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Abstract8

In this paper we present an advanced model of centrifugal pendulum
where its length is allowed to vary during swinging. This modification
accounts for flexion and extension of skier’s legs when turning. We
focus entirely on the case where the pendulum leg shortens near the
vertical position, which corresponds to the most popular technique for
the transition between carving turns in ski racing, and study the effect
of this action on the kinematics and dynamics of these turns. In partic-
ular, we find that leg flexion on approach to the summit point is a very
efficient way of preserving the contact between skis and snow. The up
and down motion of the skier centre of mass can also have strong effect
of the peak ground reaction force experienced by skiers, particularly at
high inclination angles. Minimisation of this motion allows a notice-
able reduction of this force and hence of the risk of injury. We make a
detailed comparison between the model and the results of a field study
of slalom turns and find a very good agreement. This suggests that
the pendulum model is a useful mathematical tool for analysing the
dynamics of skiing.

Keywords: alpine skiing, modelling, balance/stability, performance

9

Introduction10

The skiing of expert skiers is characterised by smooth and rhythmic moves which11

are very reminiscent of a pendulum or metronome. This analogy invites mathematical12

modelling of skiing based on the pendulum action, which can be traced back to the13

pioneering work by Morawski (1973). They argued that a skier can be treated as14

pendulum’s load and their skis as its pivot point. Such an inverted pendulum, with15
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its load located above its pivot, can be prevented from falling under the action of the16

gravity force, provided the pivot is allowed to slide horizontally under the action of a17

control force which pushes it in the direction to which the pendulum is leaning.18

Recently we proposed a variant of this model, where the control force is replaced19

with the snow reaction force naturally emerging in carving turns (Komissarov, 2020).20

In perfect carving turns, the snow reaction force makes skis to move along quasi-21

circular arcs whose centre is located on the same side of the arc as the skier centre22

of mass (CM). Thus the skis are forced to return back under the CM, like in the23

controlled inverted pendulum. On hard snow, the local curvature radius of carved ski24

tracks is fully determined by the ski sidecut radius Rsc (which is a fixed parameter of25

the skis) and the local ski tilt (or inclination) angle to the slope Ψ (Howe, 1983, page26

101). Hence given the skis speed, we can immediately find their acceleration.27

The dynamics of such pendulum is easy to analyse in the accelerated frame28

of its pivot (skis), where the load is subjected to the gravity force, the leg reaction29

force, and the centrifugal force determined by the pendulum inclination. The gravity30

pushes the load towards the ground, the centrifugal force pushes it back to the vertical31

position and the leg reaction force controls the separation between the load and the32

pivot. We called such a pendulum centrifugal (Komissarov, 2020).33

In addition to the vertical equilibrium of the traditional inverted pendulum, the34

centrifugal pendulum can have two more equilibria, one on each side, where the total35

torque due to the gravity and centrifugal force vanishes. These balanced (equilibrium)36

positions of the pendulum are inclined to the vertical by the angle37

Ψeq = arcsin ζ , (1)

where38

ζ =
V 2

gRsc

(2)

and V is the ski speed. Since skiing practitioners often describe balanced body posi-39

tion as an essential ingredient of advanced skiing, it may seem only natural to focus40

on the incline equilibria and the properties of corresponding carving turns. Theoret-41

ical analysis of such quasi-static turns has been carried out in several studies (e.g.42

Howe, 1983; Jentschura & Fahrbach, 2004; Komissarov, 2018). However, the inclined43

equilibria exist only when ζ < 1 (the subcritical regime). This condition is equivalent44

to the upper limit V <
√
gRsc on the skier speed. Although this limit is quite high,45

the typical speeds of top ski racers are still higher (Komissarov, 2018, 2020), show-46

ing that skiing in balance is not the only option. Moreover, the inclined equilibria47

are unstable and hence impossible to sustain, unless an additional control force is48

introduced into the system (Komissarov, 2018, 2020).49

Fortunately, it turns out that the model of centrifugal pendulum also allows50

oscillations about the vertical equilibrium (Komissarov, 2020). In the subcritical51

regime their amplitude is limited from above by Ψeq. In the supercritical regime52

(ζ > 1) the amplitude is not limited, apart from the obvious limit Ψ < 90◦ set by the53
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presence of solid ground. In these solutions the pendulum is never in equilibrium, and54

the forces are never balanced. This finding shows that the force balance is actually55

not an inherent feature of ski turns and invites us to reexamine the way we see alpine56

skiing. In Komissarov (2020), we associated the oscillatory solutions with the dynamic57

rhythmic turns performed by expert skiers and racers.58

So far, we have explored only the highly simplified case where the length of the59

pendulum leg remains unchanged. As a result, the trajectory of its load is a circular60

arc symmetric about the vertical direction and hence near the vertical position the61

load experiences a downward acceleration. In the subcritical regime, this acceleration62

can be provided solely by the gravitational force. In the supercritical regime, the leg63

tension is also required when the oscillation amplitude exceeds a certain limit. In this64

case the pivot is pulled away from the ground. Since skis are not affixed to the snow,65

they are expected to lift off it in this regime. In fact, in skiing there are occasions66

when both skis are indeed lifted off the snow. Sometimes this is made intentionally,67

e.g. during execution of the so-called “dolphin turn”, but more often accidentally,68

e.g. when skiing over a bump. In ski racing this is generally undesirable due to69

the inevitable loss of the turning action. Skiers have learned to negate this effect70

by flexing their legs when going over a real bump or the so-called “virtual bump” in71

the transition between turns (e.g. LeMaster, 2010, page 40). Hence we hypothesise72

that by allowing the pendulum leg to vary in length during its swing we may be able73

to avoid it being pulled away from the ground at the summit point in the regimes74

consistent with the practice of alpine racing. The development and investigation of75

such an advanced model is the main aim of the study described in this paper.76

Methods77

The basic features of the model are presented in the first paper of the series78

(Komissarov, 2020). Therefore here we only briefly describe the common basics and79

focus on the new developments. A load of mass m is affixed to the upper end of80

a massless rod of length l whose lower end is attached to a stationary pivot point81

on a flat horizontal surface. To describe the pendulum motion quantitatively, we use82

Cartesian coordinates with the origin at the pivot point and the basis vectors i, j and83

k such that the pendulum moves in the plane orthogonal to i, and k points upwards84

in the vertical direction. The position vector r connects the origin with the affixed85

mass. The inclination angle Ψ is the angle between the vertical direction and the86

pendulum. We agree that it is positive in the clockwise direction and negative in the87

anti-clockwise direction.88

The load is subject to the vertical gravity force89

Fg = −mgk . (3)

the centrifugal force90

Fc = −(mV 2/R) sgn (Ψ)j , (4)
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Figure 1 . The diagram of forces acting on the pendulum load. Fc is the centrifugal
force, mg is the gravity force, and W is the reaction force of the pendulum leg.

where V is the ski speed, R is the curvature radius of the ski trajectory and

sgn Ψ =















+1 if Ψ > 0;

0 if Ψ = 0;

−1 if Ψ < 0.

is the sign function, and the reaction force of the leg W , which ultimately determines91

the distance between the load and the pivot point, the leg length.92

For a perfect carving turn on hard snow93

R = Rsc cos Ψ (5)

(Howe, 1983; Lind & Sanders, 1996). Strictly speaking, this relation is based on the94

assumption that the penetration of the snow surface by the skis is negligibly small.95

The values measured by Reid, Haugen, Gilgien, Kipp, and Smith (2020) in a field96

study of slalom turns performed by elite racers on hard snow are in agreement with97

equation (5) up to Ψ = 70◦.98

The radial motion of the pendulum mass m is described by the equation99

mar = W + Fc,r + Fg,r , (6)

where100

ar =
d2l

dt2
− l

(

dΨ

dt

)2

(7)

is its radial acceleration and W is the reaction force of the pendulum leg. In the101

model we ignore leg’s mass, which implies that W = FGR, the ground reaction force102

at the pivot point. When W < 0, this is a tension force which resists the action103

aimed at extending the leg. When W > 0, this is a compression force which resists104
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the action aimed at shortening the leg. In the latter case, W is the effective weight of105

the load. When measured in the units of mg, the effective weight is called a g-force.106

In skiing it corresponds to the ground reaction force originated at the skis (Gilgien,107

Spörri, Kröll, Crivelli, & Müller, 2014).108

The swinging motion of the pendulum is governed by the equation109

dM

dt
= K , (8)

where M = mr×u is the pendulum angular momentum, K = r×Fg+r×Fc is the total110

torque about the pivot point, and r = l sin Ψj+l cos Ψk is the position vector (Landau111

& Lifshitz, 1969). The velocity vector u can be split into the components parallel and112

perpendicular to the position vector, u = u‖ + u⊥, where u⊥ = l(dΨ/dt)(cos Ψj −113

sin Ψk). Upon the substitution of all these expressions, equation (8) reduces to114

d

dt

(

l2
dΨ

dt

)

= gl sin Ψ − l
V 2

Rsc

sgn Ψ . (9)

Since the leg reaction force W is aligned with r, it makes zero contribution115

to the torque K and effects the swinging motion only via the leg length. Instead of116

prescribing this force and then solving for the leg length, we may simply prescribe the117

leg length and then proceed with solving equation (9). The corresponding leg reaction118

force can be calculated later, via post-processing of the solution, when needed. This119

is exactly how it is done in the basic model, which assumes l =const.120

Here we assume that the pendulum length is a function of the inclination angle121

and write122

l(Ψ) = l0f(Ψ) , (10)

where l0 is its characteristic length scale and f(Ψ) is a differentiable function, which123

we will refer to as the “retraction function”. With this law the pendulum is a closed124

system and satisfies the energy conservation law (see Appendix A). In what follows,125

we interpret l0 as the height of skier’s CM from the ground at maximally extended126

upright position. For the average adult male height of 180 cm (e.g. Roser, Appel, &127

Ritchie, 2020), and the average ratio between the CM height and the total height of128

56% (e.g Davidovits, 2018, page 3), l0 is about one meter. Expert skiers flex their legs129

in the transition between turns and extend them during the turn (e.g. Harb, 2006;130

LeMaster, 2010; Reid, 2010). This technique corresponds to f(0) < 1.131

We further assume that f(Ψ) is a symmetric function, and hence f(Ψ) = f(−Ψ)132

and f ′(0) = 0. In application to skiing, this implies that before and after the transition133

between two turns the extension of skier’s legs and the ski tilt angle are related in134

exactly the same way. Although there is no reason why this should be the case in real135

skiing, the data provided in Reid (2010) shows that this assumption is reasonable.136

The degree to which skiers extend and flex their legs also varies from turn to turn,137

as dictated by the terrain and individual preferences. Here we ignore this caveat and138

focus on the basic effects of the leg action instead.139
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Figure 2 . Typical phase portrait of the centrifugal pendulum with a retractable
length. The plots correspond to the retraction function of the model B (see section
Results for details) with the parameters b = 0.65 and ζ = 0.8 (left) and ζ = 1.2
(right). The inclination angle is given in radians.

Via introducing the dimensionless time τ = t/T , where T =
√

l0/g is the natural140

time-scale of the pendulum, equation (9) is reduced to its basic form141

f(Ψ)Ψ̈ + 2f ′(Ψ)Ψ̇2 = sin Ψ − ζ sgn Ψ , (11)

where ζ is the speed parameter given by equation (2), and we use the notations Ȧ =142

dA/dτ and A′ = dA/dΨ. The first term on the right side of the equation represents143

the torque due to gravity, and the second one the torque due to the centrifugal force.144

The types of solutions allowed by this equation depend on the value of ζ.145

To elucidate the properties of a dynamical system described by a second order146

ordinary differential equation, it is helpful to convert it into a system of two first147

order equations. In our case, the standard conversion yields148

dΩ

dτ
= −2f ′(Ψ)

f(Ψ)
Ω2 +

1

f(Ψ)
(sin Ψ − ζ sgn Ψ)

dΨ

dτ
= Ω , (12)

where Ω is the angular velocity of the pendulum. This system allows static solutions
(or equilibrium points) which satisfy the condition

dΩ

dτ
=
dΨ

dτ
= 0 .

One of them, (Ω,Ψ) = (0, 0), describes the vertical position of the pendulum and149

corresponds to the skier gliding down the fall line. When ζ > 1 (the supercritical150
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regime) this is the only static solution allowed by the system. When ζ < 1 (the151

subcritical regime) there are two more static solutions, (Ω,Ψ) = (0,± arcsin(ζ)),152

which describe inclined positions on both sides of the vertical and correspond to153

turns made in perfect balance. Interestingly, these static solutions do not depend on154

the form of the retraction function f(Ψ). They are exactly the same as in the case of155

the pendulum with fixed leg length. Hence phase portraits corresponding to different156

retraction functions are qualitatively the same if we use the same value of ζ. Figure157

2 illustrates the properties of these phase portraits using the retraction function B,158

described later in Results, as an example. The closed orbits around the origin in the159

portrait describe pendulum’s oscillations about its vertical position – they correspond160

to the dynamic type of carved turns.161

When simulating the trajectories of ski runs based on the pendulum model it162

is convenient to introduce the length scale L = Rsc and the time scale T = Rsc/V .163

This leads to the dimensionless equations164

f(Ψ)
d2Ψ

ds2
+ 2f ′(Ψ)

(

dΨ

ds

)2

= δ(ζ−1 sin Ψ − sgn Ψ) , (13)

165

dγ

ds
= sgn Ψ sec Ψ , (14)

166

dx̄

ds
= cos γ , (15)

167

dȳ

ds
= sin γ , (16)

where s = t/T = V t/Rsc, x̄ = x/Rsc, ȳ = y/Rsc, γ is the instantaneous angle of168

traverse, and the dimensionless parameter δ = Rsc/l0 (Komissarov, 2020). Note that169

the independent variable s is actually the distance along the trajectory measured in170

the units of sidecut radius. For simplicity, we will use the initial conditions x̄(0) = 0,171

ȳ(0) = 0, γ(0) = 0, dΨ/ds(0) = 0 and Ψ(0) = Ψmax. No matter what the dimensional172

parameters of the problem are, the dimensionless trajectory ȳ = f(x̄) is completely173

determined by the initial conditions and the dimensionless parameters ζ and δ.174

Results175

In the limit of small amplitude ( Ψ ≪ min 1, ζ ), equation (11) reduces to176

f(0)Ψ̈ = −ζ sgn Ψ . (17)

This equation has periodic solutions, whose period P depends on their amplitude177

Ψmax. When f(0) = 1 we recover the basic model with non-retractable leg (Komis-178

sarov, 2020). Since upon the substitution τ =
√

f(0)τ̃ equation (17) reduces to its179
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non-retractable form, the period of the retractable solution differs from the period of180

the non-retractable solution of the same amplitude only by the factor f 1/2(0), namely181

P = 4f 1/2(0)

(

2Ψmax

ζ

)1/2

. (18)

Since leg flexion in transition between turns corresponds to f(0) < 1, this equation182

allows us to conclude that such turn technique yields turns that are shorter in duration183

and, given the same speed, in length compared to the case without flexion.184

While the dimensionless period of pendulum oscillations depends only on ζ and185

Ψmax, the dimensional period also scales like
√
l0, simply because the employed time186

scale T =
√

l0/g. Hence for the same speed, sidecut radius of skis, and the amplitude187

of skier’s inclination, a shorter skier (with a lower CM) will be making shorter turns188

compared to a taller skier (with a higher CM). A little bit more information on the189

scaling with l0 can be extracted from equations (13)-(16). First, equation (13) shows190

that Ψ(s, δ, ζ) = F (δ1/2s, ζ) and hence s(Ψ, δ, ζ) = δ−1/2S(Ψ, ζ), confirming that the191

turn length scales like
√
l0. (Here F (x, y) and S(x, y) are not some specific functions;192

they are introduced simply to expose the dependence of Ψ and s on δ.) Given this193

result, equation (14) implies that γ(Ψ, δ, ζ) = δ−1/2Γ(Ψ, ζ) and hence194

dx̄

ds
= cos(δ−1/2Γ(Ψ, ζ)) , (19)

195

dȳ

ds
= sin(δ−1/2Γ(Ψ, ζ)) . (20)

From this it follows that as l0 decreases (and hence δ increases), dx̄/ds increases and196

dȳ/ds decreases and hence the trajectory straightens up even if the range of Ψ and197

hence the range of the curvature radius R remain the same. Thus, all other things198

being equal, shorter skiers make not only shorter but also shallower turns.199

How skiers flex and extend their legs depends on many factors, including their200

level and individual preferences. Here we are not aiming at comprehensive analysis201

and rigorous derivation of general conclusions. Instead we focus on the most common202

type of the transition between turns in modern ski racing, which involves legs flexion203

in transition between turns, and consider in details only two specific examples of the204

retraction function. These are illustrated in figure 3205

Case A206

We start with the retraction function207

f(Ψ) =
a

cos Ψ
, (21)

which ensures that maximum retraction occurs in the vertical position (Ψ = 0), which208

is the transition point between turns (see the left panel of figure 3). Moreover, in this209
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Figure 3 . The leg retraction function f(Ψ) and the corresponding height h(Ψ) =
f(Ψ) cos(Ψ) of the pendulum load above the ground in the reference models A (left
panel) and B (right panel).

model the height of the CM above the ground, H = l0f(Ψ) cos Ψ, is constant, and210

hence the vertical acceleration of the CM vanishes completely. Thus the snow contact211

is preserved at all time. An excellent video demonstrating this leg action was made212

available on YouTube by Alltracks Academy (Hetherington, 2016).213

Since the full leg extension corresponds to f = 1, equation (21) implies the214

upper limit Ψlim = arccos(a) on the inclination angle. Thus, the smaller the value of215

a is the larger inclinations angles can be accommodated. However, in the transition216

between turns skiers rarely flex their legs beyond the point where the femur bone is217

parallel to the slope. This is easy to understand as squatting seriously compromises218

human body’s manoeuvrability. When the femur bone is parallel to the slope one may219

expect a reduction of the CM height by up to a factor of two compared to that in220

the fully extended upright position, and hence a = 0.5. The corresponding maximum221

inclination angle Ψlim ≈ 60◦. We are not aware of any study set to determine the222

lowest position of the CM achievable in the transition between turns of alpine skiing.223

However, our expectation agrees with the actual measurements taken in the studies224

of the jump biomechanics (Domire & Challis, 2007). In the rest of the paper, we225

consider only the case with a = 0.5 and refer to it as the model A.226

Figure 4 compares the trajectory obtained in model A with the trajectory in227

the case of fixed leg (l = l0) for the same inclination amplitude. One can see that228

in the model A the trajectory has a similar curvature but its turns are shorter. The229

reduction of the turn length is consistent with the reduction of the turn period by230

the factor
√

2 according to the small amplitude result (18).231
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Figure 4 . Trajectories of carving runs executed with leg flexion as described in the
model A (solid line) and without leg flexion (dashed line; model B with b = 0). In
both cases l0 = 1 m, Rsc = 14 m, V = 13.7 m/s (ζ = 1.37) and Ψmax = 60◦.

Figure 5 . Dimensionless period of the pendulum in the model A with ζ = 1.2. The
line shows the period of the small amplitude solution given by equation (22). The
dots show the periods of solutions, which were found via numerical integration of
equation (11).

Period-amplitude relation. Since in this model f(0) = 1/2, the small-232

amplitude result (18) reads233

P = 4

(

Ψmax

ζ

)1/2

. (22)

In the nonlinear regime, the period keeps growing with the amplitude and does this234

even faster, as this can be seen in figure 5. As a result of this dependence, carving235

turns with smaller inclination are shorter (see figure 6). They are also straighter236

because according to Howe’s formula smaller Ψ implies smaller curvature of turn’s237

arc. This is similar to what was found in the model with fixed leg length (Komissarov,238

2020).239



CENTRIFUGAL PENDULUM WITH A RETRACTABLE LEG 11

Figure 6 . Trajectories of carving run in the model A with for Ψmax = 60◦ (solid line),
Ψmax = 40◦ (dashed line) and Ψmax = 20◦ (dotted line). The other parameters are
l0 = 1 m, Rsc = 14 m and V = 13.7 m/s (ζ = 1.37).

Ground reaction force. In the model A, the leg reaction force is always a240

compression and the corresponding ground reaction force is241

FGR =
1

cos Ψ
. (23)

(see Appendix B). Thus, the effective skier’s weight does not depend on their speed,242

contrary to what one would expect given the fact that the centrifugal force, which con-243

tributes to the total loading, is speed-dependent. Instead, it is completely determined244

by the skier inclination.245

For the vertical position (Ψ = 0), equation (23) yields FGR = 1, which is the246

normal weight of the load. This implies that at transition between carving turns the247

skis are still loaded quite heavily, making their pivoting problematic. However, in the248

case of pure carving, skis are simply rolled from edge to edge without pivoting.249

At first glance, the lack of dependence of FGR on the speed is a paradox. Indeed,250

at low speeds the centrifugal force is small and hence FGR must be close to unity,251

which is not supported by equation (23). However, at low speeds the amplitude of252

periodic solutions must stay below Ψeq = arcsin(ζ). Because Ψeq → 0 as ζ → 0, at253

low speeds Ψ must be low and hence FGR must be close to unity, as expected. In254

contrast, for ζ > 1 the inclination angle can have any value between −π/2 and π/2,255

and this indirect dependence of FGR on ζ disappears.256

Speed dependence of trajectory. The fact that neither the snow contact257

condition nor the ground reaction force constrain the skier speed in this model invites258

us to consider the high ζ regime in some detail. In particular, one may wonder how the259

skier speed affects the trajectory of their run. Figure 7 shows the results of simulations260

for slalom skis with Rsc = 14 m and the speed parameter varying from ζ = 1 to ζ = 10.261

The inclination amplitude of all these runs is the same, Ψmax = 60◦. One can see that262

as ζ increases the turns become shorter and shallower. This could be expected given263

the form of the right-hand side of equation (13), which increases with ζ, leading to264

faster variation of the inclination angle with the distance along the trajectory. Figure265
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Figure 7 . Trajectories in the model A for ζ = 1 (dot line), ζ = 1.5 (dot-dash line),
ζ = 2 (dash line) and ζ = 10 (solid line). The other parameters Rsc = 14 m, l0 = 1 m
and Ψmax = 60◦ are the same for all solutions.

7 also suggests that the dependence on ζ weakens as it increases. This is consistent266

with the fact that as ζ → ∞ the first term on the right-hand side of equation (13)267

becomes much smaller compared to the second term and hence the dependence on ζ268

vanishes. Hence we should expect the trajectory to approach some asymptotic form.269

Figure 6 shows that for ζ = 10 the amplitude of the oscillations along the y axis is270

only just above l0 sin Ψmax, the horizontal amplitude of the pendulum oscillations in271

this model. This suggests that the asymptote describes the limiting regime where the272

skier CM moves straight down the fall line, unaffected by the side-to-side motion of273

the skis underneath it. However, this has not yet been analytically proved.274

Case B275

In the case B, we put276

f(Ψ) = (1 − b cos Ψ)1/3 , (24)

where b is a parameter. This function has a number of attractive features and this277

is why it was chosen. Firstly, for the retractability parameter b = 0 we recover278

the pendulum of fixed length. Secondly, it allows a relatively simple expression for279

the potential energy of the pendulum (see Appendix A). Finally, according to the280

measurements made by Reid (2010), during a typical SL turn the hight of skier CM281

reduces from h ≈ 0.7 m at the transition down to h ≈ 0.4 m when the ski inclination282

angle reaches Ψmax ≈ 67◦. The right panel of figure 3 shows the leg retraction function283

f(Ψ) and the CM-height function h(Ψ) = f(Ψ) cos Ψ for b = 0.65. In this case the284

CM height h reduces from 0.70 at Ψ = 0 to 0.37 at Ψ = 67◦. Thus this model285

introduces the variability of the CM height which is only a little bit more extreme286

than that measured by Reid (2010). In what follows, we use to the case with b = 0.65287

as a reference model.288

Snow contact condition. Figure 8 compares the ground reaction forces cal-289

culated using equation (41) of Appendix B for the case with fixed leg (b = 0) and for290
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Figure 8 . Ground reaction force as a function of ζ and Ψ in the model B with
Ψmax = 65◦. The left panel shows the force in the case of fixed leg (b = 0). The right
panel shows the force in the case of retractable leg (b = 0.65). The force is given in
the units of mg.

the case with a retractable leg (b = 0.65). In both cases the amplitude of pendulum291

oscillation Ψmax = 65◦. Then the force is positive, it is a reaction to the pivot point292

is pushed into the ground. When it is negative, it is a reaction to the pivot point293

being pulled away from the ground. Skis can play the role of a pivot only when they294

are pushed into the snow and we expect them to lift off the snow when the pendulum295

model predicts FGR < 0.296

The left panel of figure 8 shows that in the case of fixed leg, FGR < 0 near the297

vertical position (Ψ = 0) for nearly all ζ > 1 and becomes very large near ζ = 2.298

In carving turns describes by such solutions, a skier would be catapulted into the air299

(cf. Komissarov, 2020). However in the retractable case, the value of FGR near the300

vertical position is notably higher, and is actually positive for ζ < 1.4. Hence in this301

model of the leg action, its flexing at transition also helps to keep skis on the snow.302

These two scenarios are nicely illustrated by LeMaster (2010) in their Figure 6.3.303

Period-amplitude relation. Since in this model f(0) = (1−b)1/3, the small-304

amplitude result (18) reads305

P = 4(1 − b)1/6

(

2Ψmax

ζ

)1/2

. (25)

Hence, the period of the retractable solution is shorter than the period of the non-306

retractable solution by the factor of (1 − b)1/6. For the reference model, this is about307

sixteen percent reduction. The dependence of the period on the amplitude persists in308

the nonlinear regime. This is illustrated in Figure 9 for the reference model B with309
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Figure 9 . Pendulum period in the reference model B. The line shows the period of
the small amplitude solution given by equation (25). The dots show the period of
exact solutions found numerically.

Figure 10 . Trajectories of ski runs in the model B with b = 0 (solid), b = 0.6 (dashed)
and b = 0.8 (dotted). The other parameters are l0 = 1 m, Rsc = 14 m, V = 13.7 m/s
(ζ = 1.37) and Ψmax = 65◦.

ζ = 1.2.310

The shorter period of solutions with higher retraction parameter b implies311

shorter carving turns. This is illustrated in Figure 10 where we present the tra-312

jectories corresponding to solutions with b = 0, 0.6 and 0.8. The other parameters313

are fixed to l0 = 1 m, Rsc = 14 m, V = 13.7 m/s and Ψmax = 65◦. These are chosen314

to reflect the values measured in the trial runs studied by Reid (2010).315

Scaling with the skier height. As we discussed at the beginning of this316

section, all things being equal, shorter skiers are expected to execute shorter and317

straighter (shallower) turns, with the turn length scaling as
√
l0. In order to illustrate318

the scale of this dependence, we simulated the runs made by skiers of the height 202319

cm (Ramon Zenhäusern ), 180 cm (Alexis Pinturault), and 165 cm (Albert Popov),320

thus covering the whole range for current WC slalom racers. As one can see, the321
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Figure 11 . Trajectories of ski runs in the reference corresponding the skier height
of 165 cm (dotted line), 180 cm (solid line), and 202 cm (dashed line). The other
parameters are l0 = 1 m, Rsc = 14 m, V = 13.7 m/s (ζ = 1.37) and Ψmax = 65◦.

difference in the trajectories is not dramatic but appreciable. In order to compensate322

for this effect, shorter skier would have to go for a higher inclination amplitude and/or323

higher amplitude of up and down motion (smaller b), making the turn dynamics more324

extreme.325

Peak ground reaction force. The results presented in figure 8 suggest that326

the peak value of the ground reaction force in the reference model B is not much327

reduced compared to the case with fixed leg (b = 0). In order to check whether this328

conclusion is specific to Ψmax = 65◦ or not, we used equation (45) of Appendix B to329

calculate Fmax
GR = FGR(ζ,Ψmax). This makes sense because the ground reaction force330

normally peaks at the extreme position of the pendulum, where Ψ = Ψmax. In the331

case with fixed leg, the peak value is given by a relatively simple equation,332

Fmax
GR,0 = ζ tan Ψmax + cos Ψmax (26)

(see Appendix B). The left panel of figure 12 shows Fmax
GR for the reference model333

B, whereas the right panel shows its reduction compared to the model with fixed334

leg, ∆Fmax
GR = Fmax

GR,0 − Fmax
GR . The results confirm that the reduction is indeed rather335

marginal, and show that for the combination of high ζ and high Ψmax the ground336

reaction force becomes prohibitive. We compare these values with the actual experi-337

mental data in the next section.338

Model versus experimental data339

With the snow contact issue resolved, it makes sense to carry out a somewhat340

more detailed check of the pendulum model against the data obtained in experimental341

studies of turn dynamics in ski racing. This should help to evaluate its current fitness342

and to identify the ways of further development. In this section, we pay particular343

attention to the magnitude of the ground reaction force which skiers face during344

carving turns .345

Figure 13 shows the predicted peak value of the ground reaction force as a346

function of the maximum inclination angle Ψmax and the speed parameter ζ. One347
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Figure 12 . Left panel: Peak value of the ground reaction force in the reference model
B as a function of the speed parameter ζ and the pendulum amplitude Ψmax. Right
panel: The reduction of the peak value compared to case with fixed leg. The results
are given in the units of mg.

can see that the model A, where the pendulum load remains at the same height348

throughout its oscillations, yields noticeably lower ground reaction force than the349

model B, where the load lowers on approach to the turning point.350

It is interesting to compare the model predictions with the actual parameters351

of turns performed by elite athletes. In table 1 we list the maximum speed Vmax, the352

shortest local turn radius Rmin and the peak ground reaction force FGR,max recorded in353

the field studies of Gilgien et al. (2014) and (Reid, 2010). The data for giant slalom354

(GS), super-giant slalom (SG) and downhill (DH) is based on the runs made by355

forerunners of the World Cup competitions during the 2010/11 and 2011/12 seasons356

(Gilgien et al., 2014). Only the data from the turns with the 10% most extreme357

values was included in their statistical analysis. It is not possible to say if the peak358

values of these parameters correspond to the same turn or to different turns. In fact,359

in ski racing the skier speed is often higher on flatter parts of a race track whereas360

the turn radius is often smaller on its steeper sections (Gilgien, Crivelli, Spörri, Kröll,361

& Müller, 2015). The data for GS, SG and DH is simply copied from the table 2 in362

Gilgien et al. (2014). This paper gives no information on the sidecut radius of skis363

used in the trials. For this reason, we had to adopt the minimum radius allowed by364

the FIS regulations for the 2010/2011 season. This should be a reasonably good guess365

as racers tend to prefer skis with the smallest allowed sidecut radius.366

The slalom (SL) data is based on the trial runs made by members of Norwegian367

national Europa Cup team of the 2005/2006 season. This study used a carefully368

selected slope which provided uniform conditions throughout a course and courses369
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Table 1
Parameters of the trail runs studied in Gilgien et al. (2014) and Reid (2010) and
the corresponding parameters of the pendulum model. Rsc is the assumed ski sidecut
radius. 〈V 〉, Vmax, Rmin, and FGR,max are respectively the mean turn speed, the top
speed, the lowest local turn radius, and the top ground reaction force measured during
the trials. ζ is the speed parameter of the pendulum model corresponding to 〈V 〉 (for
the SL data) or Vmax (for the GS, SG and DH data) and Rsc; Ψmax is the maximum
inclination angle corresponding to Rsc and Rmin as prescribed by the Howe formula
(Howe, 1983); FGR,A and FGR,B is the ground reaction force in the pendulum model
expected for the leg retraction models A and B and given in the units of mg.

Parameter SL GS SG DH

Rsc 14 m 27 m 33 m 45 m

〈V 〉 or Vmax 13.7 m/s 22.2 m/s 28.3 m/s 32.3 m/s

Rmin 6 m 8.4 m 17.2 m 20.6 m

Fmax
GR 3.2 3.16 2.79 2.59

ζ 1.37 1.86 2.47 2.36

Ψmax 65◦ 71.8◦ 58.6◦ 62.7◦

Fmax
GR,A 2.37 3.20 1.92 2.18

Fmax
GR,B 3.23 5.73 4.11 4.62

that promoted repetitive rhythmic skiing with minimal differences between turns.370

This was done with the aim of accumulating a set of data which was sufficiently large371

for a robust statistical analysis of the kinematics and dynamics of a typical slalom372

turn (Reid, 2010). We extracted the data shown in table 1 from figures 6.3, 6.6, 6.10,373

and 6.32 in Reid (2010) using a basic ruler. Each figure shows the mean value of a374

displayed parameter and its standard deviation as a function of the turn phase. We375

used only the mean value curves to determine the turn parameters given in table 1.376

In particular, 〈V 〉 is defined as an arithmetic mean of the highest and lowest values of377

the curve for the outside ski speed. Rmin is the lowest value of the curve for the local378

turn radius of outside ski, and FGR,max is the highest value of the curve for the ground379

reaction force. Although these are reached not at exactly the same turn phase, the380

difference between the phases is not that great. In addition, Reid (2010) present two381

separate sets of data, for race courses which had different gate separation. In table 1,382

we give an arithmetic mean of the numbers found for these two sets. Reid (2010) do383

not explicitely state the sidecut radius of trial skis but for their calculations they use384

a model with Rsc = 14 m. So we expect this to be the typical radius of skis in their385

trials.386



CENTRIFUGAL PENDULUM WITH A RETRACTABLE LEG 18

Figure 13 . Peak ground reaction force in the reference models A (left panel) and
B (right panel) as a function of the speed parameter ζ and the pendulum ampli-
tude Ψmax. We also show the positions corresponding in these models to the peak
parameters of the racing runs measured in Gilgien et al. (2014) and Reid (2010).

We use the values of 〈V 〉 (for the SL data) or Vmax (for the GS, SG, and DH387

data) and Rsc to calculate the values of the speed parameter ζ, using equation (2),388

and the values of Rsc and Rmin to calculate the ski inclination angle, Ψmax, using389

equation (5). Finally, the determined values of ζ are fed into equations (45) and390

(44) to find the corresponding peak values of the snow reaction force expected in the391

leg-retraction models A and B. The results are presented in table 1 and in figure 13.392

The most encouraging conclusion that follows from results presented in table 1393

is that the peak ground reaction force predicted by the pendulum model for slalom394

runs using the leg retraction model B is almost identical to the snow reaction force395

measured in Reid (2010). This is particularly impressive because in this case the396

model has no free parameters which could be used for fine tuning. Indeed, 1) the397

retraction model is chosen via fitting the actual variation of the CM height (figure 6.21398

in Reid (2010)), 2) the speed parameter ζ is fixed by the measured ski speed and their399

sidecut radius, 3) the oscillation amplitude Ψmax is fixed by the observed minimum400

turn radius and the sidecut radius of skis, and 4) there are no other parameters in401

the model.402

For more detailed comparison with the experimental data we have prepared plots403

showing the evolution of the CM height h, local turn radius R, the ski inclination404

angle Ψ and the ground reaction force FGR (see figure 14). These are to be compared405

with figures 6.21, 6.6, 6.10, and 6.32 in Reid (2010) respectively. The data provide two406

additional quick checks for the model. Firstly, the experimental data give Ψmax ≈407

67◦, which is not far from the theoretical value of Ψmax = 65◦, indeed. Secondly,408

the experimental minimum value for the ground reaction force during the transition409
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Figure 14 . Pendulum CM height above the ground, local turn radius, inclination
angle and ground reaction force as a function of the turn cycle (in %) in the reference
model B with l0 = 1 m, Rsc = 14 m, ζ = 1.37, and Ψmax = 65◦.

between turns, FGR,min ≈ 0.25mg, which is also similar to what is seen in figure 14.410

Ignoring the sudden dive at the exact boundary, we find FGR,min ≈ 0.2mg.411

The comparison also reveals some notable differences. The most noticeable one412

is the high local turn radius observed in the experimental data for up to 30 percent413

of the turn cycle, in the transition phase. During this period, the turn radius can414

strongly exceeds the ski sidecut radius, implying that skis are not carving. Not only415

skis but also the skier CM has a much more straightened trajectory during this phase,416

suggesting an almost inertial motion. This conclusion is supported by a noticeably417

longer phase of low ground reaction force in the experimental data. In fact, it is418

common knowledge that skidding and pivoting of skis in transition between turns is419

an essential part of slalom technique.420

Figure 15 shows the ski trajectory predicted in model B using the parameters421
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Figure 15 . Theoretical ski trajectory predicted in the reference model B versus the
gate positioning in Reid (2010). The model parameters are Rsc = 14 m, l0 = 1 m,
ζ = 1.37 and Ψmax = 65◦. The distances between turning poles are ∆x = 11.4 m and
∆y = 4.84 m.

from table 1 and the position of turning poles as in Reid (2010). Like with other422

data, we used the arithmetic mean of the distances for the two courses they set. The423

theoretical turn is a bit longer and wider than needed, with skis clearing the gates424

with about one meter margin, but given the model simplifications we see this as a425

reasonable agreement.426

As to the results for GS, SG and DH presented in table 1, it is obvious that for all427

these disciplines, the leg retraction model B predicts peak values of the snow reaction428

force which significantly exceed the experimental values and could be unbearable.429

Moreover, we have found that in all the three cases the model predicts a loss of snow430

contact in transition between tuns. It could be that Vmax is measured in one turn431

and Rmin in a completely different turn and may be even on a completely different432

section of the race track. In this case, its possible that in any individual turn the433

combination of ζ and Ψmax is less extreme, resulting in a lower ground reaction force434

and a weaker catapulting effect at the end of the turn.435

For the model A the predicted peak values of the ground reaction force are closer436

to the experimental values. In fact, for GS they are almost identical. However, the437

deduced inclination angle Ψmax exceeds the limiting value Ψlim ≈ 60◦ of this model.438

This value of Ψmax corresponds to a 200% increase in the distance between the skier439

CM and the ski base during the turn, which likely would require skiers to press their440

knees against their chest at the transition between turns.441

For SG and DH the deduced values of Ψmax are approximately equal to Ψlim,442

making the model A a more realistic possibility. However, the ground reaction force443

predicted in this model is significantly below the observed values. This suggests that444

in the speed disciplines, the height of skier’s CM is still variable, but to a lesser extent445

than in slalom. Although this seems to agree with our naked eye inspection of many446

openly available video records of WC races, a proper quantitate analysis is required.447

Overall, the results are not conclusive and more detailed experimental studies of turn448

kinematics in these disciplines, similar in rigour to Reid (2010), are required for a449



CENTRIFUGAL PENDULUM WITH A RETRACTABLE LEG 21

more informative analysis.450

Since the issue of snow reaction force is important for prevention of injuries,451

which trouble the sport, we finish this section by explaining why the model A provides452

a substantial reduction for the peak values of this force during the turn. At first glance453

this is rather odd, as for the same speed and the same inclination angle in both models454

the skier experiences exactly the same centrifugal and gravity forces. However, our455

simple pendulum model shows that the ground reaction force is also influenced by456

the leg action, by how fast it is extended and contracted during its swing. This is457

already evidenced by equations (6) and (7). At the extreme position (Ψ = Ψmax),458

dΨ/dt = 0 and the radial acceleration of the pendulum load reduces to459

ar =
d2l

dt2
. (27)

As in both models l increases with Ψ, we have ar < 0 at Ψmax and hence the ground460

reaction force is reduced via the leg action. However, in the model A this effect is461

stronger. In order to understand why, let us consider all forces acting on the load at462

Ψ = Ψmax. In the model A, the vertical component of the leg reaction force W⊥ must463

balance the gravity force in order to preserve constant load height above the ground.464

Hence, W⊥ = mg and the total leg reaction force465

W = mg(1 + tan2 Ψmax)1/2 , (28)

just because its vector is aligned with the leg (see figure 1). In the model B, the load466

height increases after the turning point and hence the vertical component of W must467

be higher by δW⊥ = ma⊥ where a⊥ is the vertical acceleration of the load. For high468

Ψmax, the corresponding increase of the total reaction force,469

δW = δW⊥(1 + tan2 Ψmax)1/2 , (29)

can be much higher than δW⊥. In the model corresponding to the trial runs in Reid470

(2010), the total variation of the CM height ∆h = 0.33 m. Assuming that for one half471

of this distance the vertical acceleration is positive, one can estimate its magnitude via472

the standard equation for the distance covered from rest under constant acceleration,473

a⊥ =
∆h

T 2
, (30)

where T is the time required to reach the heigh ∆h/2. This time should be about one474

quarter of the whole turn duration. Given the length of the simulated turn L ≈ 14 m475

(c.f. figure 15) and the ski speed V = 13.7 m/s, we estimate T ≈ 0.25 s and hence476

a⊥ ≈ 0.5g, which is not far from the value of 0.37g found in our numerical simulations.477

For Ψmax = 65◦, this corresponds to δW = 1.12mg, which is not far from the actual478

difference between the reaction forces in the models A and B (see table 1).479
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Figure 16 . Top panel: Ski trajectories in the reference models A (solid line) and B
(dashed line) for the same run parameters: l0 = 1 m, Rsc = 14 m, V = 13.7 m/s, and
ψmax = 65◦. Bottom panel: The corresponding variation of the inclination angle.

In skiing terms, the model A corresponds to a faster extension of skier’s legs480

(mainly their outside leg) on approach to the turning point and a faster flexion of the481

legs after passing this point, compared to the model B. The faster flexion means that482

the skier A offers lesser resistance to the compression coming from the snow. Based483

on this interpretation, one would expect a smaller impulse received by this skier in the484

direction normal to the overall direction of travel and hence shallower turns. In figure485

16 we compare the ski trajectories in the models A and B for the same parameters as486

in figure 15. In agreement with our expectation, in the model A the turns are indeed487

shallower and shorter. Interestingly, the shapes of turn arcs are very much the same488

in both the cases but the speed of transition from arc to arc is noticeably faster in489

the model A. This can also be seen in the plots of Ψ(τ), presented in the lower panel490

of figure 16.491

Discussion and Implications492

In this study we aimed to learn more about the potential of the centrifugal493

pendulum model in capturing essential features of carving turns in expert skiing and494

racing. The main focus was on how to prevent the loss of snow contact at high speed495

(ζ > 1) predicted by the basic pendulum model. Indeed, this prediction is in conflict496

with the skiing practice as ζ > 1 is typical for racing and yet racers manage to avoid497

being catapulted into the air. The main advice given by ski coaches in this regard is to498

flex legs in transition between turns and to extend them during turns, the technique499

analogous to that used in bump skiing for the same reason. Based on this advice, we500

advanced the pendulum model by allowing variation of its length during oscillations.501

The introduction of leg retraction function made the structure of differential502
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equations governing the pendulum motion a little bit more complex, but a number of503

its important properties remain unchanged. In particular, it has the same qualitative504

dependence on the speed parameter ζ. Like in the basic model, for ζ < 1 the pendu-505

lum has three equilibrium solutions, and for ζ > 1 these equilibria do no longer exist.506

This conclusion does not depend on the specific form of the leg retraction function.507

In application to skiing it means that the leg action does not effect the value of the508

critical speed above which carving turns become incompatible with lateral balance509

between the gravity, centrifugal and snow reaction forces.510

Like in the basic model (Komissarov, 2020), the period of pendulum oscilla-511

tions depends on their amplitude, even in the small amplitude limit, with a smaller512

amplitude leading to a shorter period. In skiing this implies that reduction of skier513

inclination during turns results in them becoming shorter and shallower.514

Similarly to the basic model, the pendulum period increases with the length515

of its leg (Komissarov, 2020). In application to skiing this means that, given the516

same equipment, shorter skiers will tend to make shorter turns compared to taller517

skiers. To compensate for this, they may be forced to go for more extreme inclination,518

which increases the turn duration. In agreement with this general period dependence519

on the pendulum length, we find that contraction of the pendulum leg near the520

vertical position reduces the oscillation period compared to the case where it remains521

unchanged (the same as in the extreme position). In skiing this implies that leg flexion522

in transition between turns makes them shorter, both in duration and in length.523

In our numerical modelling, we probed the effect of leg flexion on the snow524

contact in transition between carving turns using two specific models of this leg525

action. In our approach we did not aim at building a flexible model which could526

be used to reproduce the exact action of real skiers, which varies from individual527

to individual and depends on a number of external factors. Instead, we wanted a528

relatively simple model which could be easy to implement and analyse.529

In the first example (case A) the pendulum load remains at the same height530

above the ground throughout its oscillation. In skiing this corresponds to such an531

execution of ski turns that the height of skier’s CM above the snow remains invariant532

throughout a turn. This implies that 1) the vertical component of the leg reaction533

force applied to the pendulum load always balances the vertical component of gravity534

force, and 2) the radial component of the ground reaction force at the pivot is always535

positive. In other words, the pivot is always pushed into the ground. Thus, the setup536

automatically ensures that the snow contact issue never emerges. We note that in537

this case, the ground reaction force does not reduce below mg when the pendulum538

goes through the vertical position. In skiing this implies that such leg action is539

incompatible with pivoting of skis in transition between turns, which requires skis to540

be unloaded. However in pure carving such pivoting of skis is completely eliminated,541

and instead they are simply rolled from one edge to another.542

Remarkably, the total ground reaction force corresponding to this leg action543

does not depend on the speed parameter ζ or the amplitude of pendulum oscillations544
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Ψmax, but is completely determined by the skis (and hence skier) inclination angle.545

Moreover, for inclination angles Ψ < 60◦ the ground reaction force stays rather low,546

FGR < 2mg. At first glance, the lack of dependence on ζ seems to suggest a possibility547

of turning at extremely high speeds without encountering prohibitively large forces.548

However as the speed increases, the skier trajectory approaches a straight line, with549

skis moving from side to side only by the distance dictated by the length of skier’s550

legs and their inclination.551

One important limitation of this leg action concerns achievable inclination an-552

gles. The model has an upper limit on these angles which is dictated by the lowest553

anatomically possible heigh of skiers CM above the snow in transition between turns.554

We estimate this heigh as approximately 50 percent of the CM height in maximally555

extended upright position (which is about 100 cm for a 180 cm tall skier). The cor-556

responding limit on the inclination angle is Ψlim = 60◦. Although this limit is not557

low, even more extreme inclinations are often used by top athletes (e.g. see table 1).558

In addtition, skiers do use up and down motion to control the tilt of their skis and559

hence the turn radius.560

In the second example (case B), the pendulum load is allowed to move up and561

down to a degree controlled by its single parameter b. For b = 0.65 the amplitude of562

this movement is very close to the one observed in slalom turns by (Reid, 2010). In563

fact, it is noticeably lower than that in the pendulum with fixed leg length, and our564

calculations show that this has a strong effect on the ground reaction force experienced565

by the pendulum when it passes its vertical position. For a large section of the566

parameter space where in the model with fixed leg the pendulum pivot is pulled away567

from the ground, in the model B it can be still pushed against it. In application to568

skiing this implies that skis can be kept in snow contact throughout the whole turn569

cycle. In particular for the parameters of the trial runs described in Reid (2010), the570

model B predicts 0 < FGR . 0.25mg, which is in a good agreement the actual data571

(Reid, 2010). Since FGR ≪ mg, the skis are not pressed against the snow as much572

as in a stationary position and this “unweighting” of skis facilitates their pivoting at573

transition between turns, which is a typical element of turn technique in slalom.574

As to the peak value of the ground reaction force, which is experienced at the575

extreme pendulum position (Ψ = Ψmax), we find that it is only marginally reduced576

compared to the case with fixed pendulum leg. For the parameters of the trial runs577

set by Reid (2010), the reference model predicts Fmax
GR ≈ 3.2mg, which is also in578

a very good agreement with the experimental data. In fact, the reference model B579

allows to reproduce all basic parameters of the SL runs studied in Reid (2010) quite580

well. Even the predicted ski trajectory provides a reasonable fitting of their course581

setting.582

Our comparison of the predicted snow reaction force in models A and B shows583

that the model A allows a substantial reduction of its peak value compared to the584

model B and suggests that minimisation of the CM heigh variation during skiing turns585

can help to reduce the risk of leg injury (cf. Gilgien et al., 2014). The reason behind586
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the difference is due to the additional push against the snow required in the model B587

in order to initiate the accelerated upward motion of the CM from its lowest position.588

This additional force increases with the skier inclination angle simply because it has589

the same inclination and hence must increase in order to support the same vertical590

acceleration.591

We tested the models against the data for GS, SG and DH in Gilgien et al.592

(2014), who give extreme values of speed, turn radius and snow reaction force en-593

countered in their experiments. Assuming that these apply to a single most extreme594

turn of their runs, we find that the reference model B overpredicts the peak ground595

reaction force in speed disciplines, whereas the reference model A underpredicts them.596

This suggests up and down motion of skiers’ CM but to a lesser degree than in slalom.597

However, more detailed experimental data is needed to reach reliable conclusions.598

There is no doubt that the pendulum model is an extremely simplified repre-599

sentation of skiers and their equipment. The human body is much more complex600

with many degrees of freedom. There is an understandable temptation to build601

multi-component Hanavan-like models, where both the skier and their equipment602

are represented by many segments connected by mechanical joints and hope that603

the power of modern computers will allow to run realistic simulations of skiing (e.g.604

Oberegger, Kaps, Mössner, Heinrich, & Nachbauer, 2010; Roux, Dietrich, & Doix,605

2010). However, in such models one would inevitably face the problem of dealing606

with highly multi-dimensional phase space. Such problems are computationally very607

expensive and it is not clear how much can be learned this way. In order to explore608

the parameter space, it will not be sufficient to run just several simulations. Many609

more would be needed to allow for optimisation. It will also be difficult to interpret610

results, to separate key factors from unimportant ones.611

The more traditional route of theoretical science is to start from a simple math-612

ematical model including a rather limited number of factors, which are expected to613

be most important according to current paradigm or practice. Once their role is fully614

understood, and if the model is found insufficiently realistic, more factors can be in-615

cluded. Our pendulum model is an example of this approach. The good agreement616

between this model and the experimental studies of slalom turns (Reid, 2010) shows617

that, in spite of its simplicity, the pendulum model is a useful tool for analysing the618

dynamics of alpine skiing.619

In addition to the leg flexion and extension, there is a number of other aspects620

of alpine skiing that can be explored using the pendulum model. One aspect which621

we hope to explore in a foreseeable future is the skier angulation, which makes the622

ski tilt differ from the CM tilt. This technical element is widely used and considered623

quite important. For example according to the study by Reid (2010), in slalom turns624

the CM tilt can be up to 20◦ smaller than the ski tilt. Such a large difference can625

have a noticeable effect on the turn dynamics.626

Another possible topic is the role of the inside ski/leg. Indeed, in contrast to627

the pendulum, skiers have two legs, and in modern skiing they are kept well apart628
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and do not perform as a single unit. In fact, when legs extend during the turn phase,629

the inside leg extends less compared to the outside one and may even flex (e.g. Harb,630

2006; LeMaster, 2010). One may argue that the pendulum leg corresponds to the631

outside skier leg (the leg which is further away from the centre of turn’s arc) because632

it normally bears most of the load. Since in transition between skiing turns the633

outside skier leg becomes the inside one and the other way around, for the pendulum634

with one leg this implies a horizontal shift of its pivot, which can be easily included635

in the model. A similar shift seems to occur during pivoting of unweighted skis in636

slalom turns. A next step could be developing a model for a pendulum with two legs.637

Conclusion638

In this paper we advanced the model of centrifugal pendulum by allowing vari-639

ation of pendulum length during swinging. This has allowed us to test the hypothesis640

that such a variation may help to overcome the limitations of the basic model with641

fixed leg which predicts a loss of snow contact in transition between turns at high642

speeds characteristic to ski racing. In particular, we have found that leg flexion on643

approach to the summit point is a very efficient way of preserving the snow contact,644

in agreement with the practice of ski racing. We have also found that restriction of645

the up and down motion of skier’s centre of mass during turns can allow a substan-646

tial reduction of the peak ground reaction force, and hence reduce the risk of injury.647

Our check of the model against the available data on rhythmic slalom turns made648

by professional athletes shows a good agreement and allows us to conclude that the649

model is a very useful tool for deciphering the complicated dynamics of skiing.650
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Appendix A
Energy of the centrifugal pendulum

It is not very difficult to verify that the Lagrangian of the dynamical system described654

by equation (11) is655

L(Ψ̇,Ψ) =
1

2
f 4Ψ̇2 − U(Ψ) , (31)

where Ψ̇ = dΨ/dτ and656

U(Ψ) = −
∫

f 3(Ψ)(sin Ψ − ζ sgn (Ψ))dΨ (32)

is the potential energy. The conserved total energy of the pendulum is657

E = Ψ̇
∂L

∂Ψ̇
− L =

1

2
f 4(Ψ)Ψ̇2 + U(Ψ) . (33)
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Figure A1 . Energy of the pendulum in model B with b = 0.65 for ζ = 0.8 (left) and
ζ = 1.2 (right).

Since at the turning point Ψ̇ = 0 and Ψ = Ψmax we have E = U(Ψmax).658

For f(Ψ) = (1 − b cos Ψ)1/3 equation (32) yields659

U(Ψ) = − b

2
cos2 Ψ + cos Ψ + ζ (−b| sin Ψ| + |Ψ|) (34)

Figure A1 shows the total energy for b = 0.65 and ζ = 0.8, 1.2. In both cases it has660

a minimum at (Ψ,Ω) = (0, 0), corresponding the vertical equilibrium of the pendu-661

lum. When ζ = 0.8 the function has two saddle points at (Ψ,Ω) = (± arcsin(ζ), 0),662

corresponding to the two inclined equilibria of the system.663

For f(Ψ) = 1/ cos Ψ we have664

16U(Ψ) = − 1

cos2 Ψ
+ ζ sgn Ψ (sec Ψ tan Ψ + ln(sec Ψ + tan Ψ)) . (35)

Appendix B
Ground reaction force

The radial motion of the pendulum mass m is described by the equation665

mar = FGR + (Fc + Fg) · ir , (36)

where ar is the radial acceleration, Fc and Fg are the centrifugal and gravity forces666

respectively (see equations 3 and 4), ir = sin Ψj + cos Ψk is the unit vector in the667

radial direction and W is the ground reaction force at the pivot point. Substituting668

the expressions for the gravity and centrifugal forces into (36), we find that in the669

units of mg670

FGR = ζ| tan Ψ| + cos Ψ +
ar

g
. (37)
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The radial acceleration671

ar =
d2l

dt2
− l

(

dΨ

dt

)2

= l0





d2f

dt2
− f

(

df

dt

)2


 = g(f̈ − fḟ 2) . (38)

Since ḟ = f ′Ψ̇ and f̈ = f ′′Ψ̇2 + f ′Ψ̈, we have672

ar

g
= (f ′′ − f)Ψ̇2 + f ′Ψ̈ . (39)

Using the pendulum equation (11) we find that673

Ψ̈ = −2
f ′(Ψ)

f(Ψ)
Ψ̇2 +

sin(Ψ) − ζ sgn (Ψ)

f(Ψ)
(40)

Substituting this expression into (39) and hence substituting the result into (37), we674

finally obtain675

FGR = ζ| tan Ψ| + cos Ψ +
f ′

f
(sin Ψ − ζ sgn Ψ) + (f ′′ − 2f ′2

f
− f)Ψ̇2 . (41)

Since the energy equation (33) yields676

Ψ̇2 =
2

f 4(Ψ)
(U(Ψmax) − U(Ψ)) , (42)

the ground reaction force is a function of Ψ, its amplitude Ψmax, the speed parameter677

ζ and whatever parameters enter the expression for the retraction function f(Ψ).678

In the case with fixed leg, f ′ = f ′′ = 0 and (41) reduces to679

FGR,0 = ζ| tan Ψ| + cos Ψ − fΨ̇2 . (43)

For f = 1/ cos Ψ, the last term in equation (41) vanishes, f ′/f = tan Ψ and hence680

FGR =
1

cos Ψ
. (44)

In this special case, the ground reaction force does not depend on the speed parameter681

ζ and the oscillation amplitude Ψmax.682

At the turning point (Ψ, Ψ̇) = (Ψmax, 0), and (41) reduces to683

F max
GR = ζ tan Ψmax + cos Ψmax +

f ′(Ψmax)

f(Ψmax)
(sin Ψmax − ζΨmax) . (45)

For the case with fixed leg, this equation yields684

F max
GR,0 = ζ tan Ψmax + cos Ψmax . (46)
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