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Abstract  

Water plays a vital role in sustaining the natural functioning of the entire ecosystem that supports 

life on earth. It plays keys role in the wellbeing of society in numerous ways. However, climate 

variability and land use land cover (LULC) change have caused spatiotemporal water supply 

variation. Disentangling the effects of climate variability from LULC change on water supply is 

crucial for sustainable water resource management.  The main purpose of this study is, therefore, 

to disentangle the relative contribution of LULC change and climate variability to the overall 

average annual water supply variation. Residual Trends analysis combined with Integrated 

Valuation of Environmental Services and Tradeoffs (InVEST) annual water yield model were 

adopted to perform simulations and disentangle the relative impacts of climate variability and 

LULC change. Ground and satellite data were used in this study. The study area has experienced 

a significant increasing wetness trend and significant LULC dynamics between 2003 and 2017. 

As a result, an increasing water supply was observed due to the joint effects of climate variability 

and LULC change in the watershed (203 mm). The contribution of climate variability was 94% 

whereas LULC contributes only 6% from 2003 to 2017. Climate variability negatively led to water 

supply variation while LULC change contributed positively from 2010 to 2017. Although the 

ongoing soil and water conservation (SWC) practices improved vegetation cover and water 

retention of the watershed, climate variability is the main driver of water supply variation. 

Therefore, SWC practices should incorporate ecosystem-based climate change adaptation 

strategies and scale up to community-based integrated watershed management to sustain water 

supply.  

Keywords: water yield – LULC change -climate variability –impact –InVEST    

1. INTRODUCTION  

Water provisioning  is a major area of interest within the field ecosystems because it is one of the 

essential ecosystem services, playing keys role in the wellbeing of society in numerous ways, 

including human consumption, agriculture, fisheries, industry, recreation, and energy production 

(Pessacg et al., 2015; Sahle et al., 2019). However, the growing level of human pressure on 

ecosystems resulted in human-induced threats to water ecosystem services. Land Use Land Cover 

(LULC) and climate changes are the main direct drivers of water supply variation (MEA, 2005; 



Soytong et al., 2016) as well as many other human-induced threats. As a result, freshwater supply 

has become a progressively scarce natural resource.  

Several attempts have been made to investigate the impact of climate variability and LULC change 

on water supply variation during the last two decades (Krysanova & White, 2015). However, 

conflicting results were reported about the cause of water yield variation (Pan et al., 2015). Some 

studies have reported that climate change in general and rainfall variability, in particular, is the 

primary cause of water yield variation (Ayele et al., 2016; Dile et al., 2013; Zhang et al., 2016). 

Whereas, other studies have reported that LULC change is the primary driving factor of water 

yield dynamics (Arunyawat & Shrestha, 2016; Chakilu & Moges, 2017; Feng et al., 2012; Teklaya 

et al., 2019). Soytong et al. (2016)  strongly argued that both climate variability and LULC change 

are responsible for water yield dynamics.  

Despite substantial progress has been made to investigate the impacts of LULC and climate 

changes on water supply variation, research to date has tended to focus on either climate change 

or LULC change alone. For instance, Ayele et al. (2016) showed that water supply increased 

substantially due to climate change. Whereas, Chakilu & Moges (2017) found that LULC change 

to be the major factor of water supply change by using the Soil and Water Assessment Tool 

(SWAT) model. However, an in-depth understanding of the isolated and integrated impacts of 

climate variability and LULC change on water supply is crucial for optimum water supply 

management (Chawla & Mujumdar, 2015). In the absence of such information, the positive 

impacts of climate change or variability can mask the negative impacts of LULC change and vice 

versa. Therefore, partitioning the relative contribution of LULC and climate changes to the overall 

spatiotemporal water supply variation is vital for sustaining water provision service of the 

ecosystem through effective land management and climate change adaptation (Pan et al., 2015). 

However, little has been done to isolate the impact of climate variability and LULC change due to 

lack of effective methods to investigate the combined and isolated impacts of climate and land-use 

changes (Pan et al., 2015). 

Although four methods (statistical techniques such as Mann–Kendall test, experimental paired 

catchment approach, distributed process-based hydrological models and empirical or conceptual 

models) used to study the impact of climate variability and LULC change, process-based 

hydrological models are the most effective method to disentangling the effects of climate 



variability from LULC change on water supply (Praskievicz & Chang, 2009; Sharp et al., 2018). 

To date, there are several process-based hydrological models in the public domain developed in 

America and Europe. However, most process-based hydrological models are data intensive. 

Therefore, the application of such models in data-scarce areas has resulted in poor model outputs. 

For example, Van Griensven et al. (2012) found several drawbacks of the SWAT model when 

applied to the source region of the Nile River including different results from several studies of 

the same study catchments. These drawbacks are attributed to a lack of ground data for model 

calibration and result validation in Upper Nile sub-basins. However, the introduction of simple, 

easy to use, and low input data requirements for models like the Integrated Valuation of 

Environmental Services and Tradeoffs (InVEST) annual water yield model, makes accurate 

hydrological modeling possible in data-scarce regions (Belete et al., 2018; Hamel & Guswa, 2015). 

Hence, water supply change can be quantified using the InVEST annual water yield model in data-

scare regions (Sharp et al., 2018; Vogl et al., 2015).  

The streamflow data collected from Ribb and Gummara hydrological stations indicate that the 

average annual water supply of the Ribb-Gummara watershed exhibits an increasing trend in recent 

years. Government reports show that this phenomenon is mainly because of the ongoing soil and 

water conservation (SWC) practices that started in 2010. Although there is no literature, expert in 

the area believe that rainfall is the primary factor for the increasing trend of water supply. What is 

not yet clear is the relative and combined impact of climate variability and land-use change on 

water yield dynamics. The relative impacts of climate variability and land-use change on water 

dynamics are vital for water and land resource management (Kremen, 2005; Lü et al., 2012). This 

study, therefore, sets out to investigate the combined and isolated impacts of LULC change and 

climate variability on water supply by combining InVEST and Residual Trends analysis. The 

objectives of this study are to: (i) investigate LULC change and climate variability trends, (ii) 

quantify and map spatial and temporal changes of water supply and (iii) segregate the impact of 

LULC change and climate variability on the average annual water supply.  

2. MATERIAL AND METHODS  

2.1. Study Site Description  

The Ribb-Gummara watershed, drained by Ribb (130 km long) and Gummara (72 km long) Rivers, 

is a watershed in the Blue Nile Sub Basin of the Nile River source area (Ayenew, 2008; Mulatu et 



al., 2018). It stretches from Mount Guna to Lake Tana in the Amhara Regional State of Ethiopia 

within 37.5395o-38.2474o longitude and 11.5652o-12.2389o latitude. The watershed covers a total 

area of 3273 km2 with an average elevation of 2,271 m a.s.l (meter above sea level). The elevation 

of the watershed ranges from 4109 m a.s.l at Mount Guna to 1783 m a.s.l at the mouths of Ribb 

and Gummara Rivers (Figure 1). Higher elevation variation in the watershed results in diverse 

climate, soil and vegetation cover.  

The Ribb-Gummara watershed contains a wide range of climatic and landform attributes. Among 

the five agro-ecological zones of the world, three of them are found in this study site. These are 

sub-tropical, temperate and alpine agro-ecological zones. The upstream part of the watershed has 

a temperate climate except for the top of Guna Mountain whereas the downstream portion is sub-

tropical with a distinct summer season. The mean annual temperature and rainfall were 18.78oc 

and 1334.55 mm respectively between 2001 and 2017. This study site is dominated by the Fogera 

plain and Guna Mountain.   

According to Worqlul et al. (2015), the major soils of the Ribb-Gummara watershed are Haplic 

and Chromic Luvisols as well as Eutric Fluvisols and Eutric Leptosols.   Ribb sub-watershed is 

covered by Eutric Fluvisols (23.9%), Eutric Leptosols (36.2%) and, Chromic Luvisols (39.7%)   

having stony and gravelly characteristics. The Gummara sub-watershed, on the other hand, is 

dominated mainly by Haplic Luvisols (63.4%) characterized by high clay content and Chromic 

Luvisols (24.4%).  

Agricultural land, forest, shrubs, grazing land, built-up area, water bodies, and wasteland are the 

well-known land use and land cover types in Ribb-Gummara watershed.  In 2017, nearly three 

fourth of the study area was covered with food crops (73.61%). The remaining one fourth of the 

area were covered with shrubland (13.53%), grassland (8.84), forestland (2.72%), and built-up 

area (0.63%). Bare land (0.08%) and water bodies (0.59%) are insignificant components of the 

study watershed land cover. 

The Ribb-Gummara watershed has Local, National and Regional implications. This watershed 

together with Gilgel Abay and Megech watersheds in Tana Basin, contribute 93% of the total 

inflow of the Lake Tana which is the primary source of Blue Nile (Setegn et al., 2009). The Blue 

Nile is the dominant water source of the downstream Nile riparian countries before it ends up at 

the Mediterranean Sea (80 – 85 %) (Easton et al., 2010). The survival of the Grand Renaissance 



Dam being constructed in Ethiopia at the Ethio-Sudan border is mostly dependent on the healthy 

functioning of Ribb-Gummara ecosystem. The livelihoods of hundreds of thousands of people in 

the watershed are entirely reliant on rain-fed agriculture. However, land degradation has severely 

affected the land resources in the area due to intensive agriculture, free grazing, and population 

pressure  (Moges & Bhat, 2017).  

2.2. Partitioning LULC Change and Climate Variability Impacts on Water Supply Variation 

We used the biophysical component of InVEST annual time scale water yield simulation to 

calculate the annual water supply of the study watershed. The model was developed by Standford 

University under the Natural Capital Project with the intention of it running on any standard 

computer using relatively simple, readily available, and limited input data (Sharp et al., 2018). 

According to Hamel and Guswa (2015), the InVEST model has several advantages : limited input 

data requirement, ease of use, and spatially explicit output data. A more detailed description of the 

model is found in the InVEST user’s guide (Sharp et al., 2018).  

The annual water supply capacity of each pixel in a watershed (x) is calculated as follows:  

                                                              𝑦(𝑥) = (1 − 𝐴𝐸𝑇(𝑥)𝑝(𝑥) ) × 𝑝(𝑥)                                                     (1) 

Where (𝑥) and 𝐴𝐸𝑇(𝑥) are the annual precipitation and the annual actual evapotranspiration on 

pixel 𝑥 respectively.  

However, AET is not easily measurable. To overcome this problem, 𝐴𝐸𝑇(𝑥) can be calculated 

following Fu (1981) and  Zhang et al. (2004) based on the Budyko curve:   

                                          
𝐴𝐸𝑇(𝑥)𝑃(𝑥) = 1 + 𝑃𝐸𝑇(𝑥)𝑃(𝑥) − [1 + (𝑃𝐸𝑇(𝑥)𝑃(𝑥) )𝜔]1 𝜔 ⁄

                                               (2)                           

Where, 𝜔(𝑥) describes climatic-soil properties as a non-physical parameter where as 𝑃𝐸𝑇(𝑥) is the 

potential evapotranspiration, both are described in detail below. 𝑃𝐸(𝑥) can be calculated as follows:  

                                              𝑃𝐸𝑇(𝑥) = 𝐾𝑐(𝑙𝑥) × 𝐸𝑇𝑜(𝑥)                                                         (3)                          

Where ETo is reference evapotranspiration, and kc is a crop coefficient of each pixel.  

The empirical parameter 𝜔(𝑥) is also calculated following Donohue et al. (2012) as follows:  



                                                       𝜔(𝑥) = 𝑍 𝐴𝑊𝐶(𝑥)𝑃(𝑥) + 1.25                                                               (4) 

Where Z is Zhang constant and AWC is plant available water content.  

In order to differentiate the relative impacts of LULC change and climate variability on annual 

water production in the Ribb-Gummara watershed, we used Residual Trends analysis (Evans & 

Geerken, 2004; Pan et al., 2015; Wessels et al., 2007). Prior to commencing the water supply 

estimation, two scenarios were developed: (a) water supply under land-use change with constant 

climate and (b) water supply under climate variability with constant land use. Using the calibrated 

and validated annual water yield model of InVEST, we were able to calculate the annual water 

supply of the study area at three different periods during the past fifteen years (2003, 2010 and 

2017). After obtaining the actual water supply, we calculated the water supply variation for three 

periods of the study (2003-2010, 2010-2017 and 2003-2017). Following this, the water yield 

simulation was undertaken for the two scenarios by fixing the land use and climate input 

parameters alternatively using InVEST water yield model. The Residual Trends were then 

calculated by subtracting the scenarios trends from the actual trends. In the end, the relative 

impacts of LULC change and climate variability to water yield variations were calculated. The 

procedures applied are detailed below: 

                                                      ∆𝑌 = 𝑌𝐹  − 𝑌𝐵                                                                         (5) 

Where,  ∆𝑌 is the total water yield variation; 𝑌𝐹  is the water production at the end of each period; 

and 𝑌𝐵 is the water production at the beginning of each period. 

                                                          ∆𝑌𝐿 = 𝑌𝐹 − 𝑌𝐹𝐶                                                                    (6) 

Where, ∆𝑌𝐿 is the land use change impact on water production; and 𝑌𝐹𝐶 is the water yield under 

only climate variability.  

                                                      ∆𝑌𝐶 = 𝑌𝐹 − 𝑌𝐹𝐿                                                                       (7) 

Where, ∆𝑌𝐶 is the climate variability impact on water production; and 𝑌𝐹𝐿  is the water yield under 

only land use change. 

                                                  𝜂𝐿 = Δ𝑌𝐿Δ𝑌  × 100                                                                          (8) 



Where, 𝜂𝐿 is the relative impact of land use change on water supply. 

                                                   𝜂𝐶 = Δ𝑌𝐶Δ𝑌  × 100                                                                          (9) 

Where, 𝜂𝐶  is the relative impact of climate variability on water supply.  

Nine tabular and spatially explicit input data are required to run InVEST annual water yield 

simulation. These are detailed in section 2.3, and summarized in Table 1.   

2.3. Data Sources and Processing 

2.3.1 Field data  

Field observation and interviews were used to collect field data in the study area. Field observation 

and key informant interviews were carried out from June to September 2017 to obtain general 

insight about the land use and to collect ground truth data for training and validation. Interviews 

were conducted with twelve local elderly people, three agricultural experts, and one government 

official. Ancillary field observation was also undertaken between May and September 2018. Based 

on the knowledge acquired during the field survey in 2017 and 2018 in our study, we have 

identified seven possible land cover classes for land cover classification in  Ribb-Gummara 

watershed. These include cropland, shrubland, grassland, forestland, built-up area, water bodies, 

and bare land (Table 2). Garmin portable Global Positioning System (GPS) apparatus was used to 

collect 829 points using proportionate stratified random sampling technique (Jensen, 2016) at the 

center of each class. The mean score of horizontal accuracy was 4.7 meters. Of the total 829 points, 

491 were used for training and 338 points were used for accuracy assessment of the 2017 Landsat 

image. For the 2003 and 2010 Landsat image, 280 training polygons from different land use types 

were digitized directly from geo-referenced and high-resolution Google Earth images for each 

image. Additionally, 264 polygons from different land-use classes were also digitized for use in 

the accuracy assessment of each classified maps. The polygons were initially encoded as KML file 

that was later converted to vector file and region of interest (ROI) through the integrated use of 

ArcGIS and ENVI software. When the selected samples seem inaccurate, modification of their 

boundaries or complete removal was performed. 

 

 



2.3.2 LULC data and processing   

Landsat images  

The United States Geological Survey (USGS) has been offering Landsat images for monitoring 

changes on the surface of the Earth since 1972 for free of charge (Turner et al., 2015). Three cloud-

free Landsat images for the years 2003, 2010 and 2017 were obtained from the USGS Earth 

Explorer web portal. For the year 2003, we acquired Landsat 7 Enhanced Thematic Mapper 

(ETM+). Landsat 5 Thematic Mapper (TM5) and Landsat 8 Operational Land Imager (OLI) were 

also obtained for the years 2010 and 2017 respectively (Table 3). The year 2010 was purposefully 

selected to divide the study time into two equal periods. This was the year when the government 

has started SWC practices along with reclaiming illegally occupied land.  

In Ethiopia, the dry season is from October to January. Therefore, we collected all cloud-free 

Landsat images in December and January at anniversary dates to reduce the impact of seasonalities 

on land cover change detection (Munyati, 2000).  

Image Preprocessing  

All the time series Landsat images used for this research were collection 1 level 1 that means the 

images were corrected for geometric and terrain distortions. Although the images were 

geometrically corrected, all optical satellite data are prone to atmospheric effects. Therefore, we 

applied the fast line-of-sight atmospheric analysis of spectral hypercubes (FLAASH) module using 

the Environment for Visualizing Images (ENVI) 5.3 software to remove atmospheric effects from 

the images (I T T Visual Information Solutions, 2009). After the atmospheric correction of the 

images, it was necessary to carry out a topographic correction to remove the effect of topography 

using Topo-correction extension available in the ENVI 5.3 software. Following atmospheric and 

topographic corrections, the images were subset to one km buffer from the spatial extent of the 

study area. This helps the image not to lose data at the border during water yield simulation. After 

obtaining spatially subset images, a spectral subset was carried out and then a 5-band image 

consisting of all the visible (red, green, blue), near-infrared (NIR) and short-wave infrared 1 

(SWIR1) bands were produced. 

Optical indices can improve feature separability for land cover classification. The modified 

normalized difference water index (MNDWI) and the normalized difference vegetation index 

(NDVI) were generated. NDVI can easily discriminate vegetation from the other land cover types 



(Dorigo et al., 2012). Likewise, MNDWI can effectively distinguish water bodies from built-up 

areas in addition to restricting information from soil and vegetation and enriching the information 

of water (Xu, 2006). NDVI was calculated by subtracting red band from the near infrared band 

and dividing with the sum of the near-infrared band and red band. Similarly, MNDWI was 

calculated by subtracting shortwave infrared band from green band and divided with the sum of 

green band and short-wave infrared band. Finally, a 7-band layer stacked image was generated for 

LULC classification.  

Image Classification  

Among other things, classification accuracy is dependent on the application of an appropriate 

classification method. The introduction of machine learning approach and artificial intelligence 

paved the way to the birth of many classifiers including decision tree, artificial neural network 

(ANN), and support vector machine (SVM) which are highly advanced and non-parametric 

(HUANG et al., 2002). Non-parametric classifiers do not include normality assumptions and have 

been found to be more relevant for diverse topographic data (Rodriguez-Galiano et al., 2012). 

Although object-based image analysis is best performed for Landsat OLI image, SVM is suitable 

for all Landsat images (Phiri & Morgenroth, 2017). SVM is capable of producing high accuracy 

classified maps than many classifiers like maximum likelihood (Mountrakis et al., 2011; Shao & 

Lunetta, 2012). As a result, SVM classifier was applied in this study using the algorithm embedded 

in ENVI 5.3 with the Radial Basis Function (RBF) kernel. Prior to the final image classification 

with the SVM, an unsupervised classification was undertaken with the Iterative Self Organizing 

Data Analysis (ISODATA) clustering algorithm intending to increase our understanding of 

spectral similarities and ambiguity arising from the complex nature of the topography (Alphan et 

al., 2009).     

Accuracy Assessment  

Image classification is usually not free from errors. The agreement between the reference data and 

the classified map is expressed by an accuracy assessment (Yousefi et al., 2015). The accuracies 

of classified land cover maps were checked visually and statistically.  Whether the thematic map 

looked right or wrong was visually judged and continuous edits were made in line with the local 

experience. Then, a highly objective assessment that relied on comparing the proportion of areas 

of classified land cover categories with their corresponding areas in other reference datasets was 



measured using confusion matrix generated between classified pixels and their corresponding 

validation data. Detailed explanations and equations for accuracy measures were found in 

(Congalton, 1991). Accuracy assessment was carried out for 2003, 2010, and 2017 classified maps 

using ground truth data acquired from Google Earth and field survey. A post-classification 

accuracy assessment was carried out to generate a classification confusion matrix or error matrix. 

Measures of producer accuracy, user accuracy, and overall accuracy were calculated from the 

confusion matrix. Although Kappa Coefficients were calculated to measure the degree of 

classification accuracy (Butt et al., 2015), we did not report in this study as the growing number 

of literature has criticized it (Foody, 2002; Pontius & Millones, 2011).   

Change detection  

Change detection is used to quantify land cover transformation over time at a specific geographic 

location (Biro et al., 2013; D. Lu, P. Mausel, 2004). Although numerous change detection 

approaches have introduced recently; post-classification comparison, image differencing, and 

principal component analysis are the most commonly used (D. Lu, P. Mausel, 2004). The post-

classification comparison approach was chosen for this study because it generates the size and 

spatial distribution of changed areas as well as percentage share of individual classes within the 

change area estimations (El-Hattab, 2016; Yuan et al., 2005). Loss, gain, persistence and net 

change of each land cover class were calculated in three periods: 2003-2010, 2010-2017 and 2003-

2017 using cross-tabulation technique (Pontius et al., 2004). 

2.3.3 Climate data  

The Bahrdar branch of the National Meteorological Services Agency (NMSA) provided rainfall, 

maximum and minimum temperatures for eleven meteorological stations over the period between 

2001 and 2017 (Figure 1). On average, 4.7% of the data was missing during the study period which 

was filled with the nearest station’s average value (Ferrari & Ozaki, 2014). Prior to commencing 

the data preparation, the raw data were divided into three periods to get anniversary data with 

LULC; 2001-2005, 2006-2011 and 2012-2017. Following this, both mean monthly rainfall and 

temperature as well as mean monthly maximum and minimum temperatures were produced. 

The average monthly reference evapotranspiration (ETo) was computed using a modified 

Hargreaves’s equation (Droogers & Allen, 2002). The modified Hargreaves’s equation was chosen 

because it produces better results compared with the Pennman-Montieth method in data-scarce 



areas (Sharp et al., 2018). After obtaining the mean monthly ETo and rainfall, average annual 

precipitation and average annual ETo were calculated. Finally, the average annual precipitation 

and average annual ETo data were interpolated by Inverse Distance Weighted (IDW) with a 30 m 

spatial resolution over the entire watershed (Hu et al., 2014; Yong et al., 2010). 

2.3.4 Site factor data  

Soil-related input data like root-restricting layer depth and plant available water content (PAWC) 

are required for InVEST water yield simulation. The Harmonized World Soil Database, version 

1.2, from Food and Agriculture Organization (FAO) under United Nations was acquired to 

generate root-restricting layer depth and PAWC in this study (FAO/IIASA/ISRIC/ISS-CAS/JRC, 

2012; Fischer et al., 2012). PAWC and root-restricting layer depth were calculated using weighted 

average of AWC classes and reference soil depth respectively.  Zhang constant is also required to 

capture the hydrological properties and seasonal patterns of rainfall in the watershed. Despite the 

existence of three techniques for Zhang constant calculation, we applied calibration to find the best 

Zhang constant in the area as it was recommended by Hamel & Guswa, (2015). 

2.3.5 Tabular data  

Root depth, plant evapotranspiration coefficient (Kc), and land cover type (1and 0) are required 

input parameters in the form of tabular data to calculate potential evapotranspiration from 

reference evapotranspiration on the basis of the watershed physiological characteristics. We 

calculated  Kc based on  Allen et al. (1998) and Sharp et al. (2018) and root depth following 

Canadell et al. (1996).  

2.4. Model Calibration and Validation  

The simple production function is the underlying assumption of the InVEST water yield model 

where all the water reached the outlet of any watershed is the remaining water from evaporative 

loss. The water yield is calculated at each pixel in the watershed but applied only at the watershed 

level for practical use. According to Sharp et al. (2018), model calibration should be performed 

using long term, not less than ten years, streamflow data to get an accurate result from the model. 

As far as data for validation is available, result validation also increases the trustworthiness of the 

research findings for practical use.  Unlike numerous hydrological models where both calibration 

of the model and validation of the result are difficult and uncertain, InVEST model calibration and 

validation is simple, straight forward, and impartial (Belete et al., 2018). We delineated Ribb sub-



watershed above Ribb stream gauge and Gummara sub-watershed above Gummara stream gauge, 

where actual flow measurement has been taken place, for calibration and validation purposes. 

We prepared streamflow records for Gummara at Bahir Dar from 1996 to 2006 for InVEST model 

calibration and streamflow data for Ribb at Addis Zemen from 1996-2008 for model simulation 

result validation. The streamflow data were aquired from the Ethiopian Ministry of Water, 

Irrigation, and Electricity (MoWIE) on request. Following streamflow data preparation, water 

yield calculation and simulation result comparison with the measured streamflow data have been 

performed. Then consecutive adjustments of root depth, Z parameter, and plant evapotranspiration 

coefficients were carried out until we got the optimum result from the model simulation based on 

literature and locally available data in the study area. The value of the abovementioned model 

input parameters capped through such calibration processes was used for water supply estimation 

in Ribb-Gummara watershed for our study 

The comparison of simulated water yield against measured streamflow data was performed using 

pairwise comparative statistical methods including Bias, Root Mean Square Error (RMSE) and 

Mean Error (ME) (Bayissa et al., 2017a; Bitew et al., 2012; Dinku et al., 2007). In the end, the 

water supply of the whole Ribb-Gummara watershed was estimated. The final estimated water 

supply was compared with observed streamflow of Ribb sub-watershed with Zonal Statistics in 

Arc GIS 10.5 environment. 

3. RESULTS  

3.1.Model Calibration and Result Validation  

Water yield model calibration resulted in a Bias of 0.97, a Root Mean Square Error (RMSE) of 

0.04 km3/year and Mean Error (ME) of -0.04 km3/year, showing near a perfect agreement between 

estimated and observed annual water supply. The values of ME and RMSE are near to zero and 

the Bias value is also near to one. The final estimated water supply result has a 0.96 Bias value, 

which is very close to the perfect score of Bias (1.00). In addition, -0.05 km3/year and 0.05 

km3/year were recorded for ME and RMSE respectively for the final water supply validation, 

which are near to the ideal value (0.00). 

3.2.Observed Climate Variability   

Patterns of rainfall and temperature are reliable indicators of climate change. Therefore, the local 

patterns of mean annual temperature and annual total rainfall from 2001 to 2017 were analyzed to 



detect climate change in the Ribb-Gummara watershed. The mean annual temperature of the Ribb-

Gummara watershed was 18.78oc during the study period. The year 2002 was the hottest, with an 

average annual temperature of 19.85oc. Although not significant, the temperature in the study area 

shows a decreasing trend. The mean annual amount of temperature decreased by about 0.023oc 

each year over the past two decades (Figure 2). It is contrary to several local and global trends. 

Hence, further investigation of why this happened is needed in the Ribb-Gummara watershed.  

During the past two decades, the Ribb-Gummara watershed has exhibited a significant increasing 

wetness trend. The annual total rainfall increased by about 12.53mm each year from 2001 to 2017 

(Figure 3). However, the amount of annual total rainfall has exhibited inter-annual variability with 

several dry years, including 2002 (1069mm), 2004 (1091mm) and some wet years such as 2008 

(1518mm) and 2010 (1548mm).  

3.3.Land Use and Land Cover Change  

Table 4 summaries the accuracy assessment report for the 2003, 2010, and 2017 final classified 

maps. The overall accuracies of 87.01%, 85.38%, and 88.75% were found for 2003, 2010, and 

2017 classified images, showing a strong agreement between the observed and the predicted 

classes. 

The LULC dynamics of the Ribb-Gummara watershed are shown in Figure 4 for the periods 2003, 

2010 and 2017. The LULC trend analysis of the period 2003-2010, 2010-2017, and 2003-2017 

demonstrate that the study watershed has experienced high levels of land use and land cover 

change.           

As shown in Table 1 and Table 2, shrubland, built-up, and bare land increased continuously during 

the study period. Cropland was the dominant land use type throughout the period, exhibiting the 

fluctuating trends from period-to-period. Its total area was 2397 km2 (73.13%) in 2003, rose to 

2749 km2 (84%) by 2010 and dropped back to 2409.05 km2 (73.61%) by the end of the study 

period (2017). The growth of cropland (14.71%) in the first period changed to a decline (-12.35%) 

in the second period. Illegally expanded cropland on marginal areas was also converted to 

vegetated land after the introduction of SWC in 2010. This result is in agreement with the previous 

study in the same watershed (Moges & Bhat, 2018), identifying SWC practices as the main reason 

for cropland reduction.  



Grassland and forestland were the third and the fourth dominant land cover types, after cropland 

and shrubland (Figure 4 and Table 1). Contrary to the other land use types, grassland and forestland 

areas showed a significant decreasing trend between 2003 and 2017 (Table 2).  From 2003 to 2017, 

there were a decrease in grassland from 556 km2 (17%) in 2003 to 289 km2 (9%) in 2017 and 

forestland from 136 km2 (4.15%) to 89 km2 (2.72%). This finding is supported by other empirical 

results (Biru et al., 2015; Hassen & Assen, 2017; Sewnet, 2016; Teferi et al., 2013; Teklaya et al., 

2019) that described the decline of vegetated areas due to conversion to cropland. However, both 

grassland and forestland areas began to expand after 2010 mainly on farmland because of SWC 

activities and land reclamation measures. Although its share is very small, water bodies showed 

an increasing trend which is largely attributed to the Ribb irrigation dam construction on the Ribb 

River.  

From 2003-2017, nearly two-thirds (2,257 km2) of the watershed remained stable, while one-third 

(1,016 km2) of it changed. During this period, the most notable land cover transition was the 

persistent increment of shrubland in contrast to many previous findings in the Northern Highlands 

of Ethiopia (Moges & Bhat, 2018; Teklaya et al., 2019; Wubie et al., 2016).  In the same period, 

about 311 km2 of cropland, 27 km2 of grassland and 45 km2 of forestland were converted to 

shrubland (Table 3). It seems possible that these results are due to area enclosures, cut‐and‐carry 

livestock feeding system, eucalyptus plantations, and agroforestry practices on soil bunds of 

croplands as SWC strategies.  

3.4.Water Supply Dynamics 

The InVEST annual water yield model result described average annual water supply variation over 

space and time in the Ribb-Gummara watershed. The average annual water supply was 2461 MCM 

(Million Cubic Meter) or 752.02 mm in 2003, 3316 MCM or 1013.24 mm in 2010, and 3125 MCM 

or 954.89 in 2017. The spatial variation of the water supply ranged from 191 mm in Ebnat district 

to 1470 mm in Estie district. As shown in Figure 5, the southern regions generated higher water 

yields, whereas the northern areas generated lower water yields in all periods of the study. This 

implies that the Gummara River generated higher runoff than the Ribb River. This result is in line 

with previous research findings in the area (Atanaw et al., 2015).   

The average annual water supply showed a significant increasing trend between 2003 and 2017. 

The water supply increased from 752 mm in 2003 to 955 mm in 2017 in the Ribb-Gumara 



watershed. The water supply, which rose from 752 mm in 2003 to 1013 mm in 2010, was higher 

during the first period (2003-2010). However, during the second period (2010-2017) it slightly 

decreased by 58 mm. This implies that water supply in the form of runoff in the watershed 

decreased since the introduction of SWC practice in 2010.  

We produced the maps of water yield for three different periods of 2003-2017, 2003-2010 and 

2010-2017 to clearly show the spatial changes in water supply in the watershed (Figure 6). 

Although there was an overall increase in the water supply (203 mm) between 2003 and 2017, the 

Ribb dam area and southeastern regions specifically showed a significant decrease. The average 

annual water supply varies from -240 mm in the Ribb dam area to 762 mm in the southwestern 

part (Figure 6a). From 2003 to 2010, the average annual water supply increased significantly (261 

mm) whereas it slightly decreased (-58 mm) between 2010 and 2017, despite the existence of 

regional variation. The regional variation pattern between 2010 and 2017 was contrary to the 

spatial pattern observed between 2003 and 2010 (Figure 6b and c). For example, the average 

annual water supplies increased (1054 mm) in the northwestern region of the watershed between 

2003 and 2010. However, it decreased significantly (-891 mm) between 2010 and 2017 over the 

same location in the watershed.   

In order to differentiate the impacts of LULC change and climate variability on average annual 

water supply, the water supply scenarios were subtracted from the actual water supply of different 

periods. Figure 7 shows the residuals of water yield under only land-use change subtracted from 

the water production at the end of each period. Although the impact of climate variability on the 

water supply was positive between 2003 and 2017 (192 mm), its positive impact (253 mm) was 

limited during the first period (2003-2010). The negative impact of climate variability on water 

supply was observed on the Ribb-Gummara watershed in the second period (2010 - 2017) (-61 

mm).   

Figure 8 shows the residuals of water yield under only climate variability subtracted from water 

production at the end of each period. Despite the existence of spatial variation, LULC had a 

positive impact on the average annual water supply of the study watershed in all periods 

considered. Its impact was 11mm from the year 2003 to 2017, 8 mm from 2003 to 2010 and 3 mm 

from 2010 to 2017. This implies that the magnitude of LULC impact on water supply kept 



decreasing over the last two decades. Although the impact of LULC on the water yield from 2010 

to 2017 was positive, its magnitude is insignificant (3 mm).  

4. Discussion 

4.1.The Relative Impacts of Climate and LULC Changes on Water Production Variation  

The study was primarily designed to distinguish the relative impacts of LULC change and climate 

variability on the water supply variation in the study area. The results of the study suggest that 

both LULC change and climate variability had a positive contribution to the average annual water 

supply variation in the Ribb-Gummara watershed from 2003 to 2017 despite spatial differences 

(Figure 7a and Figure 8a). These results are consistent with the findings of previous studies 

(Andualem & Gebremariam, 2015; Ayele et al., 2016; Jemberie et al., 2016; Teklaya et al., 2019). 

However, the impact of both LULC change and climate variability on average annual water supply 

before and after 2010 was different. The overall water supply change between 2003 and 2017 was 

203 mm. It was -58 mm after 2010 and 261 mm before 2010 (Table 4). There are several possible 

explanations for the negative change of water supply after 2010. One possible explanation could 

be that the implementation of SWC practices along with land reclamation since 2010 has improved 

the watershed vegetation cover which reduces surface runoff. Another possible explanation is the 

occurrence of two severe droughts in 2014-2015 and 2009-2010 (Bayissa et al., 2017b).  

One unanticipated finding was that about 94% of the total water supply change was contributed 

by climate variability from 2003 to 2017, contradicting government reports. The government 

believes that illegally occupied land reclamation and SWC practices resulted in large water supply 

increases. However, the relative contribution of LULC to the total water supply variation was only 

6% during this period. This finding confirms the association between LULC change and water 

supply. This finding is in agreement with Pan et al., (2015) findings which showed that the 

execution of the Three Rivers Source Area Ecological Protection Project has increased the 

vegetated land area and the water supply. There are two likely causes for the low relative 

contribution of LULC and the high relative contribution of climate variability to the total water 

supply variation in the Ribb-Gummara watershed. One is that there was a small change (13 km2) 

in the dominant land use type, cropland, between 2003 and 2017 (Table 2). This implies no 

significant improvement in the capacity of the land to convert runoff into groundwater (Arunyawat 

& Shrestha, 2016). Another cause is a substantial increasing trend of rainfall (12.53 mm/year) and 



a decreasing trend of temperature (0.023oc/year) between 2003 and 2017 (Figure 3 and Figure 2). 

Therefore, increasing rainfall coupled with decreasing temperature resulted in increased water 

supply in the watershed. This indicates the need for incorporating ecosystem-based climate change 

adaptation strategies along with SWC practices.  

Another important finding was that although the impact of LULC on water supply was positive 

from 2010 to 2017, its relative contribution to the total water supply decreased from 8 mm before 

2010 to 3 mm after 2010 (Table 4). This might be due to the improvement of the water holding 

capacity of the watershed from ongoing SWC practices commenced in 2010 and indicates the need 

to strengthen SWC practices in the watershed and to scale these up to community-based watershed 

management.  

4.2.The practical implications of this study  

The findings of this study have several important implications for future practices. This study is 

one of the few, if not the first, to distinguish the relative contribution of LULC change and climate 

variability to the overall variation of water supply. Therefore, this paper will be a source of 

scientific information on spatial and temporal water supplies supporting development planners and 

decision-makers to make informed decisions and to ensure sustainable water supply. The results 

also clearly show the effect of the ongoing SWC practices on water supply. Thus, the information 

generated in this study provides a springboard to evaluate the outcome of SWC practices at the 

watershed level. Contrary to expectations, this study found a significant difference between LULC 

change and climate variability impact on water supply. Hence, it would help to implement 

appropriate climate change adaptation strategies along with soil and water conservation practices.    

Another important contribution of this study is that the simple and straightforward methodology 

applied in Ribb-Gummara watershed could be efficiently transferred to other basins across the 

world in general and in sub-tropical, temperate and alpine climate regions in particular. The 

method is a combination of InVEST integrated catchment water yield model and Residual Trends 

analysis. This method could be applied with free and globally available remote sensing data (Sharp 

et al., 2018; Vogl et al., 2015). Hence, the method could apply in ungauged basins across the world 

to present complex management issues.  

 



4.3.Uncertainty in this study  

There are two sources of uncertainties in this study. Some uncertainties are associated with the 

InVEST water yield model. This model captures only annual average water supply and ignores 

extremes and within year variations. The InVEST water yield model does not capture the seasonal 

variation of the water supply, which is very important in agriculture. The water supply change in 

the dry season or low flow conditions is associated with LULC, whereas the wet season or high 

flow conditions is associated with climate change in general and rainfall variability in particular 

(Dile et al., 2013). The other uncertainties derive from model input parameters. Despite the 

application of robust classification procedures, it is difficult to generate accurate land use 

classifications from Landsat images. The spatial resolution of Landsat image is 30m, which does 

not allow all land cover types to be clearly differentiated. For example, grassland and shrubland 

demarcation is difficult. In addition, grassland degradation that has an impact on the water supply 

is hard to detect from Landsat images (Pan et al., 2015). Considered together, these uncertainties 

do not influence the direction of the results acquired and conclusions drawn. However, this work 

could be improved further by considering these limitations in the future. 

5. Conclusions  

This study aimed to separate the relative contribution of LULC change and climate variability to 

the average annual water supply in the Ribb-Gummara watershed from 2003 to 2017. In order to 

distinguish the impact of LULC on average annual water supplies from the impact of climate 

variability, LULC change and climate variability trends were first analyzed. The results showed 

an increasing trend of annual total rainfall and a slight decrease in mean annual temperatures. The 

watershed also experienced significant LULC dynamics between 2003 and 2017. For example, 

cropland, the dominant land use type, increased its area by 15% from 2003 to 2010 and lost 12% 

of its area between 2010 and 2017.  

This study found that average annual water supplies increased over the last two decades. However, 

changes in the water supply show variation before and after 2010. The average annual water supply 

change was positive from 2003 to 2010 while negative from 2010 to 2017. The relative 

contribution of both LULC change and climate variability to the average annual water supply was 

positive from 2003 to 2017. However, climate variability was found to contribute 94% of the water 

supply variation, which is much higher than LULC. The impact of climate variability on water 

supply was negative between 2010 and 2017. Although it is masked by climate variability, LULC 



change still proved a positive impact on water supply, with a diminishing trend indicating the 

meaningful impact of SWC and land reclamation practices that commenced in 2010. This implies 

that SWC practice should incorporate ecosystem-based climate change adaptation strategies and 

scale up to community-based integrated watershed management to support sustainable land use. 

It would be interesting to assess the impacts of LULC change and climate variability on seasonal 

water supplies. Hence, further study is needed to investigate the present and future impacts of 

LULC and climate change on seasonal water production in the Ribb-Gummara watershed to 

sustain freshwater provision services throughout the year.  
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Table 1. All the input parameters and data sources for InVEST 3.5.0 annual water yield model 

Input Data Type or Format Spatial 

Resolution 

Sources 

Average annual precipitation 

(mm) 

GIS raster 30m × 30m NMSA 

Average annual ETo (mm) GIS raster 30m × 30m NMSA 

Soil depth (mm) GIS raster 30m × 30m (FAO/IIASA/ISRIC/ISS-CAS/JRC, 

2012; Fischer et al., 2012). 

PAWC (mm) GIS raster 30m × 30m (FAO/IIASA/ISRIC/ISS-CAS/JRC, 

2012; Fischer et al., 2012). 

LULC GIS raster 30m × 30m USGS, (Turner et al., 2015) 

Watershed and Sub-

watersheds 

GIS 

polygon/Shapefile 

- Delineated by the researchers using Arc 

Hydro tool in Arc GIS 10.5 from SRTM 

30m DEM data 

Root Depth Per LULC class - (Canadell et al., 1996) 

Kc Per LULC class - (Allen et al., 1998; Sharp et al., 2018) 

Z parameter Integer number  - (Hamel & Guswa, 2015) 

 

 

 

 

 

 

 

 

 

 

 



Table 2. Definitions of land use/land cover classification system in the study area  

Land use types Description  
Crop Land A land covered with annual and perennial crops frequently found in plains, foot slopes, 

plateaus, and valley floors 

Grass Land A land covered with grass that  found in flat areas and river banks in which water-table is  

near the surface  

Shrub Land A land dominantly covered by vegetation with lower than one meter height and 50% canopy 

cover 

Forest Land These include a remnant of high natural forests found in church fence, steep slope areas, and 

eucalyptus plantations having more than 50% canopy cover  

Built up Area All man-made infrastructures including buildings, roads concrete sports fields etc.  

Water Body Any part of the study area covered with surface water like streams, rivers, ponds, dams, and 

lakes  

Bare Land Land of limited ability to support life that covered with sand and rocks  

 

 

 

 

 

 

 

 

 

 

 

 



Table 3. Properties of the Landsat images used in this study 

Sensor type Spatial resolution (m)  Bands used Path/row Date of acquisition 

Landsat 5 TM 30*30 1, 2, 3, 4, 5,  169/52 2010-01-14 

Landsat 7 ETM+ 30*30 1, 2, 3, 4, 5,  169/52 2003-01-03 

Landsat 8 OLI 30*30 2, 3, 4,5, 6,  169/52 2017-12-19 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 4. Classified map accuracy assessment report (2003, 2010, and 2017)  

Land use Classes 2003 2010 2017 

PA (%) UA (%) OA (%) PA (%) UA (%) OA (%) PA (%) UA (%) OA (%) 

Crop Land 93.08        79.70    

 

 

 

87.01 

97.39        97.39         

 

 

85.38 

 88.61         84.36   

 

 

88.75 

Grass Land  84.92         80.64  79.05        72.81  87.89         82.98  
Shrub Land 63.57        79.88 35.90        93.33   55.71        79.14 

Forest Land 95.64        93.57  98.87       93.33 99.89        94.71 

Built up Area 48.86        78.18 59.52       100.00  57.65        58.33  
Water Body 96.75        93.70 91.43        94.12    96.72         93.65 

Bare Land 23.44        90.91  67.57         86.21 58.27        87.06 

OA = Overall Accuracy,   PA = Producer Accuracies, and UA = User Accuracies  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 1.Area coverage of each LULC class (2003-2017) 

Land Use Type Land use (2003) Land use (2010) Land use (2017) 

Area (km2) Percent Area (km2) Percent Area (km2) Percent 

Crop Land 2396.57 73.13 2748.99 83.99 2409.50 73.61 

Bare Area 0.00 0.00 1.06 0.03 2.51 0.08 

Built up Area 4.54 0.14 4.67 0.14 20.74 0.63 

Forest Land  135.76 4.15 78.21 2.38 89.02 2.72 

Grass Land  556.35 17.00 113.1 3.46 289.24 8.84 

Shrub Land  166.81 5.11 320 9.78 442.65 13.53 

Water Body 13.15 0.41 7.15 0.22 19.52 0.59 

Total 3,273.18 100 3,273.18 100 3,273.18 100 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2. The rate of change for each LULC class (2003-2017) 

Land Use Type Land Use Change (2003-2010) Land Use Change (2010-2017) Land Use Change (2003-2017) 

Area (km2) Percent Area (km2) Percent Area (km2) Percent 

Crop Land 352.42 14.71 -339.49 -12.35 12.93 0.54 

Bare Area 1.06 - 1.45 136.47 2.51 - 

Built up Area 0.13 2.98 16.07 344.04 16.20 357.25 

Forest Land  -57.55 -42.39 10.81 13.82 -46.74 -34.43 

Grass Land  -443.24 -79.67 176.14 155.73 -267.10 -48.01 

Shrub Land  153.17 91.82 122.65 38.33 275.82 165.34 

Water Body -6.00 -45.62 12.37 173.07 6.38 48.51 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 3. LULC conversion matrix between 2003 and 2017  
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Initial State (2003) 

Classes Crop 

Land 

Grass 

Land 

Shrub 

Land 

Forest 

Land 

Built-up 

Area 

Water 

Body 

Bare 

Land 

Row  

Total 

Gain 

Crop Land 1952.41 328.66 88.04 31.40 3.40 5.16 0 2409.50 457.09 

Grass Land 88.53 189.75 10.19 0.62 0.13 0.03 0 289.24 99.49 

Shrub Land 311.02 27.39 56.37 44.78 0.05 3.02 0 442.65 386.28 

Forest Land 17.97 1.35 10.64 56.12 0.00 2.93 0 89.02 32.9 

Built up Area 13.88 4.30 0.79 0.83 0.90   0.04 0 20.74 19.84 

Water Body 11.73 3.50 0.77 1.99 0.05 1.48 0 19.52 18.04 

Bare Land 1.03 1.40 0.01 0.03 0.01 0.04 0 2.51 2.51 

Column Total  2396.57 556.35 166.82 135.76 4.54 13.15 0   

Loss 444.16 366.60 110.45 79.64 3.64 11.67 0   

Net Change 12.93 -267.10 275.82 -46.76 16.20 6.38 2.51   



Table 4. The relative contribution of Climate variability and LULC change to average annual 

water supply 

Periods ∆𝑌 (mm) ∆𝑌𝐶  (mm) ∆𝑌𝐿 (mm) 𝜂𝐶  (%) 𝜂𝐿 (%) 

2003-2017 203 192 11 94 6 

2003-2010 261 253 8 97 3 

2010-2017 -58 -61 3 105 -5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 1. Location map of Ribb-Gummara watershed 

Figure 2. Inter-annual temperature patterns and trends of change (2001-2017) 

Figure 3. Patterns of annual total rainfall and trends (2001-2017) 

Figure 4. LULC map of Ribb-Gummara watershed 

Figure 5. Spatial distribution of calculated annual water supply (mm)  

Figure 6. Average annual water supply variation during the last two decades  

Figure 7. The impact of climate change on the average annual water supply  

Figure 8. The impact of LULC on the average annual water supply  

 

 

 

 

 


