures 1, 2) the first one
was constrained to have β > 0 while the second had to satisfy
β < 0. In this EOD-disjunction paradigm no complex-valued
β offered an optimized fit. For the EOD-subadditivity paradigm
we provide three graphs (Figures 3–5), respectively with the
constraints β > 0, β < 0, and β ∈ C.

One observes that in the first stage the dynamics is mostly
monotonic—except for the one case where β ∈ C (Figure 5). In
the second stage dynamics some intermediary extrema do appear,
which from a cognitive point of view are not to be expected. The
factor of description dependence was expected to be a smaller
modification of the first stage recognition. The second stage
extrema however need to be understood with respect to the ad
hoc instance of measurement at t = π/3 after enquiry, adopting
a shorter measurement time could have mitigated this temporal
behavior. Finally we note that also the outspoken VGN spread
of the initial vector could be related to a too extended period
for evolution. While the fitting of the experimental acceptance
probability data in the Hamiltonian driven QEM has shown
good accuracy, the concomitant intermediate temporal evolution
leaves room for improving the measurement protocol.

4. DISCUSSION

We had set out to develop a Hamiltonian driven model
that would provide temporal evolution of the memory state
of the Quantum Episodic Model of Brainerd et al. [1, 9].
The model uses nine different state vectors for the three
cues crossed with three probe paradigms, and requires six
parameters to drive the Hamiltonians and one parameter to
tweak the gist in the initial state. We provided psychological
interpretation of the parameters fitting the experimental process.
Initially the memory state prior to cue and probe presentation
is an equally weighed mix of o, ns and nd states leading
to an overall amount of the gist component monitored by
the parameter β . In first stage the ability to recognize the
type of the cue c is driven by the cue-specific parameter
γc in the Hamiltonian. In the second stage the instruction
probe p? engenders an amplified or mitigated evolution
driven by the probe-specific parameter κp for description-
dependence.

TABLE 6 | EOD-disjunction paradigm: Optimized fit of Hamiltonian parameters

under β > 0 (RMSE = 0.0073), and β < 0 (RMSE = 0.0341) constraint.

κo κns κb γo γns γnd β

0.19011 1.8354 0.042911 8.5858 0.2701 0.3794 0.99563

0.022764 −1.9232 0.951261 2.5625 0.86085 0.60844 −0.98688

Fitting attempts for a β ∈ C gravitated toward the β < 0 solution, i.e., phase(β) → π .

TABLE 7 | EOD-subadditivity paradigm: Optimized fit of Hamiltonian parameters

under constraint β > 0 (RMSE = 0.0565), β < 0 (RMSE = 0.0191) and β ∈ C

(RMSE = 0.0032).

κo κns κnd γo γns γnd β

0.6461 1.7674 −5.7405 5.0840 0.3913 0.1000 0.9979

0.5561 0.0075 −1.3536 1.5114 94.817 0.4307 −0.9585

0.4363 0.1477 1.180 0.8451 3.3274 1.1838 0.9323

e2π i0.4143

Our Hamiltonian driven account of QEM shows that the
subadditivity and disjunction fallacy are not a priori guaranteed
or “parameter free” in our model. The occasions in which these
effects would not occur are however very improbable in practice,
Equations (14, 15). This possibility is due to the fact that the
two-staged Hamiltonian evolution produces nine state vectors
9probe|cue(t) instead of regular QEM’s three cue-dependent state
vectors9cue.

Using two reported experimental data sets showing
subadditivity and over-distribution of the disjunction in
acceptance probabilities for episodic memory recollection, we
were able to provide parameter values with good prediction
capacity in the Hamiltonian model. In practice we provided
values for seven parameters {κo, κns, κnd, γo, γns, γnd,β}
to predict nine acceptance probabilities {po?o, pns?o,
pnd?o, po?ns, pns?ns, pnd?ns, po?nd, pns?nd, pnd?nd} in the subadditivity
paradigm and did the same for the disjunction paradigm,
Tables 6, 7. Rigorously one should discern the parametrization
case when β ∈ C, which should be counted for two parameters
even if the function of the real and imaginary part of the
parameter take the same position in the model. The present
model thus uses one extra parameter in comparison to the
Feynman path model of Busemeyer and Bruza but provides
better EOD prediction for all type of cues. Moreover the
parameters in the Hamiltonian model do allow psychological
interpretation. The predictions of acceptance probabilities
following the original QEM formulation by Brainerd et al.
showed to be flawed by systematic features. In the disjunction
paradigm QEM’s acceptance probabilities for the both?-
probe and the old?-probe can only be identical, and in both
experimental paradigms QEM’s acceptance probability for the
old?-probe can only be larger than or equal to the acceptance
probability for the new-similar?-probe, whatever the cue
type.

The issue of “description-dependence” effect seems crucial in
obtaining final acceptance probabilities; the κ factors are rather
large in comparison to the driving parameters γ and cause
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FIGURE 1 | β > 0 case: temporal evolution of acceptance probabilities for the EOD-disjunction paradigm [3]. Red indicates N probability component, orange

indicates G probability component and green indicates V + G probability component. In the second stage brown indicates the acceptance probability for the b? probe

(V + G). Notice the near absence of verbatim in the initial state.

FIGURE 2 | β < 0 case: temporal evolution of acceptance probabilities for the EOD-disjunction paradigm [3]. Red indicates N probability component, orange

indicates G probability component while green indicates V + G probability component. In the second stage brown indicates the acceptance probability for the b?

probe (V + G). Notice the near absence of gist in the initial state.

outspoken evolution in second stage. This fact is rather counter
intuitive as a priori we had expected small corrective modulation
in second stage evolution (see Tables 6, 7, Figures 1–5).

We found it remarkable that β ≈ ±1 is needed for best fit
in both experimental paradigms when keeping β ∈ R. This

would suggest that the verbatim trace is almost negligible in
comparison to the gist in the set of true cues {o} in the initial
state, or just the inverse. When β is allowed to be complex a mix
of both traces is present in the best fitting initial state for the
EOD-subadditivity paradigm. In the EOD-disjunction paradigm
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FIGURE 3 | β > 0 case: temporal evolution of acceptance probabilities for the EOD-subadditivity paradigm [1]. Red indicates N probability component, orange

indicates G probability component while green indicates V + G probability component. Notice the near absence of verbatim in the initial state.

FIGURE 4 | β < 0 case: temporal evolution of acceptance probabilities for the EOD-subadditivity paradigm [1]. Red indicates N probability component, orange

indicates G probability component while green indicates V + G probability component. Notice the near absence of gist in the initial state.

complex β did not provide a best fit (the limit value became
real).

Superposed Hadamard gates with off-diagonal parameters
show to be a viable method in the construction of Hamiltonians.
The “description-dependence” factor κ can indeed mitigate
probability oscillations. The best example can be seen in the

β < 0 subadditivity Graph 4 where a small κo = 0.022764
acts on an average γo = 2.5625 and gives in the second
stage nearly unmodulated continuation for po?|o(t), po?|ns(t) and
po?|nd(t) (solid green lines).

The ad hoc time π
3 avoided most intermediate extrema in the

probabilities in the second reflection stage, except for β ∈ C.
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FIGURE 5 | β ∈ C case: temporal evolution of acceptance probabilities for the EOD-subadditivity paradigm [1]. Red indicates N probability component, orange

indicates G probability component while green indicates V + G probability component. Notice both verbatim and gist are present in the initial state.

We remark that lower time of measurement could bring about
the problem of not being able to spread open to a range of
probabilities in time when starting from some pre-defined—
e.g., equal– probability configuration, or just trade of with ever
growing driving parameters γ . A longer time of measurement
would increase the well-known issue of intermediate extrema.

We have used the equally weighed initial state

1/N [
√

1− |β|2, 1+ β , 1]τ in VGN space to give each vector |o〉,
|ns〉 and |nd〉 equal weight at start which we consider reflected
best the information communicated by the experimenter. The
optimized data fit shows e.g., β ≈ ±1 in both paradigms with
the perceived implicit probabilities at the start at p(o) ≈ 0.8,
p(ns) ≈ 0.8 and p(nd) ≈ 0.2. Which one can observe at t = 0
in both the subadditivity paradigm (Figure 3) and disjunction
paradigm (Figure 1). The precise nature of the initial vector for
the memory state of the participant after studying {o} and having
heard ‘all type of cues will be presented with equal probability’
but prior to cue and probe presentation remains somewhat
puzzling.

In sum we consider to have constructed an acceptable
Hamiltonian driven QEM version, with good prediction capacity
for acceptance probabilities. Future work could include covering
the model fitting of a data set which covers both the subadditivity

and disjunction paradigm at once –eight parameters for
twelve datapoints– to verify its further prediction capacity,
and to monitor more closely the initial memory state in the
experimental paradigms and the meaurement protocol.
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