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Abstract 

The magnetic anisotropy of single-domain magnetic nanoparticles can influence their behaviour 

significantly even at temperatures above the blocking temperature as conventionally defined.    We 

compare the magnetic properties of such nanoparticles that are free to rotate, and the same 

nanoparticles with random but fixed orientations.  When free to rotate, the particles show Langevin 

behaviour as expected, but when the orientations are fixed, their magnetic anisotropy causes 

deviations from this behaviour.  These deviations may be observed directly in the 𝑀 − 𝐻 curves.  

They also cause a step in the 𝑀 − 𝑇 curve measured for a zero-field cooled sample of nanoparticles 

suspended in a solvent at the solvent’s melting point.  The step occurs because magnetic anisotropy 

causes 𝑀 for particles with random but fixed orientation to be lower than for the same particles that 

are free to rotate when the solvent melts.  The size of the step reaches a maximum at a finite 

applied field.  This phenomenon is important because it can be used to determine the fraction of 

magnetic nanoparticles that are immobilized, for example by adsorption to ice in a freeze-

concentrated solution. 
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Introduction 

The magnetic properties of single-domain magnetic nanoparticles have been widely studied, 

motivated by their applications as magnetic recording media [1], ferrofluids [2] and in biomedicine 

[3] as well as by their intrinsic interest.  At sufficiently low temperatures and in the absence of an 

applied field, magnetic anisotropy will keep the magnetization direction of each particle fixed 

relative to its orientation.  As the temperature increases, the thermal energy becomes comparable 

to the magnetic anisotropy energy and the timescale for magnetic fluctuations decreases.  At 

sufficiently high temperatures, although the nanoparticle remains magnetically ordered, its 

magnetic moment fluctuates like that of a paramagnet and the particle’s behaviour is described as 
‘superparamagnetic’ [4].  The magnetization M obeys the Langevin equation  𝑀𝑀𝑠 = coth 𝛼 − 1𝛼                                                     (1) 

where 𝑀𝑠  is the saturation magnetization and 𝛼 = 𝜇𝐻𝑘𝑇.  In the expression for 𝛼, 𝜇 is the magnitude 

of the particle magnetic dipole moment, 𝐻 is the applied magnetic field, 𝑘 is Boltzmann’s constant 
and 𝑇 is the temperature.  Conventionally, the superparamagnetic blocking temperature is defined 

by 𝑇𝐵 = 𝐾𝑉25𝑘, where 𝐾 is the magnetic anisotropy energy per unit volume 𝑉.  Above 𝑇𝐵 fluctuations 

are observed on the timescale of a typical magnetization measurement (𝜏𝑚 = 100 sec) and 

consequently the M-H curve is hysteresis-free.  However, this does not mean that the magnetic 

anisotropy can be ignored. 

Here we show how the magnetic anisotropy above 𝑇𝐵 enables detection of the onset of free rotation 

of a magnetic nanoparticle i.e. the point at which magnetic relaxation occurs by Brownian rotation in 

addition to the Néel-Brown mechanism [5].  We consider the example of nanoparticles that are 

immobilized in a solid matrix that become free to rotate at the melting point of the matrix [6].  

Through experimental data and simulation, we show that for zero field-cooled samples a step-like 

increase is observed in 𝑀(𝑇) measured on heating at constant 𝐻 when the melting point is reached.  

The size of the step depends on the magnitude of 𝐻, 𝑇 and the magnetic anisotropy energy 𝐾𝑉.  The 

step vanishes as 𝐻 → 0.  

The phenomenon we describe has a number of useful applications.  Beyond the simple example of a 

matrix that melts abruptly as discussed above, where it can be used in melting point determinations, 

it can also be used to probe glass transitions.  In the case of a glass transition, rather than an abrupt 

transition from a solid to a liquid, there is a continuous decrease in the viscosity of the matrix.  A 

step is still observed[7], this time at the temperature 𝑇𝑅 at which the timescale for Brownian 

rotation reaches 𝜏𝑚.  The value of 𝑇𝑅 contains useful information about the system, as it is 

proportional to 𝜂𝑎3, where 𝜂 is the viscosity of the matrix at 𝑇 = 𝑇𝑅, and 𝑎 is the nanoparticle 

hydrodynamic radius.  In addition to the temperature of the step, its magnitude can be of interest, 

because it depends on the number of nanoparticles that become free to rotate at 𝑇𝑅.  Hence the 

step height measured for a freeze-concentrated aqueous solution of nanoparticles that also contains 

pure ice can be used to detect nanoparticles immobilized e.g. by adsorption to ice, because the 

immobilized nanoparticles unlike those in the freeze-concentrated phase, do not contribute to the 

step[8].  Steps are also seen in 𝑀(𝑇) measurements of field-cooled samples [7].  Although the 

observed step size can be greater for field-cooled samples, working with zero field-cooled samples 

has the advantage that any field-induced aggregation of the magnetic nanoparticles while the 

solvent is still liquid during cooling is avoided. 

Results and discussion 



We dissolved samples of commercially available Fe3O4 nanoparticles (15 nm nominal diameter, <5% size distribution, coated with oleic acid, supplied by Ocean NanoTech)  in a series of alkane 

solvents with increasing melting point: hexane (melting point ≈ 178 K), octane (melting point ≈216 K,) and decane (melting point ≈ 243 K).  In each case, the nanoparticle concentration was ~6 ×10−8 M.  Each sample was cooled in zero applied field to well below the solvent melting point, then 

its magnetization measured as the temperature was raised at a rate of ~ 1 K /min in an applied field 𝐻 = 100 Oe using a SQUID magnetometer (Quantum Design MPMS).  The results are shown in 

Figure 1.  Each 𝑀 − 𝑇 curve exhibits a clear step, and the temperature at which it is observed 

increases with the molecular weight of the solvent.  The quoted melting points (indicated by arrows 

in the figure) correspond closely to the temperatures at which the steps commence.    For 

comparison, Figure 2 shows data for the same nanoparticles with water as the solvent.  To make the 

nanoparticles water-soluble, we carried out a ligand exchange using 3,4-dihydroxybenzoic acid 

(DHBA) to replace oleic acid with hydrophilic ligands.  For this experiment the temperature was 

raised at a rate of ~ 3 K /min.  Figure 2 shows a clear increase at the melting point of ice, confirming 

that this phenomenon is not restricted to alkanes.  The data also shows the broad peak in the zero 

field-cooled 𝑀 − 𝑇 data characteristic of a sample of superparamagnetic nanoparticles that relax by 

the Néel-Brown mechanism.  The peak is caused by nanoparticles reaching 𝑇𝐵 and is broad because 

the particles are not ideally monodisperse and can interact via dipolar interactions.   

To understand the origin of the steps, consider a system of nanoparticles in a fluid environment.  

Since the particle is free to rotate, the direction of its magnetic moment is unconstrained, and this is 

true even if the particle’s orientation and magnetization direction are coupled by magnetic 

anisotropy.  Hence the magnetization is independent of the magnetic anisotropy and is given by the 

Langevin function.  Rather than alter the magnetization, the effect of the magnetic anisotropy is to 

modify the probability that the particle has a given orientation, giving rise to a preferential easy axis 

orientation [9, 10].   

The situation of a nanoparticle in a solid environment is quite different.  Since any magnetic 

anisotropy present will couple the direction of the particle’s magnetic moment to its orientation, 

and the latter is constrained by being in a solid, the direction of the particle’s magnetic moment is 
also constrained.  Hence the magnetization is no longer simply given by the Langevin function[11-

13].  Figure 3 shows how the simulated magnetization of a system of monodisperse, non-interacting 

particles in a solid environment depends on the applied field (parametrized as 𝛼 = 𝜇𝐻𝑘𝑇) and the 

magnetic anisotropy (parametrized as 𝛽 = 𝐾𝑉𝑘𝑇  ).  The simulations use a kinetic Monte-Carlo model 

that allows thermally activated transitions over energy barriers provided by the local anisotropy with 

a probability determined by the Arrhenius-Néel law  [14].  We assume the particles have fixed but 

random easy axis directions, as appropriate for a sample cooled below the solvent melting point in 

zero applied field.   

When a sample like those of Figure 1 passes through the solvent melting point on warming in an 

applied field 𝐻, 𝑀 changes from lying on one of the family of curves shown in Figure 3 to being given 

by the Langevin function.  However, the Langevin function is simply the curve in Figure 3 

corresponding to 𝛽 = 0.  Hence, when the sample passes through the solvent melting point, 𝑀 

changes from 𝑀(𝛼, 𝛽) to 𝑀(𝛼, 0).   From Figure 3, it is clear that ∆𝑀 = 𝑀(𝛼, 0) − 𝑀(𝛼, 𝛽) is 

positive, so there is a positive step in 𝑀, as seen in Figure 1.  Furthermore, for a given 𝛼, the greater 

the magnetic anisotropy 𝐾, the greater 𝛽, the lower 𝑀(𝛼, 𝛽) and hence the greater the step height ∆𝑀.   



Note that the step height also depends on 𝛼.  As 𝛼 tends to zero, the separation of the curves in 

Figure 3 and hence ∆𝑀 also tend to zero.  This disappearance of the magnetization step for small 𝛼 

is expected because it was shown in reference [15] that when 𝐻 tends to zero for a system of 

nanoparticles in a solid environment, 
𝑀𝑀𝑠 tends to 𝜒𝐻, where  

𝜒 = 𝜇𝑘𝑇 (〈cos2 𝜃〉 + 12 (1 − 3〈cos2 𝜃〉)𝑓(𝛽))                                   (2). 
In this equation, 𝜃 is the angle between the easy axis and the applied field and 𝑓(𝛽) is a function of 𝛽 defined in [15].  Since 〈cos2 𝜃〉 = 13 for a random distribution of easy axis directions, as in Figure 3, 𝜒 = 𝜇3𝑘𝑇, and is independent of 𝛽.   This also means that the initial susceptibility of a system of 

nanoparticles in a solid environment with random easy axis directions is the same as it would be for 

those nanoparticles in a fluid environment.  As 𝛼 tends to infinity, the separation of the curves in 

Figure 1 and therefore the step height ∆𝑀 will again tend to zero.  This is because for all 𝛽, 𝑀 

approaches 𝑀𝑠.  Hence ∆𝑀 must go through a maximum as a function of 𝛼.  This means that there is 

an optimum range of values for the field 𝐻 applied when warming a zero field-cooled sample 

through the solvent melting point in order to see a significant step in the 𝑀 − 𝑇 curve.   

Figure 4 illustrates this point by showing simulated 𝑀 − 𝑇 curves for a system of ferrite particles 

(𝑀𝑠  =  400 emu cm−3) of diameter 12.5 nm and magnetic anisotropy energy 𝐾 =  2.4 ×105 erg cm−3 warmed in various applied fields 𝐻 following cooling in zero field.  A field dependent 

step at the assumed melting point 𝑇 = 200 K is seen, the height of which depends on 𝐻.  The jump 

in 𝑀 at lower temperatures is due to the transition from stable ferromagnetic behaviour to 

superparamagnetic behaviour.  The temperature at which this transition occurs depends on the 

applied field 𝐻.  The transition is very sharp due to the monodispersity of the system.   

To compare with these simulations, we also measured 𝑀 − 𝑇 curves for a sample of the same 15 nm commercially available Fe3O4 nanoparticles in decane warmed at ~0.5 K/min in various 

applied fields following cooling from above to well below the solvent melting point in zero field.  The 

results are shown in Figure 5.  From the figure, the step height ∆𝑀 initially increases with 𝐻, 

consistent with the predictions of Figure 4.  For 𝐻 = 500 Oe, however, the step height is less than 

for 𝐻 = 200 Oe, which confirms our conclusion above that ∆𝑀 must go through a maximum as a 

function of 𝛼, and hence of 𝐻. 

Figure 6 shows 𝑀 − 𝐻 curves for 15 nm Fe3O4 nanoparticles in decane measured at 𝑇 = 220 K and 𝑇 = 260 K, i.e. below and above the melting point of the solvent.  The data is plotted as a function 

of 𝐻/𝑇.  From Figure 3, we expect that when the data is plotted in this way, the curve measured 

below the melting point will saturate more slowly than that measured above, due to the influence of 

anisotropy below the melting point (𝛽 > 0).  Though the data is noisy, this does indeed appear to 

be the case.  However, the effect of melting is seen much more clearly in the 𝑀 − 𝑇 curves 

measured at fixed applied field than in the 𝑀 − 𝐻 curves (compare Figures 5 and 6).  Hence we 

believe that the former are more useful for applications such as probing freeze concentration.     

Conclusions 

Since the 𝑀 − 𝐻 curve for magnetic nanoparticles that are free to rotate is given by the Langevin 

function, while the 𝑀 − 𝐻 curve for the same nanoparticles when their orientations are fixed is 

influenced by their magnetic anisotropy, the magnetization of an assembly of nanoparticles 

suspended in a solvent can change at the solvent melting point.  In this paper we focussed on 

nanoparticles cooled in zero field and warmed in an applied field 𝐻, since this situation is relevant to 



e.g. studies of freeze concentration [1], and showed that in the 𝑀 − 𝑇 curve a step is expected at 

the solvent melting point.  The step size goes through a maximum, as the difference between the 𝑀 − 𝐻 curves for fixed, randomly oriented nanoparticles and freely-rotating nanoparticles tends to 

zero for 𝐻 → 0 and 𝐻 → ∞.  Experimental data confirmed the presence of the step at the expected 

value of 𝑇 for three different alkane solvents, and that the step height varies with 𝐻 for decane.   
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Figure 1: 𝑀 − 𝑇 curves measured for commercially available Fe3O4 nanoparticles of nominal diameter 15 nm dissolved in hexane, octane and decane.  Samples were cooled in zero applied field to well 

below the solvent melting point, then their magnetizations measured as the temperature was raised in 

an applied field 𝐻 = 100 Oe.  Curves have been offset vertically for clarity.   A Quantum Design MPMS 

XL system working in reciprocating sample option scan mode was used for these measurements.   
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Figure 2:  𝑀 − 𝑇 curve measured for commercially available Fe3O4 nanoparticles of nominal diameter 15 nm dissolved in water, following ligand exchange.  The sample was cooled in zero applied field, 

then the magnetization measured as the temperature was raised in an applied field 𝐻 = 50 Oe.  The 

inset shows the data close to T=273 K in greater detail.  A Quantum Design MPMS 3 was used for  

these measurements. 
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Figure 3: Magnetization 𝑀 normalized to the saturation magnetization 𝑀𝑠, simulated for a system of 

monodisperse, randomly oriented, non-interacting particles in a solid environment.  The different 

colours correspond to different values of the parametrized magnetic anisotropy 𝛽 = 𝐾𝑉𝑘𝑇 (see text).  

Figure 4: Normalized magnetization as a function of temperature 𝑇, simulated for a system of ferrite 

particles (𝑀𝑠  =  400 emu cm−3) of diameter 12.5 nm and magnetic anisotropy energy 𝐾 =  2.4 ×105 erg cm−3 suspended in a solvent having melting point  𝑇 = 200 K.  The particles are cooled in 

zero field before warming through the solvent melting point in applied field 𝐻. 
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Figure 5: (a) 𝑀 − 𝑇 curves measured for commercially available Fe3O4 nanoparticles of nominal 

diameter 15 nm dissolved in decane.  Samples were cooled in zero applied field to well below the 

solvent melting point, then their magnetizations measured as the temperature was raised in different 

applied fields 𝐻 indicated on the Figure.  A Quantum Design MPMS XL system working in DC scan 

mode was used for these measurements.   Data are normalized to the maximum measured moment 

to emphasize relative changes on varying the applied field.  (b) Step height (∆𝑀) as a function of 𝐻
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 Figure 6: Normalized 𝑀 as a function of 𝐻/𝑇 for 15 nm Fe3O4 nanoparticles in decane measured at 𝑇 = 220 K and 𝑇 = 260 K.  The same diamagnetic background was subtracted from each set of data, 

and the same normalization factor applied to each.  A Quantum Design MPMS XL system working in 

DC scan mode was used for these measurements.   
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