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Abstract. Systems for symbolic event recognition detect occurrences of events

in streaming input using a set of event patterns in the form of temporal logical

rules. Algorithms for online learning/revising such patterns should be capable of

updating the current event pattern set without compromising the quality of the

provided service, i.e. the system’s online predictive performance. Towards this,

we present an approach based on Prediction with Expert Advice. The experts in

our approach are logical rules representing event patterns, which are learnt on-

line via a single-pass strategy. To handle the dynamic nature of the task, an Event

Calculus-inspired prediction/event detection scheme allows to incorporate com-

monsense principles into the learning process. We present a preliminary empirical

assessment with promising results.

Keywords: Online Relational Learning · Complex Event Recognition.

1 Introduction

Complex event recognition (CER) systems [3] process streams of simple events, (e.g.

sensor data) and recognize complex events (CEs), i.e. events that satisfy some pattern.

Systems for symbolic CER [1] typically use logical rules to represent CE patterns.

Algorithms for online learning/revising such patterns are highly desirable, since useful

patterns may not always be available beforehand, while existing ones often need to be

updated to reflect change in the data. In this respect, logic-based CER frameworks have

the advantage of allowing direct connections to machine learning via ILP.

Algorithms that learn from event streams should operate in a single pass over the in-

put, while continuously making accurate predictions, in our case, detecting CEs. Exist-

ing online learners for CER applications [5, 6], however, focus more on the single-pass

nature of the task and less on online performance, which is not optimized and is there-

fore sub-optimal. We address this issue by using Prediction with Expert Advice (PEA)

[2], an online learning framework for making accurate predictions via combining the

“advice” of an ensemble of “experts” (independent predictors), while guaranteeing pre-

dictive performance comparable to that of the best expert (or combination thereof). The

experts in our case are rules representing CE patterns, generated online using a single-

pass rule learning strategy adopted from the OLED algorithm [5], which uses Hoeffding

bounds to assess the quality of the rules from small subsets of the input.

Temporal domains, such as CER, are dynamic in nature and often characterized

by commosense phenomena. Building temporal reasoning engines using action for-

malisms, such as the Event Calculus [7], is a way to incorporate commonsense princi-

ples into a CER system [1]. Inspired from such approaches, our proposed algorithm is
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equipped with a prediction/event detection scheme that takes into account the persis-

tence of detected CEs in time.

In this extended abstract, we present a high-level description of our approach, along

with a preliminary experimental evaluation, which indicates that the new algorithm

yields significant improvements over state-of-the-art algorithms.

2 Background

The Event Calculus (EC) [7] is a temporal logic for reasoning about events and their

effects. Its ontology comprises fluents, i.e. properties which have certain values in time;

and events, i.e. occurrences in time that may affect fluents and alter their value. The ax-

ioms of the EC incorporate the common sense law of inertia, according to which fluents

persist over time, unless they are affected by an event. In this work, fluents correspond

to CEs and CE patterns to initiation and termination rules, which specify the dynamics

of the domain. The learning setting assumes a relational stream of observations, labelled

with CE instances, from which we wish to learn, in an online fashion, a set of initiation

and termination conditions for the CEs. We refer to [6] for a detailed account of the EC

dialect that we employ and a concrete example.

In Prediction with Expert Advice (PEA) [2] a “master” attempts to predict the

value of a variable, by combining the predictions of an ensemble of “experts”. Each

expert carries a weight (a non-negative real number). Learning proceeds in rounds. At

each round the master casts its prediction and then the true outcome is revealed. The

master and each expert suffer a loss, and the weights of the experts are updated in a

multiplicative manner, in proportion to their loss. PEA algorithms come with guarantees

on the master’s regret i.e., the difference between the the master’s total loss over a

sequence of rounds and the loss of the best expert in hindsight. The experts in our

approach are initiation and termination rules in the EC, and the prediction task refers to

inferring the truth values of CE instances over time. Using rule-based experts calls for a

generalization of the PEA framework, called sleeping experts [4]. In this setting a rule

expert makes a prediction only on rounds where it “fires” (awake expert), otherwise it

abstains (asleep expert).

3 The Approach

At time t the algorithm maintains an ensemble of rules, receives a set of observations

and predicts the truth value of a set of query atoms (CE instances).

Making Predictions & Updating Weights: The way that the experts predict mim-

ics the functionality of initiation and termination axioms in the EC. Awake initiation

experts consistently predict 1 (true) for the query atom q =? holdsAt(α, t + 1) (where

α is a CE instance), since at the current time t such rules initiate α, causing it to hold at

query time t+1. Awake termination experts predict 0 (false), since such rules terminate

α causing it to not hold at t+ 1.

The master combines the experts’ predictions via a weighted average scheme, re-

turning confidence-rated predictions in [0, 1]. An additional “inertia expert” uses these

confidence-rated master’s predictions to replicate the functionality of inertia in the
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Event Calculus. Once the master predicts that a CE instance α holds at some time

point, the inertia expert “remembers” α along with the associated confidence of the

prediction. In subsequent rounds the inertia expert makes weighted predictions on the

truth value of α (predicting 1 with the associated weight). As with all other experts, the

inertia expert’s weight w.r.t. a CE instance α is demoted with incorrect predictions, and

the expert “remembers” α for as long as its weight exceeds a given threshold, otherwise

it “forgets” it. From that point on, the inertia expert is considered “asleep” (does not

make predictions) w.r.t. α, until such time when α is re-initiated at some future round.

We omit technical details due to space limitations and simply note that the master’s

weighted average prediction scheme, as well as the multiplicative weight update strat-

egy follow the classical sleeping experts algorithm [4]. The weights update strategy is

such that it rewards a correct expert, especially when the master had a high probability

of predicting incorrectly, and penalizes an incorrect expert, especially when the master

had a high probability of predicting correctly.

Structure Learning: The rule/expert structure update strategy consists of three op-

erations: (a) ensemble expansion, which augments the current ensemble with new rules

in response to erroneous predictions of the master; (b) rule expansion, which progres-

sively constrains over-general rules by adding extra conditions to their bodies; and (c)

ensemble pruning, which removes under-performing rules with a very low weight.

The ensemble expansion operation is triggered by the absence of correct experts

during a master’s prediction. In such cases, a new set of experts is generated, by en-

coding the incorrectly predicted example into a bottom clause and searching for rules

that θ-subsume it. The rule expansion operation corresponds to a hill-climbing search

into the subsumption lattice, where at each step a rule is specialized (expanded) by the

addition of one literal to its body, in a top-down, FOIL-like process. The hill-climbing

search is single-pass by using Hoeffding bounds, similarly to the OLED algorithm [5].

4 Experiment

We present a preliminary evaluation on the CAVIAR1 dataset for activity recognition,

see [6] for details on the dataset and the domain. There are two target CEs in CAVIAR,

related to two persons moving together and meeting each other. We compare OLED-EXP

(the new PEA-based algorithm) to the following approaches: (i) HC, a hand-crafted set

of rules; (ii) HC-EXP, the hand-crafted rule set with weights learnt by the sleeping ex-

perts algorithm; (iii) OLED [5]; (iv) OLED-MLN [6], a Markov Logic Networks (MLN)-

based version of OLED that uses the AdaGrad for weight learning. We used prequential

evaluation, the standard online setting where an incoming example is first used to test

the current model and then to update it. The results are presented in Figure 1, in terms

of the number of accumulated mistakes over time – false positives and false negatives.

Thanks to its ability to quickly identify the best expert from those currently avail-

able, while progressively improving the experts’ performance by modifying their struc-

ture, OLED-EXP achieves significant improvements, as compared to the other approaches.

OLED’s performance is the worst among all learners, comparable to that of the hand-

crafted rule set. This was expected, as OLED simply learns structure in a single-pass,

1 http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/
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Fig. 1: Online prequential evaluation on CAVIAR.

without attempting to optimize the online performance of the evolving patterns. This

is not the case for OLED-MLN, which supports weight learning. It achieves the second-

best performance, however, with a significant distance from OLED-EXP. We attribute

this result to the additive nature of OLED-MLN’s weight updates. It is known that ad-

ditive algorithms may exhibit worse online performance, as compared to multiplicative

ones, especially in cases where a relatively small number of features is highly infor-

mative. This is typically the case in relational learning domains, where the number of

useful rules is a small fraction of the total number of the generated rules.

5 Conclusions and Next Steps

We presented a novel algorithm for learning CE definitions in an online fashion, along

with a preliminary experimental evaluation with promising results. Next steps involve

a more thorough empirical assessment, including concept drift experiments.
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