
This is a repository copy of Optimizing Streaming Parallelism on Heterogeneous Many-
Core Architectures.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/158101/

Version: Accepted Version

Article:

Zhang, P, Fang, J, Yang, C et al. (3 more authors) (2020) Optimizing Streaming
Parallelism on Heterogeneous Many-Core Architectures. IEEE Transactions on Parallel
and Distributed Systems, 31 (8). pp. 1878-1896. ISSN 1045-9219

https://doi.org/10.1109/TPDS.2020.2978045

(c) 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

1

Optimizing Streaming Parallelism on
Heterogeneous Many-Core Architectures

Peng Zhang, Jianbin Fang, Canqun Yang, Chun Huang, Tao Tang, Zheng Wang

Abstract—As many-core accelerators keep integrating more processing units, it becomes increasingly more difficult for a parallel

application to make effective use of all available resources. An effective way for improving hardware utilization is to exploit spatial and

temporal sharing of the heterogeneous processing units by multiplexing computation and communication tasks – a strategy known as

heterogeneous streaming. Achieving effective heterogeneous streaming requires carefully partitioning hardware among tasks, and

matching the granularity of task parallelism to the resource partition. However, finding the right resource partitioning and task

granularity is extremely challenging, because there is a large number of possible solutions and the optimal solution varies across

programs and datasets. This article presents an automatic approach to quickly derive a good solution for hardware resource partition

and task granularity for task-based parallel applications on heterogeneous many-core architectures. Our approach employs a

performance model to estimate the resulting performance of the target application under a given resource partition and task granularity

configuration. The model is used as a utility to quickly search for a good configuration at runtime. Instead of hand-crafting an analytical

model that requires expert insights into low-level hardware details, we employ machine learning techniques to automatically learn it.

We achieve this by first learning a predictive model offline using training programs. The learnt model can then be used to predict the

performance of any unseen program at runtime. We apply our approach to 39 representative parallel applications and evaluate it on

two representative heterogeneous many-core platforms: a CPU-XeonPhi platform and a CPU-GPU platform. Compared to the

single-stream version, our approach achieves, on average, a 1.6x and 1.1x speedup on the XeonPhi and the GPU platform,

respectively. These results translate to over 93% of the performance delivered by a theoretically perfect predictor.

Index Terms—Heterogeneous computing; Parallelism; Performance Tuning; Machine learning

✦

1 INTRODUCTION

Heterogeneous many-cores, as representative by GPGPUs
and Intel’s XeonPhi, are widely used for accelerating paral-
lel applications [1], [2], [3]. As users demand higher perfor-
mance, many-core accelerators have become more powerful
by providing more and more processing units. While the
abundant computing resources offer the potential for higher
performance, it becomes harder for a parallel application
to utilize all the available computing resources [4], [5]. As
a result, many parallel applications fail to fully unlock the
performance potential of a many-core accelerator.

One way for improving heterogeneous many-core uti-
lization is to exploit spatial and temporal sharing of pro-
cessing resources. This strategy is also known as heteroge-
neous streaming [6]. The idea is to exploit the computation
and communication independency of task parallelism to
improve hardware utilization. It works by partitioning the
processor cores to allow independent communication and
computation tasks (i.e. streams) to run concurrently on
different hardware resources, which effectively overlaps the
concurrent kernel execution with data movements. Repre-
sentative heterogeneous streaming implementations include
CUDA Streams [7], OpenCL Command Queues [8], and In-

• Peng Zhang, Jianbin Fang, Canqun Yang, Chun Huang, and Tao Tang
are with National University of Defense Technology, China.
E-mail: {zhangpeng13a, j.fang, canqun, chunhuang}@nudt.edu.cn

• Zheng Wang is with University of Leeds, United Kingdom.
E-mail: z.wang5@leeds.ac.uk

tel heterogeneous streams library (HSTREAMS) [6], [9]. These
implementations allow a parallel program to spawn more
than one stream (or pipeline) so that the data movement
stage of one pipeline overlaps the kernel execution stage of
another.

Prior work on heterogeneous streaming mainly targets
GPUs [10], [11], [12]. Compared to GPU implementations,
OS-enabled coprocessors, like the Intel XeonPhi, provides
some unique features that are currently unavailable on
the GPU. For example, besides specifying the number of
streams, developers can explicitly map streams to different
groups of cores on XeonPhi to control the number of cores
of each hardware partition. This parameter is not exposed
to programmers on GPUs, making previous work on GPU-
based parallel streaming optimizations infeasible to fully
exploit Xeon-Phi-like many-core accelerators (see also Sec-
tion 6.3). On the other hand, ample evidence is showing that
choosing the right stream configuration, i.e., the number
of processor core partitions and the number of concurrent
tasks of a multi-stream application, values, has a signif-
icant impact the application’s performance on many-core
architectures [13], [14], [15]. However, attempting to find
the optimal values through exhaustive profiling would be
ineffective, because the range of the possible values for the
two parameters is huge. What we need is a technique that
automatically determines the optimal stream configuration
for any streamed application in a fast manner.

This article presents a novel approach to determine the
right number of processor core partitions and tasks for
heterogeneous streams, targeting heterogeneous many-core
architectures. Our key insight is to use a performance model

2

to quickly search for the optimal stream configuration. The
performance model estimates the resulting performance
of the target streamed application when it runs under a
given stream configuration. If the prediction can be per-
formed quickly with low overhead, we can then quickly
explore a large configuration space. Instead of hand-crafting
the performance model that requires human modification
whenever the architecture evolves (i.e., when the number
and types of cores change), we employ machine learning
techniques to automatically construct a predictive model.
Our predictor is first trained off-line. Then, using code and
dynamic runtime features of the program, the model pre-
dicts performance for a new, unseen program under a given
stream configuration.

Our prior work [16] develops a machine learning based
classifier to predict the optimal stream configuration. How-
ever, this approach can only choose from a limited set
of configurations seen during the training phase. Unlike
a classification-based approach, the approach presented in
the article allows us to explore a larger number of stream
configurations (including those that are not seen during
the training phase) with negligible runtime overhead. This
advantage significantly improves the generalization ability
of the proposed approach (Section 3).

Due to the newness of heterogeneous streaming execu-
tion model, there are very few multi-stream benchmarks
available. To evaluate our approach on a wide range of
applications, we have developed a compiler-based tool to
automatically translate standard OpenMP benchmarks into
their streamed variants for the backends of XeonPhi and
GPU architectures (Section 4). With the help of this code
generator, we can apply our approach to 39 parallel bench-
marks. We argue that this tool can help generate more
streamed code and thus is an added value to the community.

We evaluate our approach on two representative hetero-
geneous many-core platforms: a 57-core Intel XeonPhi and
an NVIDIA 1080Ti GPU platforms. We achieve, on average,
a 1.6x and 1.1x speedup over the single-stream execution
on the XeonPhi and the GPU platforms, respectively. This
translates to over 93% of the best available performance.

The core contribution of this paper is a novel machine-
learning-guided approach for automatically determining
the optimal stream configuration on heterogeneous many-
cores. We show that our approach delivers good perfor-
mance across benchmarks and heterogeneous many-core
platforms. While we do not seek to advance the machine
learning algorithm itself, our work shows how machine
learning can be used to address the challenging problem of
tuning fine-grained streaming parallelism on heterogeneous
many-core architectures. In this work, we demonstrate the
usefulness of our approach on XeonPhi and an NVIDIA
GPU, but our approach is equally applicable on other het-
erogeneous platforms like AMD GPUs.

2 BACKGROUND AND OVERVIEW

In this section, we first give a brief introduction of hetero-
geneous streaming; we then define the scope of this work,
before motivating the need of our scheme and providing an
overview of our approach.

1 // s e t t i n g the p a r t i t i o n−s i z e and task g r a n u l a r i t y
hStreams app init (p a r t i t i o n s i z e , streams p part) ;

3
//stream queue id

5 stream id = 0 ;
for (. . .) {

7 //enquque host−device t r a n s f e r to current stream
hStreams app xfer memory (, , , stream id ,

→֒ HSTR SRC TO SINK , . . .) ;
9 . . .

//enqueue computation to the current stream
11 hStreams EnqueueCompute (stream id , ” kernel1 ” , . . .) ;

. . .
13 //move to the next stream

stream id = (stream id ++) % MAX STR;
15 }

// t r a n s f e r data back to host
17 hStreams app xfer memory (, , , HSTR SINK TO SRC , . . .) ;

Figure 1. Heterogeneous streaming using HSTREAMS as an example.

2.1 Heterogeneous Streaming

The idea of heterogeneous streaming is to exploit spatial
and temporal sharing of computing resources to utilize the
hardware resources to improve application performance.

Spatial Sharing. Modern many-core accelerators offer a
large number of processing units. Since many applications
cannot fully utilize all the cores at a time, we can partition
the computing units into multiple groups to concurrently
execute multiple tasks. In this way, the computing resource
is spatially shared across concurrently-running application
tasks. The key to spatial sharing is to determine the right
number of partitions, because over-provisioning of process-
ing units would waste computing resources but under-
provisioning would lead to slowed down performance.

Temporal Sharing. Code written for heterogeneous comput-
ing devices typically consists of several stages, such as host
device communication and computation. Using temporal
sharing, one can overlap some of these stages to exploit
pipeline parallelism to improve performance by overlap-
ping the host-device communication and kernel execution.

2.2 Problem Scope

Our work aims to improve the performance of a data paral-
lel application by exploiting spatial and temporal sharing
of heterogeneous streams. We do so by determining at
runtime how many partitions should be used to group
the cores (#partitions) and how many data parallel tasks
(#tasks) should be used to run the application. Our current
implementation is applicable to XeonPhi and GPUs by using
different runtime back-ends (HSTREAM for XeonPhi, and
CUDA or OpenCL for GPUs).

Code Example. Figure 1 gives a simplified code example
written with Intel’s HSTREAMS APIs that can run on the
XeonPhi many-core. At line 2 we initialize the stream execu-
tion by setting the number of partitions and tasks/streams
per partition. This initialization process essentially creates
multiple processor domains and determines how many
logical streams can run on a partition. In the for loop (lines
7-14) we enqueue the communication and computation
tasks to a number of streams identified by the stream_id
variable. In this way, communication and computation
of different streams can be overlapped during execution

3

50 100 150 200 250
#Tasks

50

100

150

200

#
P

a
rt

it
io

n
s

0

1

2

3

4

(a) binomial

50 100 150 200 250
#Tasks

50

100

150

200

#
P

a
rt

it
io

n
s

0.5

1

1.5

2

(b) prefixsum

Figure 2. Heatmaps show the resultant speedup (over single-stream) of binomial and prefixsum under different stream configurations. The
#partitions and #tasks have a significant impact on the resultant performance, and the sweet spots are sparse and vary across programs.

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16
C1 1.41 1.33 1.10 1.17 1.16 1.15 1.07 1.07 1.01 0.86 0.98 0.96 1.04 1.05 0.86 0.99
C2 1.28 1.46 1.27 1.17 1.18 1.09 1.14 1.05 1.00 0.97 1.05 1.00 1.05 0.98 1.01 0.75
C3 1.28 1.18 1.29 1.22 1.14 1.00 1.05 1.00 1.04 0.95 1.03 0.96 0.99 1.01 0.99 1.03
C4 1.14 1.06 1.05 1.33 1.23 1.21 1.14 1.12 1.16 1.11 1.06 1.00 0.98 0.46 1.06 0.85
C5 1.16 1.15 1.20 1.12 1.27 1.18 1.15 1.13 1.08 1.08 1.00 0.98 0.96 0.99 1.06 1.03
C6 1.24 1.06 1.08 1.16 1.19 1.24 1.20 1.06 1.11 0.96 0.94 0.94 1.06 0.93 1.02 1.06
C7 1.16 1.10 1.13 1.21 1.20 1.10 1.31 1.09 1.13 0.97 0.99 0.95 0.99 0.56 0.95 1.03
C8 1.23 1.05 1.21 1.15 1.12 1.14 1.17 1.14 1.14 0.90 0.98 1.05 0.99 0.43 0.99 1.02
C9 1.19 1.07 1.10 1.17 1.22 1.19 1.20 1.11 1.17 0.99 1.04 0.96 1.00 0.63 0.97 1.06
C10 1.13 0.97 1.07 1.05 1.27 1.14 1.24 0.98 1.04 1.15 0.94 1.03 0.96 0.41 0.99 1.00
C11 1.15 1.13 1.08 1.19 1.10 1.08 1.15 0.97 0.97 1.01 1.11 0.80 1.02 0.96 1.02 1.00
C12 1.02 0.94 1.17 1.17 1.21 1.10 1.17 0.94 1.00 0.96 0.96 1.06 1.04 0.47 1.08 1.10
C13 0.94 0.96 0.96 1.22 0.96 1.05 1.00 0.86 0.95 0.95 1.00 1.04 1.17 0.49 0.98 0.99
C14 0.89 1.03 0.81 0.89 0.89 0.86 0.84 0.91 0.92 1.04 0.92 0.99 1.00 1.07 1.04 1.10
C15 1.01 1.10 1.08 1.11 1.05 1.01 0.98 0.88 0.88 0.90 0.95 0.95 1.04 0.95 1.11 0.96
C16 0.82 0.81 0.97 1.12 1.02 1.07 1.00 0.94 0.96 0.99 1.06 1.02 1.04 0.41 1.03 1.14

Figure 3. Color table showing the speedups of best-performing configu-
rations across inputs for dct. Each cell shows the performance for one
of the 16 best-performing configurations, Cn, on a given input, Dn. The
best configuration varies across inputs and a good configuration on one
input can give poor performance on another dataset.

(temporal sharing); and streams on different processor do-
mains (or partitions) can run concurrently (spatial sharing).
Our predictive model determines the #partitions and the
#tasks before invoking the HSTREAMS initialization routine,
hStreams_app_init().

2.3 Motivating Examples

Consider Figure 2 which shows the resultant performance
improvement given by multi-stream parallelism over the
single-stream version of the code for two applications on
a 57-core Intel XeonPhi system. We use two streamed pro-
grams from prior work [13]: binomial computes the price
evolution over a given period and prefixSum calculates
the prefix sum for a sequence of numbers.

It is observed from this example that not all multi-
stream configurations give improved performance. As can
be seen from the diagrams, the search space of multi-
stream configurations is huge but good configurations are
sparse. The performance varies significantly over stream
configurations (#partitions, #tasks). The optimal #tasks for
binomial ranges from 1 to 30, and the best #partitions is
between 1 and 40. In contrast to binomial, prefixsum
benefits from fine-grained parallelism when using a larger
#tasks (220 to 224) and #partitions (60 to 80). However, the
stream configurations that are effective for prefixsum give
no speedup over the single-stream version for binomial.

Now consider Figure 3 that shows the speedups of dct
under 16 multi-stream configurations over the single-stream

version, where each configuration is found to give the best-
performance for one of the 16 inputs. In the color table,
each cell shows the performance of a stream configura-
tion (C1, ..., C16) on a specific input dataset (D1, ..., D16);
and the values along the diagonal line represent the best-
available performance (found through profiling) for an in-
put. As can be seen from the figure, the best stream con-
figuration can vary across inputs for the same benchmark.
For example, while C4 gives a speedup of 1.33x over the
baseline for dataset D4, it delivers a poor performance for
dataset D14 by doubling the execution time over the single-
stream version. This diagram also suggests that no single
configuration can give improved performance for all inputs.

Lesson Learned. These two examples show that choosing
the stream configuration has a great impact on performance
and the best configuration must be determined on a per-
program and per-dataset basis. Later, we will show that
this observation is not unique to XeonPhi but also holds for
GPUs. Attempting to find the optimal configuration through
means of an exhaustive search would be ineffective, and
the overhead involved would be far bigger than the po-
tential benefits. Online search algorithms, while can speed
up the search process, the overhead can still outweigh the
benefit. For example, when applying simulated annealing to
binomial, the best-found configuration only reaches 84%
of the best-available performance after 310,728 iterations1.
Classical hand-written heuristics are not ideal either, as
they are not only complex to develop, but are likely to
fail due to the variety of programs and the ever-changing
hardware architecture. An alternate approach, and the one
we chose to use, is to use machine learning to automatically
construct a performance model to estimate the benefit of
any candidate configuration, providing minimal runtime
overhead for searching for a good configuration, and having
little development cost when targeting new architectures.

2.4 Overview of Our Approach

Our library-based approach, depicted in Figure 4, is com-
pletely automated. To determine the best streaming con-
figuration, our approach follows a number of steps de-
scribed as follows. We use a set of information or features
to capture the characteristics of the program. We develop a
LLVM [17] compiler pass to extract static code features at

1. In Section 6.1, we show that our approach achieves 93% of the
best-available performance for binomial on XeonPhi.

4

Feature
Extraction

Single
stream code

feature
values

Best-found
configuration

Performance
Predictor

Search Engine
(configuration ranking)

predicted
speedup

C
a
n
d

id
a
te

c
o
n
fig

u
ra

tio
n

Performance
Predictor

Search Engine
(configuration ranking)

predicted
speedup

C
a
n
d

id
a
te

c
o
n
fig

u
ra

tio
n

Figure 4. Our machine learning based performance model (trained
offline) predicts the speedup based on the extracted feature values of
the code and a given stream configuration. We use the predictions to
quickly rank candidate configurations at runtime to choose the one with
the best predicted performance.

compile time, and a low-overhead profiling pass to collect
runtime information at execution time (i.e., during the first
few loop iterations). Because profiling also contributes to
the final program output, no computation cycle is wasted.
At runtime, we search for a good configuration through
an offline trained performance model to estimate the re-
sulting performances for all candidate configurations. The
performance model takes in the feature values, a given
configuration of resource partition and task granularity and
estimates the potential speedup for the given configuration
over the single-stream version. The overhead of runtime
feature collection and search is a few milliseconds, which is
included in all our experimental results. Since our training
process can be performed automatically, we can easily target
our performance model for different architectures.

3 PERFORMANCE MODELING

At the core of our approach is a machine learned perfor-
mance model built upon the Multi-layer Perceptron (MLP)
artificial neural network (ANN). Our prototype is imple-
mented using the Python scikit-learn machine learning
package [18]. It is to note that our prior work [16] uses a
Support Vector Machine (SVM) based classifier. However,
such an approach can only make predictions on a limited
set of configurations seen at the training time. Unlike a
classification-based approach, the new approach presented
in this article is a regression-based model which can make
predictions on any stream configuration. This new approach
thus has a better generalization ability for various heteroge-
neous architectures. We have also evaluated a number of
alternative modeling techniques, including MLP, SVM, and
decision trees. We chose MLP because it gives the best perfor-
mance and has modest training overhead (see Section 6.6.1).

Our performance model takes as input the feature values
and a given configuration (e.g., #partitions and #tasks for
XeonPhi and #tasks for GPUs). It predicts the speedup for
the given configuration. Building and using such a model
follows a 3-step process for supervised learning: (i) generate
training data (ii) train a performance model (iii) use the
performance model, described as follows.

3.1 Training the Performance Model

Our method for model training is shown in Figure 5. To
learn a regression model, we first need to profile the ex-
ecution time (in order to calculate the speedup over the
single-stream version) of all candidate configurations for
each training program, and extract the feature values from

web
content

Parsing Style Resolution Layout Paint Display

DOM Tree

Style Rules

Render Tree

Training
programs

Profiling
runs

Feature
extraction

<configuration,

speedup>

feature values

Learning
A

lgorithm

Performance Model

Figure 5. The training process of our performance model.

the program. We then use the feature values, configuration
settings and speedups to train a model.

3.1.1 Generating Training Data

To generate training data, we apply cross-validation to 39
benchmarks, i.e., by excluding the testing benchmarks from
the training dataset (see also Section 5.3.1). We execute
each training program and benchmark a number of times
until the gap of the upper and lower confidence bounds is
smaller than 5% under a 95% confidence interval setting. We
then calculate the average speedup for a given stream con-
figuration over the single-stream version. We exhaustively
execute each training program across a wide range of stream
configurations, and record the performance of each. Next,
we calculate the speedup for each configuration, program
and dataset. Finally, we extract the values of our selected set
of features from each program and dataset. We stress that
the trained model can be applied to stream configurations
that are not seen in the training phase.

3.1.2 Profiling Configurations

During the training phase, we exhaustively execute each
training program across a set of streamed configurations.
On XeonPhi, we profile each training program using the
#partitions ranging from 1 to 224 (the maximum number of
physical threads on XeonPhi) and the #tasks ranging from
1 to 256 2. On GPUs, we cannot configure the number of
partitions currently, we set the #partitions to the same as
#tasks to be consistent with XenPhi. On this platform, we
also set the #tasks to be range between 20 and 210, which
is big enough to include the optimal values according to
our experiments. Note that these parameter ranges can be
configured by the user.

3.1.3 Building The Model

Each evaluated configuration is appended to the feature
value vector of a training program to form a model in-
put. The model inputs and the corresponding speedups
(i.e., ground truths) for all training programs are passed
to a learning algorithm. The algorithm finds a correlation
between the input vector and the desired prediction. The
output of our learning algorithm is an MLP model where
the weights of the model are determined from the training
data. Model parameter tuning is performed on the train-
ing dataset for each targeting hardware architecture, using
cross-validation (see also Section 6.6.3). In our case, the
overall training process for all the 39 training programs
(which is dominated by training data generation) takes less
than a week on a single machine. Since training is performed
only once “at the factory”, this is a one-off cost.

2. We chose these values because configuration settings beyond these
values give a poor performance during our initial evaluation.

5

Table 1
Chosen features for XeonPhi performance model

Feature Description

loop nest at which level the outermost parallelizable loop lies
on

loop count # of the parallel loop iterations
#xfer mem # of host-device transfer API calls
dts total host-device transfer size
redundant transfer size host-device transfer size among overlapping tasks
max blocks the maximum number of tasks of the application
min task unit the minimum task granularity for a partition
instructions the total number of instructions of the kernel
branch miss branch miss rate
L1 DCR L1 Data cache miss rate

3.2 Features

Our performance models are based exclusively on code
and dynamic features of the target programs. Code features
are extracted from the program source code, and dynamic
features are collected using hardware performance counters
during the initial profiling run of the target application. We
restrict us in using hardware performance counters that are
commonly available on modern processors such as the data
cache misses to ensure that our approach can be applied to
a wide range of many-core architectures.

We considered 38 candidate raw features in this work.
Some features were chosen from our intuition based on
factors that can affect the performance such as dts (host-
device data transfer size) and #xfer_mem, while other
features were chosen based on previous work [19], [20].

3.2.1 Feature Selection

To build an accurate model through supervised learning,
the training sample size typically needs to be at least one
order of magnitude greater than the number of features. In
this work, we start from 311 training samples and 38 raw
features, so we would like to reduce the number of features
in use. Our process for feature selection is fully automatic,
described as follows.

We first combine several raw features to form a set
of combined normalized features, which are able to carry
more information than the individual parts. For example,
instead of reporting raw branch hit and miss counts, we
use the branch miss rate. Next, we removed raw features
that carried similar information which is already captured
by chosen features. To find which features are closely
correlated, we constructed a correlation coefficient matrix
using the Pearson correlation coefficient [21]. The closer a
coefficient between two features is to +/-1, the stronger the
correlation between the two input features. We removed
any feature which had a correlation coefficient (taking the
absolute value) greater than 0.7. Similar features include the
number of executed instructions and the number of E-stage
cycles that were successfully completed.

Our feature selection process reduces the number of
features to 10 for XeonPhi (see Table 1) and 10 for the
NVIDIA Titan 1080Ti GPU (see Table 2), where some fea-
tures are shared. Since our approach for feature selection
is automatic, the approach can be applied to other sets of
candidate features. It is to note that feature selection is also
performed using cross-validation (see also Section 5.2).

Table 2
Chosen features for GPU programs

Feature Description

Access type 1 # array access, whose fastest varying index is
an affine function of the block id

Access type 2 #array accesses, whose second or higher di-
mensional index is an affine function of the
block id

#xfer mem # of host-device transfer API calls
host to device transfer size total host to device transfer size
device to host transfer size total device to host transfer size
redundant transfer size host-device transfer size among overlapping

tasks
max blocks the maximum number of tasks
instructions the total number of instructions of the kernel
divergent branches # divergent branches
L2 read miss rate L2 cache read miss rate

max b
locks

redun. tr
ans. s

ize

#instru
ctio

ns

min ta
sk unit

data tra
nsfer s

ize

branch m
iss

#xfe
r_mem

L1 D
CR

loop nest

loop count
0

5

10

15

20

C
o

n
tr

ib
u

ti
o

n
 t
o

 v
a

ri
a

n
c
e

 %

(a) XeonPhi

m
ax

 b
lo
ck

s

L2
 re

ad
 m

is
s
ra

te

Acc
es

s
ty
pe

 2

di
ve

r.
br

an
ch

es

Acc
es

s
ty
pe

 1

#x
fe

r_
m

em

de
v.
 to

 h
os

t .
..

re
du

n.
 tr

an
s.
 s
iz
e

#i
ns

tru
ct
io
ns

ho
st
 to

 d
ev

. .
..

0

5

10

15
C

o
n
tr

ib
u
ti
o
n
 t
o
 v

a
ri
a
n
c
e
 %

(b) NVIDIA GPU

Figure 6. Feature importance on (a) XeonPhi and (b) NVIDIA GPU.

3.2.2 Feature Standardization

Supervised learning typically requires the feature values to
lie in a certain range. Therefore, we scaled the value for each
of our features between the range of 0 and 1. We record
the maximum and minimum value of each feature found at
the training phase, and use these values to scale features
extracted from a new application after deployment. We
truncate a value during deployment if the value is outside
the minimum/maximum value range seen during training.
It is to note that we also use the same approach to normalize
the model predictions (speedups) to the range of 0 and 1.
In this work, we choose Z-score to standardize the training
data, and the details of quantifying the impact of feature
engineering methods can be found in Section 6.6.2.

3.2.3 Feature Importance

To understand the usefulness3 of each feature, we apply
a factor analysis technique called Varimax rotation [22] to
the feature space transformed by the principal component
analysis (PCA). This technique quantifies the contribution
of each feature to the overall variance in each of the PCA

3. In Section 6.6.4, we give a further breakdown of the impact of
individual feature to the model performance on a per benchmark basis.

6

dimensions. Intuitively, the more variances a feature brings
to the space, the more useful information the feature carries.

As an example, Figure 6 shows the top features cho-
sen for XeonPhi and NVIDIA GPU architectures. For
the XeonPhi platform, features that capture the paral-
lelism degree (e.g. max blocks), host-device communica-
tion (e.g. redundant transfer size), and computation
(e.g. #instructions) are found to be important. Other
features such as L1 DCR and loop nest are useful, but
are less important compared to others. On the NVIDIA GPU
platform, we note that the parallelism degree is important,
and the other features are equally useful (Figure 6b). This
figure shows that prediction can accurately draw upon a
subset of aggregated feature values.

3.3 Runtime Deployment

Once we have built and trained our performance model as
described above, we can use it as a cost function to search for
the best stream configuration for any new, unseen program.
Feature values are extracted from the single-stream version
of the code. Static code features (such as loop count)
are extracted from the program source at compile time.
Dynamic features (such as branch miss) are extracted by
profiling the program without partitioning for a few loop it-
erations (which typically translate to several microseconds).
After feature collection, we feed the feature values to the
search engine to rank all candidate configurations using the
performance model. The top-ranked stream configuration
is then used for the target program. In Section 4.4, we
provide further details on how the performance model can
be integrated with the host code generation process.

3.3.1 Adapt to Changing Program Phases

Our current implementation chooses a configuration for
each kernel and does not change the configuration through-
out the kernel execution. Therefore, it can adapt to different
behaviors across kernels because predictions are performed
on a per-kernel basis. We found that this strategy is sufficient
for many data-parallel kernels targeted in this work.

Our approach can be extended to adapt phase or pro-
gram behavior changes within a kernel. One way of doing
this is to first partition the input data into groups and
then perform configuration selection before launching the
kernel that performs on an input data group. To reduce
the prediction and configuration overhead, we can sam-
ple periodically to see if the performance counter read-
ings are significantly different from the ones used for the
current prediction to trigger re-configuration. Dynamic re-
configuration of a running kernel will require extending the
underlying runtime (e.g., HSTREAMS or CUDA) to adjust
thread mapping and having hardware support to stop and
resume the execution contexts. We leave this as future work.

4 OPENMP TO STREAMED CODE GENERATOR

Currently, there are very few publicly available bench-
marks for utilizing the streaming capability of heteroge-
neous many-core architectures, in particular, XeonPhi. To
evaluate our approach on a diverse set of benchmarks,
we have developed a compiler-based code generator, AU-
TOSTREAMER, to automatically translate OpenMP programs

Streamed Code
Generation

Preprocessing
Clang
Paser

HSTREAMS/CUDA/
OpenCL Kernel Code

OpenMP
Code

AST Infomation

HSTREAMS/CUDA/
OpenCL Streamed Host

Code

Figure 7. Work flow for translating OpenMP programs to streamed
programs using our automatic code generator.

onto streamed code depending on the target architecture.
Our code generator is open sourced4. Our implementation
currently supports converting OpenMP code to HSTREAMS,
CUDA and OpenCL programs. While we do not claim nov-
elty on this as several works on source-to-source translation
from OpenMP to CUDA [23], [24], [25], [26] or OpenCL [20],
[27] exist, we believe the tool could serve as a useful utility
for translating OpenMP programs to exploit multi-stream
performance on heterogeneous many-core architectures.

4.1 Code Generator Overview

Figure 7 depicts our source to source code generator for
translating OpenMP code to streamed programs. We use
LLVM’s Clang front-end to convert OpenMP code into the
abstract syntax tree (AST). We then traverse the AST to ob-
tain the information to generate candidate streamed kernels
and host-device management code. The generated kernel
and host code make use of exiting programming models for
kernel launching and communication management. We use
HSTREAMS for XeonPhi and CUDA or OpenCL for GPUs.

Our current implementation supports the translation of
OpenMP parallel loops, i.e., loops annotated with omp for

or omp for reduction constructs. For each parallel loop,
we outline the loop body and translate it into an individual
kernel function. We then replace the original loop body
with a function call (running on the host CPU) to launch
the generated kernel. We also generate management code
for streaming context initialization, data partitioning, data
movements between the host and the accelerator, etc.

Our code generator relies on the native host/device
compiler to optimize the generated code. We have also
compared our automatically generated code against the
manually translated code used in our prior work [16] and
found that there is little difference in performance for the set
of OpenMP benchmarks used in this work.

4.2 Preprocessing

As an example, Figure 8 illustrates how an OpenMP parallel
loop can be translated into HSTREAMS code for XeonPhi.
Note that a similar code generation process is implemented
for GPUs, using CUDA for NVIDIA GPU architectures and
OpenCL for other GPU platforms.

For each OpenMP parallel loop, we extract information
of loop iterations from the loop head. In this work, partition-
ing is achieved by splitting the loop iteration space. Further-
more, we collect all the variables needed by the HSTREAMS

4. Available at: https://github.com/wisdom-moon/autostreamer.

7

kernel. Because HSTREAMS requires kernel parameters to be
passed as the uint64_t (lines 1-2 of Figure 8b), the kernel
parameters will be cast into this type. The kernel parameters
need to be packed into an array (line 21 in Figure 8c). Then
the HSTREAMS library will unpack kernel parameters from
the array and pass the parameters to kernel function.

During the preprocessing stage, we also extract the static
code feature values of each target parallel loop. The code
feature values will be encoded into the source code during
host code generation. It is to note that our approach can be
easily applied to existing HSTREAMS programs – by first
gathering feature values from an HSTREAMS kernel, and
then storing the extracted information in an auxiliary file
or source code through a compiler front-end pass.

4.3 Kernel Code Generation

Generating a streamed kernel function is straightforward as
much of the OpenMP code can be re-used. Figure 8b gives
an example of the automatically generated kernel for the
OpenMP loop given in Figure 8a for HSTREAMS kernels.

For the example given in Figure 8, an HSTREAMS kernel
starts with a pre-processor macro COINATIVELIBEXPORT

(lines 1-2 in Figure 8b). The number and the type of the
kernel parameters are loop-specific and are automatically
determined by our code generator. Within the generated
kernel, all the function parameters are cast from uint64_t

into an appropriate type before they are used. Note that the
OpenMP parallel for pragmas are kept in the generated
kernel code per HSTREAMS requirement (line 8 in Figure 8b).

With our code generator, the original outer-most loop
iteration space will be partitioned among parallel streams.
The amount of work given to a specific stream is determined
by the _start and _end variables, which define which part
of the loop iteration space a stream instance will work on.
A similar kernel code generation approach is implemented
for GPUs using CUDA or OpenCL.

4.4 Host Code Generation

To generate host code, we replace the original OpenMP
parallel loop with a function call to invoke the generated
kernel (e.g., hStreams_EnqueueCompute in Figure 8c))
together with additional code to initialize the host context
and to manage data transfer.

4.4.1 Feature Value Collection

Static code features, extracted by our code generator, will be
encoded as a feature vector of real values. The feature vector
will be passed to our configuration search engine to find the
optimal stream configuration at runtime. Dynamic feature
values are automatically collected by running the generated
streamed kernel for 5 iterations under the single-stream
configuration. As some loop bounds are dependent on the
input, we might be unable to determine certain feature
values at compile time. These features are represented as
static symbolic pre-computation of loop bound variables,
which will be updated using runtime values at runtime.

4.4.2 Setting Stream Configurations

To partition tasks among streams, we break the loop iter-
ations into a number of chunks of an equal size of sub-
task. We then group the hardware processor cores into

1 // An OpenMP C code f o r vec tor addi t ion
f l o a t ∗ hostOutput = (f l o a t ∗) malloc (inputLength∗ s i ze o f

→֒ (f l o a t)) ;
3 . . .

#pragma omp p a r a l l e l for
5 for (i n t i =0 ; i<inputLength ; i ++)

{
7 hostOutput [i] = hostInput1 [i] + hostInput2 [i] ;

}
9 . . .

(a) OpenMP code.

1 COINATIVELIBEXPORT void kernel (uint64 t arg0 ,
uint64 t arg1 , . . . uint64 t arg5)

3 {
i n t s t a r t = (i n t) arg0 ;

5 . . .
f l o a t ∗hostInput2 = (f l o a t ∗) arg5 ;

7
#pragma omp p a r a l l e l for

9 for (i n t i = s t a r t ; i< end ; i ++)
hostOutput [i] = hostInput1 [i] + hostInput2 [i] ;

11 }

(b) HSTREAMS kernel code.

1 //output b u f f e r
f l o a t ∗ hostOutput = (f l o a t ∗) malloc (inputLength∗ s i ze o f

→֒ (f l o a t)) ;
3

//Feature update and p r e d i c t i o n
5 Stream conf ig ;

7 conf search (& config , &k e rn e l 1 fe a t u re s ,
→֒ k e r n e l 1 p r o f i l e r u n s) ;

i n t p a r t i t i o n s = conf ig . p a r t i t i o n s ;
9 i n t t a s k s = conf ig . t a s k s ;

11 //hStreams I n i t i a l i z a t i o n
hStreams app init (p a r t i t i o n s , 1) ; .

13 . . .
hStreams app create buf ((f l o a t ∗) hostInput1 , . . .) ;

15 . . .

17 //Work p a r t i t i o n
i n t sub blocks = inputLength / t a s k s ;

19 i n t remain index = inputLength % t a s k s ;

21 // I n i t i a l i z e kernel arguments
uint64 t args [6] ; args [2] = (uint64 t) inputLength ;

23 . . .
for (i n t idx = 0 ; idx < t a s k s ; idx ++) {

25 args [0] = (uint64 t) s t a r t ;
end = s t a r t + sub blocks ;

27
i f (idx < remain index)

29 end ++;

31 args [1] = (uint64 t) end ;
hStreams app xfer memory(& hostInput1 [s t a r t] , &

→֒ hostInput1 [s t a r t] , (end− s t a r t)∗ s i ze o f (
→֒ f l o a t) , idx % p a r t i t i o n s , HSTR SRC TO SINK ,
→֒ NULL) ;

33 hStreams app xfer memory(& hostInput2 [s t a r t] , . . .) ;

35 //Kernel launch
hStreams EnqueueCompute (idx % p a r t i t i o n s , ” kernel 1 ” ,

→֒ 3 , 3 , args , . . .) ;
37

//Read back r e s u l t s
39 hStreams app xfer memory(&hostOutput [s t a r t] , . . .) ;

s t a r t = end ;
41 }

. . .
43 //hStreams cleanup code

hStreams app fini () ;

(c) HSTREAMS host code.

Figure 8. A running example of translating (a) an OpenMP parallel loop
to (b) HSTREAMS kernel and (c) host management code.

8

partitions, where each partition contains a fixed set of
streams. Processor partitioning and streams creation are
achieved by calling the hStreams_app_init (line 12 in
Figure 8c) function for XeonPhi (and cudaStreamCreate

and clCreateCommandQueue for CUDA and OpenCL
programs respectively) by passing the stream configuration
given by our search engine. To overlap host device commu-
nications, we further split the input/output data arrays to
multiple data blocks (lines 32-39 in Figure 8c) where each
task operates on one block at a time while another data
block is transferring between the host and the accelerator.
The number of data blocks is determined by the stream con-
figuration chosen at program runtime. The amount of work
per task and the size of transferred data can be determined
with kernel parameters. For example, in for-loop at line 24
of Figure 8c, we calculate them with the starting position
(_start) and the block size (sub_block). Thereafter, we
schedule tasks and transfer the corresponding data blocks
onto streams in a round-robin fashion.

4.4.3 Runtime Prediction

When a streamed (e.g., HSTREAMS or CUDA) kernel is
invoked, the configuration selection engine library will
choose a stream configuration (line 7 in Figure 8c) for the
kernel. It uses the performance model to rank the candidate
stream configurations and returns the optimal configuration
(#partitions and #tasks for the example shown in Figure 8).
The returned values are then used to initialize the streamed
context (lines 8-9 of Figure 8c). The overhead of prediction is
negligible (a few milliseconds) and is included in the results.

4.4.4 Supporting OpenMP Constructs

OpenMP variables may have additional type informa-
tion specified by directives, including default, share,
private, firstprivate, lastprivate, copyin and
threadprivate. Our generator uses these directives to
map data onto the accelerator memory space. Each variable
with the share or default directive will be translated into
a global variable shared by all parallel threads. Variables
declared as private and threadprivate are translated
such that there is a private copy for each streamed kernel;
no memory transfer between the host and the accelerator
is needed. For each variable specified as copyin or first
private, we create a private copy for each streamed kernel
but initialize each copy using explicit memory transfers be-
fore its first use. Similarly, we create a private copy of a last
private variable and the original variable is updated by a
stream that executes the last iteration.

Our implementation also supports a number of synchro-
nization and thread constructs. Structured blocks identified
with master, and single directives are executed by one
thread on the host multi-core. barrier is implemented by
splitting up the parallel loop into smaller tasks to create
synchronization points among multiple streams. critical
is implemented by using a mutex lock to restrict the exe-
cution of the associated structured blocks to a single thread
at a time. The atomic and flush directives are already
supported by HSTREAMS, CUDA or OpenCL.

4.4.5 Host-Accelerator Communication Optimization

For each buffer that is used by both the host and the accel-
erator, we manage two copies: one on the host memory and

Table 3
Our evaluation platforms

CPU-XeonPhi CPU-GPU

CPU 8-core Xeon CPU @ 2.6 GHz Core i7-8700K CPU @ 3.7 GHz
Accelerator Intel Xeon 31SP Phi NVIDIA GeForce GTX 1080 Ti GPU

the other on the accelerator memory. Our runtime records
the status of each variable and checks whether the copy on
a device memory space is valid or not. No memory transfer
is needed as long as the copy in the target memory space
is valid. We currently use a conservative approach: if an
element of an buffer has been updated, the entire buffer
needs to be synchronized before it can be used by threads
running on a different device. We also avoid unnecessary
device to host data transfer by tracking the data dependence
between the kernel and the host program. For example,
when there are data-dependencies between two kernels but
the host does not access this data in between the two kernels,
we directly pass the memory address of the buffer to the
later kernel (without moving the data back to the host).

5 EXPERIMENTAL SETUP

5.1 Hardware, Systems Software and Benchmarks

Platforms. We evaluate our approach on two heterogeneous
many-core platforms: one is a CPU-XeonPhi platform and
the other is a CPU-GPU platform. Table 3 gives details of
our hardware platforms.

Systems software. On the CPU-XeonPhi platform, the host
CPU and the accelerator are connected through PCIe. The
host runs Redhat Linux v7.0 (with kernel v3.10). The co-
processor runs a customized uOS (v2.6.38.8). We use Intel’s
MPSS (v3.6) to communicate between the host and the
coprocessor. We use the Intel HSTREAMS library (v3.6) and
Intel ICC (v16.0.3) for compilation (with -O3 as the compiler
option). The CPU-GPU platform runs Ubuntu 16.04 (with
kernel v4.15). We use CUDA v10.0 and gcc v5.3 as the host
compiler with option “-O3”.

Benchmarks. We use our code generator to translate 37
OpenMP applications from commonly used benchmark
suites into HSTREAMS and CUDA programs. We have ex-
cluded benchmarks where the data transfer cannot be over-
lapped with the kernel execution, which do not benefit
from streamed parallelization. Table 4 gives the full list
of these benchmarks. Among them, convolutionFFT2d
and convolutionSeparable have algorithm-dependent
parameters, which are regarded as different benchmarks
in the experiments. This setting gives us a total of 39
programs. We run the majority of the programs using over
25 different datasets, except for some applications where we
used around 10 datasets because the algorithmic constraints
prevent us from using a larger number of inputs.

5.2 Competitive Approaches

We compare our regression-based approach against our
preliminary work that employs an SVM-based classifier to
predict the optimal stream configuration [16]. We denote
our prior approach as SVM-classifier. We also compare

9

Table 4
Streamed benchmarks used in our experiments.

Suite Name Acronym Name Acronym

convol.Separable convsepr1(8) dotProduct dotprod
convolutionFFT2d fftx1y1(4y3) fwt fwt
MonteCarlo montecarlo matVecMul mvmult
scalarProd scalarprod transpose transpose

NVIDIA
SDK

vectorAdd vecadd
AMD
SDK

binomial binomial BlackScholes blackscholes
dct dct prefixSum prefix
bfs bfs histo histo
lbm lbm mri-q mri-q
mri-gridding mri-gridding sad sadParboil
sgemm sgemm spmv spmv

POLY
BENCH

2mm 2mm 3mm 3mm
adi adi correlation correlation
covariance covariance deriche deriche
gemm gemm gemver gemver
gesummv gesummv heat-3d heat-3d
jacobi-1d jacobi-1d jacobi-2d jacobi-2d
mvt mvt syr2k syr2k
syrk syrk

our approach against two recent models for predicting the
optimal stream configuration on GPUs. As it is currently
not possible to configure the number of processor partitions
on GPUs, the relevant GPU models can only predict the
number of tasks.

Liu et al. In [12], Liu et al. use linear regression models
to search for the optimal number of tasks for GPU pro-
grams [12]. The approach employs several analytic models,
described as follows.

For a task with an input data size of m, the transferring
time between the CPU and the accelerator, Tt, is determined
as Tt = α·m+β, and the computation time, Tc, is calculated
as: Tc = η · m + γ where the model coefficients, α, β, η
and γ, are determined through empirical experiments. For
a given kernel with N input data elements running using
n streams, this approach partitions the computation into
n tasks, where the data size for each task, m, is equal to
N/n. For the programs which kernel dominated, the total
execution time, Ttotal, can be determined by:

Ttotal = Tt + nTc = α ·m+
Nγ

m
+Nη + β

For the programs which data transfer dominated:

Ttotal = α ·N + 2
N

m
β

By calculating the partial differential and second-order par-
tial differential of Ttotal with respect to m, we can obtain

the optimal task-granularity as m =
√

Nγ
α

. Then we can

calculate the number of tasks (n).

Note that m = N/2 is the optimal parameter for
programs which data transfer dominated, i.e., the optimal
number of tasks is 2. Another problem of this model is
that it does not consider scenarios where communications
in different direction (i.e., host to device and device to host)
can overlap with each other. Note that we set the #partitions
to be the same as n for XeonPhi.

Werkhoven et al. The work presented by Werkhoven et al.
models the performance of data transfers between the CPU
and the GPU [10]. They use the LogGP model to estimate
the host-device data transfer time. Specifically, the model

estimates the data transfer time using five parameters: the
communication latency (L), overhead (o), the gap (g), the
number of processors (P), and the PCIe bandwidth (G).

Let Bhd denotes the amount of data transferred from the
host to the device and Bdh denotes vice versa, and Tkernel

donates the kernel execution time. For the dominant transfer
scenario, the optimal number of tasks(i.e., #tasks), Ns, can be
estimated by solving the following equations:

Bdh ∗Gdh+g∗(Ns−1) =

{

Tkernel

Ns
+ Bdh

Ns
∗Gdh, ifBdh > Bhd

Bhd

Ns
∗Ghd + Tkernel

Ns
, otherwise

This model does not consider the dominant kernel scenario,
as it assumes the kernel execution time will increase as the
number of streams increases and can not model the kernel
execution time. Here, we use the same equation to calculate
the optimal number of tasks. For this model, we also set the
#partitions to be equal to the optimal Ns value on XeonPhi.

5.3 Evaluation Methodology

5.3.1 Model Evaluation

We use cross-validation to evaluate our machine learn-
ing models. To test the portability of our approach, we
apply leave-one-out cross-validation, described as follows.
We exclude the target program for predictions from the
training program set, and learn a model using the re-
maining programs. We then apply the learned model to
the testing program. We repeat this process until each
benchmark is tested once. This is a standard evaluation
methodology, providing an estimate of the generalization
ability of a machine learned model in predicting unseen
data. Note that we exclude both convolutionFFT2d and
convolutionSeparable from the training set when one
of the two is evaluated, and we make sure all approaches
are trained on the same benchmarks for fair comparisons.

5.3.2 Performance Report

We run each program under a stream configuration mul-
tiple times and report the geometric mean of the runtime.
Compared to the arithmetic mean, the geometric mean is
often considered as a more suitable metric for reporting
program performance, as it can better minimize the impact
of outliers [28]. To determine how many runs are needed,
we calculated the confidence range using a 95% confidence
interval and make sure that the difference between the
upper and lower confidence bounds is smaller than 5%.

6 EXPERIMENTAL RESULTS

In this section, we first present the overall performance
of our approach on both platforms. We then compare our
approach to that uses fixed stream configurations, two prior
analytical models and our previous work. We futher discuss
the benefit sources of the streaming parallelism and the
working mechanism of our approach. At last, we demon-
strate the tunning process of our model.

6.1 Overall Performance

In this experiment, we exhaustively profiled each appli-
cation with all possible stream configurations and report
the best-found performance as the Oracle performance. The

10

co
nv

se
pr

1

co
nv

se
pr

8

do
tp

ro
d

fft
x1

y1

fft
x4

y3 fw
t

m
on

te
ca

rlo

m
vm

ul
t

sc
al
ar

pr
od

tra
ns

po
se

ve
ca

dd

bi
no

m
ia
l

bl
ac

ks
ch

ol
es dc

t

pr
ef

ix bf
s
hi
st

o
lb
m
m

ri-
q

m
ri-

gr
id
di
ng sa

d

sg
em

m
sp

m
v

st
en

ci
l

2m
m
3m

m ad
i

co
rr
el
at

io
n

co
va

ria
nc

e

de
ric

he

ge
m

m

ge
m

ve
r

ge
su

m
m

v

he
at

-3
d

ja
co

bi
-1

d

ja
co

bi
-2

d
m

vt

sy
r2

k
sy

rk

ge
o.

M
ea

n
0

2

4

6

8
POLYBENCHPARBOILAMD SDK

S
p

e
e

d
u

p
 Our Approach Oracle

NVIDIA SDK

(a) XeonPhi

co
nv

se
pr

1

co
nv

se
pr

8

do
tp

ro
d

fft
x1

y1

fft
x4

y3 fw
t

m
on

te
ca

rlo

m
vm

ul
t

sc
al
ar

pr
od

tra
ns

po
se

ve
ca

dd

bi
no

m
ia
l

bl
ac

ks
ch

ol
es dc

t

pr
ef

ix bf
s
hi
st

o
lb
m
m

ri-
q

m
ri-

gr
id
di
ng sa

d

sg
em

m
sp

m
v

st
en

ci
l

2m
m
3m

m ad
i

co
rr
el
at

io
n

co
va

ria
nc

e

de
ric

he

ge
m

m

ge
m

ve
r

ge
su

m
m

v

he
at

-3
d

ja
co

bi
-1

d

ja
co

bi
-2

d
m

vt

sy
r2

k
sy

rk

ge
o.

M
ea

n
0

1

2 POLYBENCHPARBOILAMD SDK

S
p

e
e

d
u

p

 Our Approach Oracle

NVIDIA SDK

(b) NVIDIA GPU

Figure 9. Overall performance of our approach over a single-stream version on XeonPhi (a) and NVIDIA GPU (b). Our approach achieves, on
average, 93.7% and 97.9% of the oracle performance on XeonPhi and NVIDIA GPU, respectively. The min-max bars show the range of performance
achieved across different inputs.

Oracle gives an indication of how close our approach is to
a theoretically perfect solution. The baseline used to calculate
the speedup is running the application using a single-stream
without processor core or task partitioning.

The overall result is shown in Figure 9. The min-max bar
on the diagram shows the range of speedups per application
across all evaluated inputs. Overall, our approach achieves
an average speedup of 1.57× and 1.1× over the single-
stream configuration on XeonPhi and the GPU respectively.
This translates to 93.7% and 97.9% of the Oracle perfor-
mance on XeonPhi and the GPU respectively.

On XeonPhi, the performance improvement of our ap-
proach comes from two factors. First, by predicting the
right processor partition size, our approach allows effec-
tive overlapping of the host-device communication and
computation. Second, by matching task parallelism to the
number of available processor cores, our approach can
reduce the overhead of thread management, compared to
the single-stream execution. When the host-device commu-
nication time dominates the streaming process, the per-
formance improvement mainly comes from computation-
communication overlapping and the speedup from stream-
ing is consistently less than 2×. When the kernel execution
time dominates the stream process, the application can
benefit from the overhead reduction of thread management.
In this case, the speedup can be as large as 5×. We provide
a further discussion on this later in Section 6.5.1.

On the GPU, we can exploit bidirectional data transfer
between the host and the device by using pined mem-
ory which is not supported by HSTREAMS. The support
of bidirectional data transfer allows us to obtain further
performance gains by overlapping host-device data transfer
and computation. The theoretically up-bound speedup on
the GPU platform is 3×, when data transfer is perfectly
overlapped with computation. The representative sample is
fftx4y3 with the larges dataset, the data transfer time in
the two directions is the same, and the kernel execution time

is 1.5 times of the data transfer time. The oracle speedup is
2.3×, and our approach achieves a speedup of 2.2 ×. On
the other hand, because the current GPU implementation
does not support processor core partition, the kernel exe-
cution time benefits less from using multiple streams. Pro-
grams which the kernel execution time dominated have no
speedup using multiple streams, such as bfs, MonteCarlo.

6.2 Comparison to Fixed Stream Configurations

Our approach predicts from a wide range of stream configu-
rations, which configuration is likely to give the best perfor-
mance for a given program and dataset. A natural question
to ask is that: is there a fixed stream configuration that gives
reasonable good performance across benchmarks and datasets? To
answer this question, we compare our predictive modeling
based approach to two specific configurations on each of our
evaluation platforms. Our justification for why we selecting
the fixed configurations are described as follows. On Xeon-
Phi, our initial results in Section 2 indicate that using the
stream configuration of (4, 16), i.e. partitioning the cores to
4 groups and running 4 tasks on each partition (16 tasks in
total), gives good performance. The statistics obtained from
the training data suggest that the configuration of (17, 85)
give the best average performance across training samples.
On the GPU, several programs support a maximum of 4
tasks. Thus we select the two configurations (2, 2) and (4, 4).
The results are shown in Figure 10.

6.2.1 XeonPhi

On XeonPhi, we observe improved performance for sev-
eral benchmarks such as mri-gridding, transpose,
sad, under both configurations, but slower performance
for dotprod, vecadd, blackscholes, lbm, and mir-q

(Figure 10a). For prefix, configuration (17, 85) delivers
improved performance while configuration (4, 16) leads to
slowdown performance. Overall, none of the two fixed con-
figurations give an improved performance on average. On

11

co
nv

se
pr

1

co
nv

se
pr

8

do
tp

ro
d

fft
x1

y1

fft
x4

y3 fw
t

m
on

te
ca

rlo

m
vm

ul
t

sc
al
ar

pr
od

tra
ns

po
se

ve
ca

dd

bi
no

m
ia
l

bl
ac

ks
ch

ol
es dc

t

pr
ef

ix bf
s
hi
st

o
lb
m
m

ri-
q

m
ri-

gr
id
di
ng sa

d

sg
em

m
sp

m
v

st
en

ci
l

2m
m
3m

m ad
i

co
rr
el
at

io
n

co
va

ria
nc

e

de
ric

he

ge
m

m

ge
m

ve
r

ge
su

m
m

v

he
at

-3
d

ja
co

bi
-1

d

ja
co

bi
-2

d
m

vt

sy
r2

k
sy

rk

ge
o.

M
ea

n
0

2

4

6

8
POLYBENCHPARBOILAMD SDK

S
p

e
e

d
u

p
 Config. (17,85) Config. (4,16) Our Approach

NVIDIA SDK

(a) XeonPhi

co
nv

se
pr

1

co
nv

se
pr

8

do
tp

ro
d

fft
x1

y1

fft
x4

y3 fw
t

m
on

te
ca

rlo

m
vm

ul
t

sc
al
ar

pr
od

tra
ns

po
se

ve
ca

dd

bi
no

m
ia
l

bl
ac

ks
ch

ol
es dc

t

pr
ef

ix bf
s
hi
st

o
lb
m
m

ri-
q

m
ri-

gr
id
di
ng sa

d

sg
em

m
sp

m
v

st
en

ci
l

2m
m
3m

m ad
i

co
rr
el
at

io
n

co
va

ria
nc

e

de
ric

he

ge
m

m

ge
m

ve
r

ge
su

m
m

v

he
at

-3
d

ja
co

bi
-1

d

ja
co

bi
-2

d
m

vt

sy
r2

k
sy

rk

ge
o.

M
ea

n
0

1

2

3
POLYBENCHPARBOILAMD SDK

S
p

e
e

d
u

p

 Config. (2,2) Config. (4,4) Our Approach

NVIDIA SDK

(b) NVIDIA GPU

Figure 10. Comparing the performance with two fixed configurations on XeonPhi (a) and NVIDIA GPU (b): config. (4, 16) of 4 partitions and 4 tasks
per partition, config. (17, 85) of 17 partitions and 5 tasks per partition, config. (2, 2) of 2 partitions and 1 tasks per partition, and config. (4, 4) of 4
partitions and 1 tasks per partition.

Config. (17,85) Config. (4,16) Our Approach
0

0.5

1

%
 t
o
 t
h
e
 O

ra
c
le

P
e
rf

o
rm

a
n
c
e

(a) XeonPhi

Config. (2,2) Config. (4,4) Our Approach
0

0.5

1

%
 t

o
 t

h
e

 O
ra

c
le

P
e

rf
o

rm
a

n
c
e

(b) NVIDIA GPU

Figure 11. Violin plot showing the distribution of speedups per scheme
across benchmarks and datasets on XeonPhi (a) and GPU (b). The
shape of the violin corresponds to the speedup distribution to the oracle
performance. The thick black line shows where 50% of the data lies.

average, our approach outperforms the two fixed configura-
tions by a factor of 1.4, and delivers consistently improved
performance across benchmarks and datasets.

The violin plot in Figure 11a shows how far is each of the
three schemes to the Oracle performance across benchmarks
and datasets. Our approach not only delivers the closest
performance to the Oracle, but also has the largest number
of samples whose performance is next to the Oracle. By
contrast, the performance given by the fixed configurations
for many samples is farther from the Oracle performance.

6.2.2 GPU

On the GPU, in most cases, the performance of configu-
ration (2, 2) is moderate, not great, but not much worse
than single-version, leading to an average speedup 1.03×
(Figure 10b). By contrast, although configuration (4, 4) per-
forms poorly on two programs, it delivers a slightly larger
averaged speedup of 1.04×. By choosing the stream con-
figuration on a per-program basis, our approach outper-
forms the two fixed configurations, achieving an averaged
speedup 1.10×. On only four programs, our approach de-
livers slightly worse performance with a small margin.

The violin plot in Figure 11b also confirms the strengths
of our approach by presenting the distribution of per-
formance improvement. The results on the diagram are
normalized to the Oracle (best-available) performance. For
most of the programs, the two fixed configurations de-
liver 80% to 100% to the Oracle performance. However,
configuration (4, 4) can lead to rather poor performance
(less than 40% to the best available performance) on some
programs. Compared to the fixed configurations, the per-
formance distribution given by our approach is centralized
on a range between 90% to 100%, where most programs are
within this percentile range. Furthermore, compared to the
fixed configurations, our approach has a fewer number of
performance outliers, which have less serious performance
slowdown. Therefore, our approach delivers consistently
better performance compared with the fixed configurations.

6.2.3 Summary

This experiment confirms that a fixed configuration fails
to deliver improved performance across applications and
datasets, and selecting a right stream configuration on a per
program, per dataset basis is thus required.

6.3 Comparison to Analytical Models

In this experiment, we compare our approach to the two
recent analytical models described in Section 5.2. The re-
sults are shown in Figures 12 and 13. On XeonPhi, both
competitive models prefer using 2 tasks across benchmarks
and datasets. This is because that many programs are kernel
dominated, the analytical models simply assume that task
partition has no effect on kernel’s performance, and do not
consider the thread management overhead. On the GPU,
the model proposed by Liu et al. tends to use 2 tasks
across benchmarks and datasets. This is due to the fact
that most programs are data transfer dominated and this
model ignores the overlap of the bidirectional data transfers
between the host and the device.

XeonPhi. Figure 12a demonstrates that our approach gives
better performance for nearly all programs on XeonPhi.

12

co
nv

se
pr

1

co
nv

se
pr

8

do
tp

ro
d

fft
x1

y1

fft
x4

y3 fw
t

m
on

te
ca

rlo

m
vm

ul
t

sc
al
ar

pr
od

tra
ns

po
se

ve
ca

dd

bi
no

m
ia
l

bl
ac

ks
ch

ol
es dc

t

pr
ef

ix bf
s
hi
st

o
lb
m
m

ri-
q

m
ri-

gr
id
di
ng sa

d

sg
em

m
sp

m
v

st
en

ci
l

2m
m
3m

m ad
i

co
rr
el
at

io
n

co
va

ria
nc

e

de
ric

he

ge
m

m

ge
m

ve
r

ge
su

m
m

v

he
at

-3
d

ja
co

bi
-1

d

ja
co

bi
-2

d
m

vt

sy
r2

k
sy

rk

ge
o.

M
ea

n
0

2

4

6

8
POLYBENCHPARBOILAMD SDK

S
p

e
e

d
u

p
 Liu et al. Werkhoven et al. Our Approach

NVIDIA SDK

(a) XeonPhi

co
nv

se
pr

1

co
nv

se
pr

8

do
tp

ro
d

fft
x1

y1

fft
x4

y3 fw
t

m
on

te
ca

rlo

m
vm

ul
t

sc
al
ar

pr
od

tra
ns

po
se

ve
ca

dd

bi
no

m
ia
l

bl
ac

ks
ch

ol
es dc

t

pr
ef

ix bf
s
hi
st

o
lb
m
m

ri-
q

m
ri-

gr
id
di
ng sa

d

sg
em

m
sp

m
v

st
en

ci
l

2m
m
3m

m ad
i

co
rr
el
at

io
n

co
va

ria
nc

e

de
ric

he

ge
m

m

ge
m

ve
r

ge
su

m
m

v

he
at

-3
d

ja
co

bi
-1

d

ja
co

bi
-2

d
m

vt

sy
r2

k
sy

rk

ge
o.

M
ea

n
0

1

2 POLYBENCHPARBOILAMD SDK

S
p

e
e

d
u

p

 Liu et al. Werkhoven et al. Our Approach

NVIDIA SDK

(b) NVIDIA GPU

Figure 12. Comparing against Liu et al. and Werkhoven et al. on XeonPhi (a) and NVIDIA GPU (b).

For the remaining handful programs, all three approaches
deliver comparable performance. Compared to the results
Figure 10, we can find the performance of the analyti-
cal models is similar to fixed stream configurations. This
is because the performance of the seven programs, such
as binomial, changes dramatically with different stream
configurations (see also Figure 2). The performance of the
remaining programs is not sensitive to the variation of
stream configurations. From Figure 13a, we can further
see that Liu et al. and Werkhoven et al. deliver a speedup
within a range on 20% to 80%, while the performance of our
approach is centralized on a range between 80% to 100%.
Thus, our approach delivers consistently better performance
compared with the alternative models.

GPU. Figure 12b shows that our approach delivers better
performance for around 75% of the programs on the GPU.
Since Werkhoven et al. and Liu et al. are manually tuned for
the GPUs, they give better performance on some bench-
marks over our approach. However, our approach has the
advantages of being automatically learned from training
data, with little expert involvement. The performance of our
approach can be further improved by using more training
examples to better cover the program space. Figure 13b
shows that Liu et al. and Werkhoven et al. delivers a speedup
within a range of 5% to 80%, and 70% to 100%, respectively.
By contrast, the performance of our approach is centralized
within a range between 90% to 100% for more programs.
Therefore, overall, our approach delivers better average
performance compared with the alternative models.

6.4 Comparison to Classification-based Approach

Our prior work uses a SVM classifier to predict the configu-
rations [16]. Compared with it, the regression-based model
presented in this article has several advantages.

A classification model predicts which of a set of prede-
fined labels the input belongs to. Using this strategy, we
will need to label each unique stream configuration. This
will lead to a total of 175 labels for 311 profiling samples on

Liu et al. Werkhoven et al. Our Approach
0

0.5

1

%
 t
o
 t
h
e
 O

ra
c
le

P
e
rf

o
rm

a
n
c
e

(a) XeonPhi

Liu et al. Werkhoven et al. Our Approach
0

0.5

1

%
 t
o
 t
h
e
 O

ra
c
le

P
e
rf

o
rm

a
n
c
e

(b) NVIDIA GPU

Figure 13. Violin plots showing the distribution of speedups across
benchmarks and datasets on XeonPhi (a) and GPU (b).

the XeonPhi, and 11 labels on the GPU. On the XeonPhi, the
ratio of samples to labels is too small to build an accurate
model. As a result, we have to merge labels in our prior
work [16] at the cost of losing accuracy. Classification is
a constraint optimization problem where the model has
to know all the possible configurations during training.
Our new regression-based approach avoids this pitfall by
directly modeling the impact of the stream configuration;
it thereby can be used on any stream configuration as the
configuration is the model’s input.

Figure 14a presents results obtained on the Xeon-
Phi. Our regression-based approach outperforms the
SVM-classifier in 21 of the 39 programs and achieves
over 5% performance improvement for 13 programs. It is
to note that the overhead for ranking stream configura-
tions is included in the experimental results. Overall, our
regression-based approach improves the SVM-classifier
by, on average, 3% (up to 46%). Unlike XeonPhi, we were
able to obtain sufficient training samples per label (because
the optimization space is smaller) on the GPU to build a
more accurate classification model. As can be seen from
Figure 14b, the average speedup of SVM-classifier and
the regression-based approach is comparable.

13

co
nv

se
pr

1

co
nv

se
pr

8

do
tp

ro
d

fft
x1

y1

fft
x4

y3 fw
t

m
on

te
ca

rlo

m
vm

ul
t

sc
al
ar

pr
od

tra
ns

po
se

ve
ca

dd

bi
no

m
ia
l

bl
ac

ks
ch

ol
es dc

t

pr
ef

ix bf
s
hi
st

o
lb
m
m

ri-
q

m
ri-

gr
id
di
ng sa

d

sg
em

m
sp

m
v

st
en

ci
l

2m
m
3m

m ad
i

co
rr
el
at

io
n

co
va

ria
nc

e

de
ric

he

ge
m

m

ge
m

ve
r

ge
su

m
m

v

he
at

-3
d

ja
co

bi
-1

d

ja
co

bi
-2

d
m

vt

sy
r2

k
sy

rk

ge
o.

M
ea

n
0

2

4

6

8
POLYBENCHPARBOILAMD SDK

S
p

e
e

d
u

p
 SVM-classifier Our Approach

NVIDIA SDK

(a) XeonPhi

co
nv

se
pr

1

co
nv

se
pr

8

do
tp

ro
d

fft
x1

y1

fft
x4

y3 fw
t

m
on

te
ca

rlo

m
vm

ul
t

sc
al
ar

pr
od

tra
ns

po
se

ve
ca

dd

bi
no

m
ia
l

bl
ac

ks
ch

ol
es dc

t

pr
ef

ix bf
s
hi
st

o
lb
m
m

ri-
q

m
ri-

gr
id
di
ng sa

d

sg
em

m
sp

m
v

st
en

ci
l

2m
m
3m

m ad
i

co
rr
el
at

io
n

co
va

ria
nc

e

de
ric

he

ge
m

m

ge
m

ve
r

ge
su

m
m

v

he
at

-3
d

ja
co

bi
-1

d

ja
co

bi
-2

d
m

vt

sy
r2

k
sy

rk

ge
o.

M
ea

n
0

1

2

3
POLYBENCHPARBOILAMD SDK

S
p

e
e

d
u

p

 SVM-classifier Our Approach

NVIDIA SDK

(b) NVIDIA GPU

Figure 14. Comparing against a classification based approach on XeonPhi (a) and NVIDIA GPU (b).

transpose binomial fftx1y1
0

1

2

3

4

5

6

K
e

rn
e

l
C

o
m

p
u

ta
ti
o

n

T
im

e
 R

e
d

u
c
ti
o

n
 (

x
)

 Config. (2,2) Config. (4,4) Config. (8,8)

 Config. (14,14) Config. (28,28) Config. (56,56)

 Config. (112,112)

Figure 15. Reduction of kernel computation time over a single-stream
execution on XeonPhi. The performance improvement comes from the
reduction of the threading overhead. A stream configuration is annotated
as (#partitions, #tasks).

Compared to a classifier, our regression-based approach
has the advantage of being able to be applied to con-
figurations that were not seen during the training phase.
Therefore, our approach has a better generalization ability.

6.5 Further Analysis of Performance Results

We now take a closer look into the performance results,
using XeonPhi as a case study.

6.5.1 High Speedup Cases

On XeonPhi, bidirectional data transfer between the host
and the accelerator cannot be overlapped, i.e., we can only
issue data transfer from the host to the device or vice versa
at once but not simultaneously. As a result, the theoreti-
cal up-bound speedup for overlapping computation and
communication is 2×, when the computation is perfectly
overlapped with the data transfer time. It is interesting
to observe that several benchmarks achieve a speedup of
over 2× on XeonPhi (see Figure 9a). After having a closer
investigation, we notice that such performance is attributed
to the reduction in the kernel execution time in additional
to the overlapping of communication and computation.

To quantify the benefit of kernel time reduction, we mea-
sure the kernel execution time with and without multiple
streams and calculate the speedup between them. Note that
we exclude the host-device communication time in this case to
isolate the contributing factors. The kernel time improve-
ment for transpose, binomial, and fftx1y1 is shown

in Figure 15. As can be seen from the diagram, choosing
a good stream configuration can lead to more than 4x
reduction on the kernel execution time. This is because these
benchmarks are implemented by parallelizing the inner loop
within a nested loop. During runtime, the parallel threads
working on the inner loop will be created, synchronized,
or destroyed for each outer loop iteration. Such threading
overhead could be significant when the outer loop iterates
a large number of times. With multiple streams, we divide
the whole outer loop iteration space into multiple smaller
iterations. This allows multiple groups of threads to be
managed simultaneously, leading to a significant decrease
in threading overhead and faster kernel execution time. On
the other hand, using too many streams and partitions will
lead to a performance decrease. This is because stream man-
agement also comes at a cost, which increases as the number
of partitions grows. Nonetheless, for applications where
the kernel computation dominates the program execution
time, by reducing the kernel time can lead to additional
improvement, yielding more than 2x speedups.

6.5.2 Speedup Distribution

Figure 16 gives the speedup per benchmark across datasets
on XeonPhi and the GPU. The shape of the violin plot
corresponds to the speedup distribution.

On XeonPhi, we see that the speedups of montecarlo
and prefix distribute fairly uniformly while the data dis-
tribution of fftx1y1 and fftx4y3 is multimodal (i.e. it has
two peaks). Further, the input datasets have little impact
on the behavior of fwt and lbm, so the speedups remain
constant across datasets.

On the GPU, the speedups of dotprod, vecadd,
blackscholes and mri-q distribute fairly uniformly
while the data distribution of convsepr1, convsepr8,
fftx1y1, fftx4y3 and dct is unimodal (i.e. it has one
peak). Furthermore, the input datasets have a very slight
impact on the performance behaviors of montecarlo,
scalarprod, transpose and binomial. Thus, their
speedups remain constant across datasets.

14

co
n
vs

e
p
r1

co
n
vs

e
p
r8

d
o
tp

ro
d

ff
tx

1
y1

ff
tx

4
y3 fw

t
m

o
n
te

ca
rl
o

m
vm

u
lt

sc
a
la

rp
ro

d
tr
a
n
sp

o
se

ve
ca

d
d

b
in

o
m

ia
l

b
la

ck
sc

h
o
le

s
d
ct

p
re

fix b
fs

h
is

to
lb

m
m

ir
-q

m
ri
-g

ri
d
d
in

g
sa

d
sg

e
m

m
sp

m
v

st
e
n
ci

l
2
m

m
3
m

m a
d
i

co
rr

e
la

tio
n

co
va

ri
a
n
ce

d
e
ri
ch

e
g
e
m

m
g
e
m

ve
r

g
e
su

m
m

v
h
e
a
t-
3
d

ja
co

b
i-
1
d

ja
co

b
i-
2
d

m
vt

sy
r2

k
sy

rk

0

5

10
S

p
e

e
d

u
p

 o
v
e

r

s
in

g
le

 s
tr

e
a

m

(a) XeonPhi

co
n
vs

e
p
r1

co
n
vs

e
p
r8

d
o
tp

ro
d

ff
tx

1
y1

ff
tx

4
y3 fw

t
m

o
n
te

ca
rl
o

m
vm

u
lt

sc
a
la

rp
ro

d
tr
a
n
sp

o
se

ve
ca

d
d

b
in

o
m

ia
l

b
la

ck
sc

h
o
le

s
d
ct

p
re

fix b
fs

h
is

to
lb

m
m

ri
-q

m
ri
-g

ri
d
d
in

g
sa

d
sg

e
m

m
sp

m
v

st
e
n
ci

l
2
m

m
3
m

m a
d
i

co
rr

e
la

tio
n

co
va

ri
a
n
ce

d
e
ri
ch

e
g
e
m

m
g
e
m

ve
r

g
e
su

m
m

v
h
e
a
t-
3
d

ja
co

b
i-
1
d

ja
co

b
i-
2
d

m
vt

sy
r2

k
sy

rk

0.5

1

1.5

2

2.5

S
p
e
e
d
u
p
 o

v
e
r

s
in

g
le

 s
tr

e
a
m

(b) NVIDIA GPU

Figure 16. Violin plot showing the distribution of speedups per benchmark across datasets on XeonPhi (a) and NVIDIA GPU (b). The shape of the
violin corresponds to the speedup distribution. The thick black line shows where 50% of the data lies.

0 50 100 150 200 250 300

-2

0

2

4

6

C
o
m

p
u
.-

c
o
m

m
u
n
.
ra

ti
o
 (

lo
g
 s

c
a
le

)

Samples

 Computation-communication Ratio Speedup

Figure 17. The relation between computation-communication ratio and
the speedup. The computation-communication ratio is normalized using
the natural logarithm function. Thus, the kernel computation time equals
the host-device communication time when ratio = 0. In general, a
higher computation-communication ratio leads to a better speedup.

To conclude, the streaming speedups of some appli-
cations are sensitive to their input datasets whereas the
others are not. And the distribution of speedups on the
GPU is more concentrated than XeonPhi. This is because
the current GPU implementation does not support processor
core partition, the kernel execution time benefits less from
multiple streams than XeonPhi.

6.5.3 Correlation Analysis

Figure 17 shows the relation between the computation-
communication ratio and the achieved speedup when using
heterogeneous streams across all benchmarks and datasets
on XeonPhi. We see that the computation-communication
ratio varies over the benchmarks and the speedup changes
accordingly, but in general, a higher computation-to-
communication ratio leads to a greater speedup. As ex-
plained in Section 6.5.1, in addition to overlapping compu-
tation and communication, our approach can also reduce the
kernel computation time by choosing the right stream con-
figuration. Therefore, benchmarks with a high computation-
communication ratio also benefit from a reduction in the
kernel computation time.

T Tm Tk Tc To
0.0

0.2

0.4

0.6

0.8

T
im

e
 (

s
)

fftx1y1

 Single stream

 Config. (27,216)

T Tm Tk Tc To
0.0

0.2

0.4

0.6

T
im

e
 (

s
)

fwt

 Single stream

 Config. (16,192)

T Tm Tk Tc To
0

2

4

6

8

10

T
im

e
 (

m
s
)

gesummv

 Single stream

 Config. (32,16)

Figure 18. Breakdown of program execution time (T), host-device data
transfer time (Tm), kernel execution time (Tk), HSTREAMS context initial-
ization overhead (Tc) and communication-computation overlapping time
(To) for single and best-performing multi-stream configurations.

To quantify the relation between the computation-
communication ratio and the speedup, we calculate the
Pearson correlation coefficient of the two variables. The
calculation gives a correlation coefficient of 0.7, indicating
that the two variables (the computation-communication ra-
tio and the speedup) have a strong linear correlation. By
carefully selecting the stream configuration, our approach
tries to maximize the overlap between communication and
computation, which thus leads to favourable performance.

6.5.4 Impact of Streaming Parallelism

Our earlier experiments show that by carefully exploiting
streaming parallelism, we can significantly improve applica-
tion performance. We now take a closer look at three repre-
sentative benchmarks, fftx1y1, fwt and gesummv, to get a
better understanding of streaming performance on XeonPhi.
These benchmarks represent different degrees of benefits
obtained from streamed parallelism (with a speedup of 2×,
1.5× and 1×, respectively).

We use the following analytical model to breakdown the
execution time of a multi-stream program:

T = Tm + Tk + Tc − To (1)

where Tm is host-device data transfer time, Tk is kernel

15

execution time, Tc is the overhead for initializing the con-
text, and To is overlapping time between data transfer and
kernel execution. We measure T , Tm, Tk, and Tc, and use
the measurements to calculate To.

Figure 18 gives the breakdown for the five compo-
nents in Equation 1. For each testing program, we compare
the single-stream configuration against the best-performing
multi-stream configuration. The host-device data transfer
time, Tm, is nearly constant among a single and a multi-
ple stream configuration, but multi-streaming can reduce
the kernel execution time, Tk, by exploiting the spatial
sharing of processing resources among computation tasks.
The overhead of initializing the HSTREAMS context, Tc,
depends on the kernel execution time. For fftx1y1 and
fwt, whose kernels run for a sufficiently long time, this one-
off runtime overhead is negligible. However, for gesummv,
this overhead cannot be ignored due to the relatively short
kernel running time. The contribution for overlapping host-
device communications with kernel execution, To, varies
across programs. For fftx1y1 and fwt, it accounts for
around 50% of Tm, suggesting that by exploiting temporal
sharing to overlap communication with kernel execution
can amortize the host-device communication overhead. For
gesummv, To is small due to little alignment between data
transfer and kernel execution. As such, there is little benefit
for exploiting temporal sharing for this program.

This experiment gives a more detailed analysis for the
benefits of exploiting multiple streams. The results reinforce
our claim that the benefit for streaming parallelism depends
on the computation kernel and hence an adaptive scheme
for choosing the optimal stream configuration is needed.
Our work aims to offer such a capability.

6.6 Analysis of Predictive Modeling Techniques

In this section, we analyse the working mechanism of our
predictive model, using XeonPhi as an evaluation platform.

6.6.1 Comparison to Alternative Modeling Techniques

We compare our MLP-based model against four widely
used regression methods: the DCT (Decision Tree), the RF

(Random Forest), the XGB (eXtreme Gradient Boosting) and
SVM (Support Vector Machine) as well as four classification
models: SVM, DCT, MLP and KNN (K-Nearest Neighbors). We
use the Radial basis function kernel for the SVM models.

For each technique, we follow the same training method-
ology and use the same features and training examples
to build a model. For classification models, we apply the
label merging process described in our prior work [16]
to improve the prediction accuracy. Table 5 compares the
training overhead, average prediction time and achieved
average speedup for each model. We note that training
a regression-based SVM model has the largest overhead.
Although training a DCT has less overhead over our MLP-
based regression model, MLP gives better prediction per-
formance. The RF and XGB models are based on DCT, but
they do not yield a better performance. Compared to regres-
sion models, a classification model takes less time to train
and make predictions. However, classification models give
worse performance over regression models as they require
more training data to cover the optimization space. Overall,

Table 5
Comparison to alternative modeling techniques

Technique Training time Avg. pred. time Avg. speedup

SVM (regression) 100 hours 2280 ms 1.56
DCT (regression) 65.57 seconds 0.74 ms 1.51
RF (regression) 317.89 seconds 11.94 ms 1.51
XGB (regression) 28.46 seconds 0.74 ms 1.49
MLP (regression, ours) 245.8 seconds 0.76 ms 1.57
SVM (classifier) 1.28 seconds 0.10 ms 1.53
DCT (classifier) 0.79 seconds 0.05 ms 1.38
MLP(classifier) 46.45 seconds 0.05 ms 1.41
KNN (classifier) 0.22 seconds 0.23 ms 1.43

we choose to use a regression-based approach and employ
MLP because it gives the best overall prediction performance
and has modest training overhead.

6.6.2 Feature Engineering

Feature engineering has a significant impact on the per-
formance of a machine learning model (Section 3.2). Here
we quantify the impact of feature engineering methods. In
this work, we consider three standard feature engineering
approaches including standardization, normalization and
dimension reduction.

Standardization converts all features value to be in a com-
mon range, e.g., between 0 and 1. The idea is to prevent
the feature value range to dominate the importance of that
feature. In this work we apply a commonly used standard-
ization method called Z-score [29] to standardize the raw
feature values and the speedups (i.e., prediction targets) in
the training data. We found that feature standardization
improves the achieved speedup by 3% on average, and
speedup standardization improves the achieved speedup by
5% on average.

Normalization scales the feature values to make them fol-
low the normal distribution. We have tested a range of nor-
malization methods including the square root, the reciprocal
of square root and the natural logarithm transformation.
However, we found that normalization does not improve
our model prediction accuracy.

Dimension reduction reduces the number of features,
which is often useful when the number of training examples
is not proportional to the number of feature dimensions. In
this work, we apply factor analysis (FA) [30] and principal
component analysis (PCA) [31] to the raw features. Applying
PCA and using 9 PCA components gives the best overall
result, by improving the average speedup by 17%. PCA
outperforms FA which gives an average 3% improvement
on the achieved speedup.

6.6.3 MLP Parameters Tuning

We now discuss the impact of the MLP parameter choices.
There are four configurable parameters for an MLP model:
the activation function, the number of hidden layers, the
number of neurons, and the learning algorithm (i.e., the
solver). For activation functions, we consider identity,
logistic, tanh and relu. For hidden layers and neurons,
we vary the number of hidden layers from 1 to 5 and the
number of neurons per layer from 3 to 100. For the solver, we
consider three commonly used weight optimizers: lbfgs,

16

sgd and and adam. We use scikit-learn implementations
for the activation function and the solver. Our experimental
results suggest that the best-performing activation function
and solver are tanh and adam respectively, and using three
hidden layers with 9 neurons per layers gives the best
overall results on our training data. Overall, tuning MLP

model parameter improves the average speedup by 5% over
the default parameter setting.

6.6.4 Impact of Individual Feature

In this experiment, we consider the impact of a specific
feature to the resultant performance. Figure 19 presents
a Hinton diagram illustrating how important a feature
contribution to the performance model prediction accuracy
(which in turns affects the resulting application perfor-
mance). The larger the box, the more significant a feature for
a given program’s performance. Here, the x-axis denotes the
programs, and the y-axis denotes the features used by our
performance model. The impact of a feature is quantified
by measuring how much speedup improvement can be
obtained if that feature is used by the performance model.
Note that this is a post-hoc analysis and, in general, we
cannot know in advance the importance of a feature on
unseen programs. Figure 19 shows that all the features are
important for the set of benchmarks targeted in the work,
but the importance of features varies across programs. This
diagram illustrates how hard it is to develop an analytical
model to capture the diverse behaviors and characteristics
of streaming programs.

7 RELATED WORK

Our work builds upon the following past foundation, while
qualitatively differing from each.

Task Scheduling. There is considerable work on distribut-
ing work across heterogeneous processors to improve ap-
plication performance [32], [33], [34]. Prior work in the
area typically assumes that the processor configuration is
fixed and relies on the operating system to schedule parallel
tasks across processing units. Recent studies show that by
partitioning the processing units into groups it is possible to
significantly improve the application performance by over-
lapping the host-device communication and computation
on coprocessors like Intel XeonPhi [6], [14]. However, ex-
isting approaches rely on static tuning to find the processor
partition and the best number of streams to run within a
partition. As a result, previous approaches cannot adapt to
the change of program inputs. As a departure from prior
work, we develop an automatic approach to dynamically
adjust the processor partition and task-granularity during
runtime, considering the characteristics of applications and
input datasets; our approach thereby can adapt to the
change of program inputs.

Domain-specific Optimizations There is considerable work
on domain-specific optimization on Intel XeonPhi. Cheng
et al. [35] and Jha et al. [36] show that in-memory database
applications suffer from under-utilization of processor re-
sources and hence a fine-grained tuning approach is re-
quired. Mrphi is a framework for optimizing MapReduce
workload on the XeonPhi [37]. It employs a set of tech-
niques to improve the resource utilization to obtain higher

application performance. Other works look at performance
optimization for numerical solvers [38], sparse matrix vector
multiplication [39], [40], and dynamic stochastic economic
models [39]. Ferrão et al. [41] and Memeti et al. [42] develop
a stream processing framework for XeonPhi to increase the
programming productivity. The runtime can automatically
distribute workloads across CPUs and accelerating devices.
These approaches improve the processor utilization by ad-
justing the algorithmic design, which are complementary
to our work on tuning multi-streaming parallelism for data
parallel applications.

Multiple Streams Modeling. Gomez-Luna et al. [11] de-
velop a set of models to estimate the asynchronous data
transfer overhead on different GPU architectures. The mod-
els can be used to estimate the optimal number of streams
to use on a given GPU platform. Werkhoven et al. [10]
present an analytical model to determine when to apply an
overlapping method on GPUs. Liu et al. [12] also develop
an analytical based approach to determine the optimal
number of streams to use on GPUs. However, none of these
approaches considers the processor partition. As we have
shown in Section 6.3, ignoring the processor partitioning
parameter can lead to poor performance on Intel XeonPhi.
Furthermore, these hand-crafted models have the drawback
of being not portable across architectures as the model is
tightly coupled to a specific GPU architecture. Our work
advances prior work by employing machine learning to
automatically learn the optimal processor partition and
the number of streams/tasks to use. Since our models are
automatically learned from empirical observations, one can
easily re-learn a model for a new architecture.

Predictive Modeling. Recent studies have shown that ma-
chine learning based predictive modeling is effective in
code optimization [43], [44], performance predicting [45],
[46], parallelism mapping [20], [47], [48], [49], [50], and task
scheduling [51], [52], [53], [54], [55]. Its great advantage
is its ability to adapt to the ever-changing platforms as it
has no prior assumption about their behavior. The work
presented by Wen et al. [56] employs SVMs to develop a
binary classifier to predict that if a given OpenCL kernel can
achieve a large speedup or not. Our work differs from [56]
in that it targets a different architecture and programming
model, and it predicts from a larger number of configura-
tions instead of making a binary prediction. Our prior work
developed an SVM based classifier to predict the optimal
stream configuration for Intel XeonPhi [16]. However, it
requires having sufficient training data samples to cover
all possible stream configurations. Our approach improves
the prior work by directly modeling the impact of the
stream configuration. As a result, our approach can make
predictions for any stream configuration (even those are not
seen in the training data).

Autotuning Parallel Programs. Our approach is closely re-
lated to autotuning that searches for the best-performing op-
timization configuration [57], [58]. This technique is demon-
strated to be effective for choosing algorithmic choices [59],
tuning GPU code [60], [61], [62], optimizing structured par-
allel programs [63], [64] and non-uniform memory access
(NUMA) architectures [65], and more recently for deep
neural networks [66]. Many of the prior works in this area

17

co
nv

se
pr

1

co
nv

se
pr

8

do
tpr

od

fftx
1y

1

fftx
4y

3 fw
t

mon
tec

ar
lo

mvm
ult

sc
ala

rp
ro

d

tra
ns

po
se

ve
ca

dd

bin
om

ial

bla
ck

sc
ho

les dc
t

pr
efi

x bfshis
to lbmmir­

q

mri­
gr

idd
ing sa

d

sg
em

m
sp

mv

ste
nc

il
2m

m
3m

m ad
i

co
rre

lat
ion

co
va

ria
nc

e

de
ric

he

ge
mm

ge
mve

r

ge
su

mmv

he
at­

3d

jac
ob

i­1
d

jac
ob

i­2
d
mvt

sy
r2

k
sy

rk
loop nest

loop count
#xfer_mem

data transfer size
redun. trans. size

max blocks
min task unit
#instructions
branch miss

L1 DCR

Figure 19. A Hinton diagram showing the impact of each feature used by the performance model to the resultant application performance. The
larger the box, the more likely a feature has a greater impact on the performance of the respective benchmark.

employ an evolutionary-based approach by applying and
profiling candidate optimization options to choose a good
option to use. One of the key changes of autotuning is how
to avoid the profiling overhead which could be prohibitively
expensive. We do so by using a performance model to
quickly evaluate the profitability of a candidate optimiza-
tion option. We show that our approach has low runtime
overhead, which thus permits us to apply it at runtime to
best match the optimization strategy to the program input.
Furthermore, our work is the first for tuning heterogeneous
streaming parallelism on heterogeneous many-cores (Xeon-
Phis and GPUs).

Automatic Generation of Parallel Programs. The Open-
MPC compiler [67] translates OpenMP to CUDA programs.
Wang et al. [20], [24], [68] translates OpenMP to OpenCL
programs and use machine learning to select the most
suitable device from the host CPU and the GPU to run
the code. Rawat et al. presents an automatic approach to
generate GPU code from a domain-specific language (DSL)
for stencil programs [69]. All of the above approaches target
GPUs, and do not utilize the multi-streaming strategy.

8 CONCLUSION

This article has presented an automatic approach to exploit
streaming parallelism on heterogeneous many-cores. Cen-
tral to our approach is a machine learning-based model
that predicts the resulting performance when running the
target application under a given streamed configuration.
The performance predictor is then used as a cost function to
quickly rank candidate configurations at runtime, to deter-
mine which stream configuration should be used on a per-
program per-dataset basis. We have evaluated our approach
on an Intel XeonPhi and an NVIDIA GTX 1080 Ti GPU, with
39 representative benchmarks. Experimental results show
that our approach delivers an average speedup of 1.6x and
1.1x on XeonPhi and the GPU, respectively. These results
translate to over 93% of the best-available performance.

ACKNOWLEDGMENT

This work was partially funded by the National Key Re-
search and Development Program of China under Grant No.
2018YFB0204301, the National Natural Science Foundation
of China under Grant agreements 61972408, 61602501 and
61872294; For any correspondence, please contact Jianbin
Fang (Email: j.fang@nudt.edu.cn).

REFERENCES

[1] J. D. Owens et al., “Gpu computing,” Proceedings of the IEEE, 2008.
[2] A. Li et al., “Exploring and analyzing the real impact of modern

on-package memory on HPC scientific kernels,” in SC, 2017.
[3] C. Chen et al., “LU factorization on heterogeneous systems: an

energy-efficient approach towards high performance,” Computing,
2017.

[4] M. R. Meswani et al., “Modeling and predicting performance of
high performance computing applications on hardware accelera-
tors,” IJHPCA, 2013.

[5] J. Fang et al., “A comprehensive performance comparison of
CUDA and opencl,” in ICPP, 2011.

[6] C. J. Newburn, et al., “Heterogeneous streaming,” in IPDPSW,
2016.

[7] CUDA C Best Practices Guide Version 7.0, NVIDIA Inc., 2015.
[8] The Khronos OpenCL Working Group, “OpenCL - The open

standard for parallel programming of heterogeneous systems,”
http://www.khronos.org/opencl/, 2016.

[9] hStreams Architecture for MPSS 3.5, Intel Inc., 2015.
[10] B. Van Werkhoven et al., “Performance models for cpu-gpu data

transfers,” in CCGrid, 2014.
[11] J. GóMez-Luna et al., “Performance models for asynchronous data

transfers on consumer graphics processing units,” JPDC, 2012.
[12] B. Liu et al., “Software pipelining for graphic processing unit

acceleration: Partition, scheduling and granularity,” IJHPCA, 2016.
[13] Z. Li et al., “Streaming applications on heterogeneous platforms,”

in NPC, 2016.
[14] J. Fang et al., “Evaluating multiple streams on heterogeneous

platforms,” Parallel Processing Letters, 2016.
[15] Z. Li et al., “Evaluating the performance impact of multiple

streams on the mic-based heterogeneous platform,” in IPDPSW,
2016.

[16] P. Zhang et al., “Auto-tuning streamed applications on intel xeon
phi,” in IPDPS, 2018.

[17] C. Lattner and V. Adve, “LLVM: A compilation framework for
lifelong program analysis & transformation,” in CGO, 2004.

[18] F. Pedregosa et al., “Scikit-learn: Machine learning in python,”
Journal of machine learning research, 2011.

[19] G. Fursin et al., “Milepost gcc: machine learning based research
compiler,” in GCC summit, 2008.

[20] Z. Wang et al., “Automatic and portable mapping of data parallel
programs to opencl for gpu-based heterogeneous systems,” ACM
TACO, 2015.

[21] S. Boslaugh, Statistics in a Nutshell, 2nd Edition, 2nd ed. O’Reilly
Media, 2012.

[22] B. F. Manly, Multivariate statistical methods: a primer. CRC Press,
2004.

[23] S. Lee et al., “Openmp to gpgpu: a compiler framework for auto-
matic translation and optimization,” ACM Sigplan Notices, 2009.

[24] D. Grewe et al., “Portable mapping of data parallel programs to
opencl for heterogeneous systems,” in CGO, 2013.

[25] D. Mikushin et al., “Kernelgen–the design and implementation of
a next generation compiler platform for accelerating numerical
models on gpus,” in IPDSW, 2014.

[26] T. Grosser and T. Hoefler, “Polly-acc transparent compilation to
heterogeneous hardware,” in Supercomputing, 2016.

18

[27] R. Sotomayor et al., “Automatic cpu/gpu generation of multi-
versioned opencl kernels for c++ scientific applications,” Interna-
tional Journal of Parallel Programming, 2017.

[28] W. Ertel, “On the definition of speedup,” in International Conference
on Parallel Architectures and Languages Europe, 1994.

[29] E. Kreyszig, Advanced Engineering Mathematics, 10th Eddition, 2009.
[30] R. L. Gorsuch, Factor Analysis, 2nd Edition. Routledge, 2014.
[31] H. Hotelling, “Analysis of a complex of statistical variables into

principal components.” Journal of educational psychology, 1933.
[32] S. Mittal and J. S. Vetter, “A survey of CPU-GPU heterogeneous

computing techniques,” ACM Computing Surveys (CSUR), vol. 47,
no. 4, p. 69, 2015.

[33] C.-K. Luk et al., “Qilin: exploiting parallelism on heterogeneous
multiprocessors with adaptive mapping,” in MICRO, 2009.

[34] J. Shen et al., “Workload partitioning for accelerating applications
on heterogeneous platforms,” IEEE TPDS, 2016.

[35] X. Cheng et al., “Many-core needs fine-grained scheduling: A case
study of query processing on intel xeon phi processors,” JPDC,
2018.

[36] S. Jha et al., “Improving main memory hash joins on intel xeon phi
processors: An experimental approach,” PVLDB, 2015.

[37] M. Lu et al., “Mrphi: An optimized mapreduce framework on intel
xeon phi coprocessors,” IEEE TPDS, 2015.

[38] A. Lastovetsky et al., “Model-based optimization of eulag kernel
on intel xeon phi through load imbalancing,” IEEE TPDS, 2017.

[39] W. T. Tang et al., “Optimizing and auto-tuning scale-free sparse
matrix-vector multiplication on intel xeon phi,” in CGO, 2015.

[40] M. E. Guney et al., “Optimizing matrix multiplication on intel R©
xeon phi th x200 architecture,” in ARITH, 2017.

[41] P. Ferrão et al., “Stream processing on hybrid cpu/intel R© xeon phi
systems,” in European Conference on Parallel Processing, 2018.

[42] S. Memeti and S. Pllana, “Hstream: A directive-based language
extension for heterogeneous stream computing,” in CSE, 2018.

[43] C. Cummins et al., “End-to-end deep learning of optimization
heuristics,” in PACT, 2017.

[44] Z. Wang and M. O’Boyle, “Machine learning in compiler optimi-
sation,” Proc. IEEE, 2018.

[45] J. Zhao et al., “Predicting cross-core performance interference on
multicore processors with regression analysis,” IEEE TPDS, 2016.

[46] Z. Wang and M. F. O’boyle, “Using machine learning to partition
streaming programs,” ACM TACO, 2013.

[47] G. Tournavitis et al., “Towards a holistic approach to auto-
parallelization: integrating profile-driven parallelism detection
and machine-learning based mapping,” ACM Sigplan Notices, 2009.

[48] Z. Wang and M. F. O’Boyle, “Partitioning streaming parallelism for
multi-cores: a machine learning based approach,” in PACT, 2010.

[61] P. Tillet and D. Cox, “Input-aware auto-tuning of compute-bound
hpc kernels,” in SC, 2017.

[49] Z. Wang et al., “Integrating profile-driven parallelism detection
and machine-learning-based mapping,” ACM TACO, 2014.

[50] B. Taylor et al., “Adaptive optimization for opencl programs on
embedded heterogeneous systems,” in LCTES, 2017.

[51] M. K. Emani et al., “Smart, adaptive mapping of parallelism in the
presence of external workload,” in CGO, 2013.

[52] V. S. Marco et al., “Improving spark application throughput via
memory aware task co-location: A mixture of experts approach,”
in Middleware, 2017.

[53] J. Ren et al., “Optimise web browsing on heterogeneous mobile
platforms: a machine learning based approach,” in INFOCOM,
2017.

[54] ——, “Proteus: Network-aware web browsing on heterogeneous
mobile systems,” in CoNEXT ’18, 2018.

[55] L. Yuan et al., “Using machine learning to optimize web interac-
tions on heterogeneous mobile systems,” IEEE Access, 2019.

[56] Y. Wen et al., “Smart multi-task scheduling for opencl programs
on cpu/gpu heterogeneous platforms,” in HiPC, 2014.

[57] K. Datta et al., “Stencil computation optimization and auto-tuning
on state-of-the-art multicore architectures,” in Supercomputing,
2008.

[58] J. Ansel et al., “Opentuner: An extensible framework for program
autotuning,” in PACT, 2014.

[59] J. Ragan-Kelley et al., “Halide: A language and compiler for
optimizing parallelism, locality, and recomputation in image pro-
cessing pipelines,” in PLDI, 2013.

[60] A. Nukada and S. Matsuoka, “Auto-tuning 3-d fft library for cuda
gpus,” in SC, 2009.

[62] T. T. Dao and J. Lee, “An auto-tuner for opencl work-group size
on gpus,” IEEE TPDS, 2018.

[63] U. Dastgeer et al., “Auto-tuning skepu: a multi-backend skeleton
programming framework for multi-gpu systems,” in IWMSE,
2011.

[64] J. J. Thiagarajan et al., “Bootstrapping parameter space exploration
for fast tuning,” in Supercomputing, 2018.

[65] T. Katagiri et al., “Auto-tuning on numa and many-core environ-
ments with an fdm code,” in IPDPSW, 2017.

[66] L. Liao et al., “Uhcl-darknet: An opencl-based deep neural net-
work framework for heterogeneous multi-/many-core clusters,”
in ICPP, 2018.

[67] S. Lee and R. Eigenmann, “Openmpc: Extended openmp program-
ming and tuning for gpus,” in SC, 2010.

[68] Z. Wang et al., “Exploitation of gpus for the parallelisation of
probably parallel legacy code,” in CC ’14, 2014.

[69] P. S. Rawat et al., “Domain-specific optimization and generation of
high-performance gpu code for stencil computations,” Proceedings
of the IEEE, 2018.

