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Abstract

Nitrogen dioxide (NO2) pollution is an important contributor to poor air qual-

ity (AQ) and a significant cause of premature deaths in the UK. Although

transboundary (i.e., international) transport of pollution to the UK is believed

to have an impact on UK pollutant concentrations, large uncertainties remain

in these estimates. Therefore, the extent to which emission reductions in

neighbouring countries would benefit UK AQ relative to local emission reduc-

tions also remains unknown. We have used a back-trajectory model in con-

junction with synoptic scale classifications of UK circulation patterns (Lamb

Weather Types [LWT]), to quantify the accumulation of nitrogen oxide

(NOx = NO2 + NO) emissions in air masses en-route to the UK. This novel

method presents a computationally inexpensive and useful method of quanti-

fying the accumulation of pollutants under different circulation patterns. We

find the highest accumulated NOx totals occur under south-easterly and south-

erly flows (>15 μg�m−2), with a substantial contribution from outwith the UK

(>25%). In contrast, the total accumulated NOx under northerly and westerly

flows is lower (�10 μg�m−2), and dominated by UK emissions (>95%). This

indicates that European emissions can contribute substantially to UK local-

scale pollution in urban areas under south-easterly and southerly flows. The

sensitivity of integrated NOx emission totals under different air masses is inves-

tigated by modelling future European emission contributions based on emis-

sion reduction targets. Under targets set by the European Union, there would

be a decrease in accumulated NOx emissions in London under most wind

directions except for north-westerly, westerly and northerly flow. The largest

benefits to UK AQ from transboundary contributions occur with emission

reductions in the Benelux region, due to its close proximity and high NOx

emission rates, emphasising the importance of international cooperation in

improving local AQ.
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1 | INTRODUCTION

Poor air quality (AQ) has a significant impact on human
health, inducing heath ailments such as asthma, cancer,
diabetes and heart disease (Royal College of Physicians,
2016). Nitrogen dioxide (NO2) is an air pollutant emitted
through high temperature combustion in motor vehicles
and power production (US EPA, 2017). It is estimated
that NO2 pollution was responsible for 9,600 premature
deaths in the UK alone in 2015 (EEA, 2018).

Under EU directive 2008/50/EC Ambient AQ regula-
tion, the UK must meet pollution concentration targets.
However, many UK cities currently exceed the limit for
NO2 (DEFRA, 2018a). In 2017, the 200 μg�m−3 1-hr limit
for NO2 was exceeded within the UK in two zones—The
Greater London Urban Area and South Wales. A further
37 zones failed to meet the annual mean limit value of
40 μg�m−3 for NO2 (DEFRA, 2018b).

Pollutant contributions from both local and trans-
boundary emission sources can lead to poor air quality.
Multiple studies (Tang et al., 2009; Pope et al., 2014;
Grundstrom et al., 2015; Pope et al., 2016) have used clas-
sifications of atmospheric circulations (e.g., the Lamb
Weather Type [LWT]) to analyse long-term pollutant var-
iability and relationships with atmospheric transport.
Grundstrom et al. (2015) and Tang et al. (2009) used LWT
classifications to investigate responses to AQ in southern
Sweden. Grundstrom et al. (2015) concluded during win-
ter NO2 regulation exceedances occurred most frequently
under north and northwest flow regimes, while Tang
et al. (2009) identified that summer southeast and south-
west airflows yielded increased O3 concentrations. Pope
et al. (2014, 2016) found that UK NO2 and summer O3

concentrations were enhanced under anticyclonic condi-
tions and south-easterly flow, attributing the latter to the
transport of pollutants from continental Europe.

Few studies have quantified the contribution of trans-
boundary pollution sources in enhancing local pollutant
concentrations. Schaub et al. (2005) found that during an
elevated pollution episode in February 2001, 50% of NO2

pollution measured at a Swiss site originated from trans-
boundary sources. Kindap (2008) found that under west-
erly airflow in Istanbul, pollutants transported from
European cities substantially contributed to poor AQ
events. Vieno et al. (2014) concluded that transboundary
sources of PM2.5 contributed 63% and 41% of South–West
England and Central Scotland total concentrations,
respectively. Using back-trajectories, Reddington et al.
(2014) concluded that AQ in Singapore was significantly
impacted by fire emissions in Kalimantan and Central
and Southern Sumatra.

Quantifying the contribution of transboundary pollu-
tion using complex models is computationally expensive.

Here, we present a computationally inexpensive method
of quantifying the accumulation of pollutants along 4-day
trajectories arriving at several UK cities between 2010
and 2013. In this case, we address nitrogen oxide
(NOx = NO2 + NO) pollution under different atmo-
spheric circulation patterns over the UK. Using a back-
trajectory model, in conjunction with LWT classifica-
tions, we quantify the contribution of pollution emitted
outside of the UK to the summed emission within back-
trajectories. We also estimate the potential benefits to be
gained from neighbouring countries achieving future
emission targets.

2 | METHODS AND DATA

2.1 | Surface measurements

The Automated Urban and Rural Network (AURN) is
maintained and funded by the Department for Environ-
ment, Food and Rural Affairs (DEFRA). It has been rou-
tinely monitoring AQ across the UK since 1973 at over
100 sites (DEFRA, 2018c). Daily average surface NO2

observations between 2010 and 2017 were obtained from
both Urban Background and Urban Traffic sites in Leeds
(Leeds Centre Background and Headingley Kerbside)
and London (North Kensington Background and
Marylebone Kerbside). These two cities were selected as
example urban regions that were in exceedance of the
EU annual limit for NO2 (40 μg�m−3) in 2017. Urban
background sites are more representative of a surround-
ing urban area, while Urban Traffic sites are subject to
larger concentrations and diurnal variations from traffic
activity (DEFRA, 2018d).

2.2 | Lamb weather types

The LWTs were originally presented by Lamb (1972) to
classify daily circulation patterns across Europe in accor-
dance with wind direction and circulation type. Jones
et al. (2013) used the automated scheme created by
Jenkinson and Collison (1977) with the National Centers
for Environment Prediction (NCEP) reanalysis data
(Kalnay et al., 1996) to generate an objective LWT time-
series based on grid-point mean sea level pressure at mid-
day (12:00 UTC). LWTs are calculated using daily mean
flow strength, flow direction and circulation strength,
with conditions falling into 28 possible categories
(Table 1). For this study, we combine all circulation types
under each wind direction to give flow classification by
only wind direction—N, NE, E, SE, S, SW, W and
NW. For example, Anticyclonic North Easterly (1 ANE),
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Neutral North Easterly (11 NE) and Cyclonic North East-
erly (21 CNE) all fall under the NE classification. The use
of LWT classification allows for long term patterns to be
more robustly identified rather than just focusing on one
pollution event.

2.3 | Emissions

We use NOx emissions from the Emissions Database for
Global Atmospheric Research (EDGAR), obtained from
the European Commission's Science Hub (http://edgar.jrc.
ec.europa.eu), and the National Atmospheric Emissions
Inventory (NAEI) from http://naei.beis.gov.uk. EDGAR is
a global inventory (resolution 0.1� × 0.1�), while the NAEI
inventory covers the UK (0.025� × 0.025� used here, cover-
ing 8�W–2�E and 50�N–60�N). Our study focuses on the
2010–2013 period, but EDGAR represents emissions for
2010–2012, while the NAEI data is for 2015 (previous
years were not publicly available). Here, the EDGAR emis-
sions were mapped onto the higher spatial resolution and
the NAEI emissions were nested within the domain,
replacing the EDGAR equivalent (i.e., EDGAR-NAEI
emissions). As the NAEI emissions were for 2015, they
were scaled for years 2010–2013 based on the respective
annual UK total NOx emissions reported by the NAEI.
The 2012 EDGAR emissions were repeated for 2013.
Figure S1 gives an example of the merged emissions for
2010. Both EDGAR and the NAEI express NOx emissions
(i.e., emissions of both NO and NO2) as NO2.

2.4 | Back-trajectory model

We use the Reading Offline Trajectory Model (ROTRAJ),
a Lagrangian atmospheric transport model, which uses

analysed meteorology from the ERA-Interim product of
the European Centre for Medium-Range Weather Fore-
casts (ECMWF), to generate air mass back-trajectories
(Methven et al., 2003). The velocity fields at the Lagrang-
ian particle positions are obtained from the reanalysis
data and determined analyses (1.0125� horizontal resolu-
tion) and determined by cubic Lagrange interpolation in
the vertical followed by bilinear interpolation in the hori-
zontal and linear interpolation in time. These were used
in conjunction with the EDGAR-NAEI emissions
datasets, to determine the quantity of NOx accumulated
by air masses reaching the UK and the fraction of which
originated from non-UK sources. The back trajectories
were binned by the wind flow classifications on the day
they were released in order to identify which wind direc-
tions are associated with the highest integrated emission
totals.

Kinematic back-trajectories (4 days with 6-hr out-
put) were calculated, initialised daily at 12 UTC
(to match the timing of the LWT classifications) from
four background AURN sites over the period
2010–2013—Leeds Centre, Edinburgh St. Leonards,
London Bexley (South-East London) and London
North Kensington (North-West London) (see Figure 1).
These trajectories account for large-scale advection by
the resolved model winds, and neglect convective and
turbulent transport.

Each trajectory air mass path was linearly interpo-
lated in 15-min intervals, with NOx emissions at each
15-min location accumulating over time. The boundary
layer height was assumed to be 850 hPa and any trajec-
tory points below this pressure were removed from the
analysis (i.e., not exposed to emissions). Given the rela-
tively short lifetime of NOx (Nunnermacker et al., 2000;
Alvarado et al., 2010; Romer et al., 2016; Schaub et al.,
2007), we imposed representative e-folding lifetimes of
3, 6, 9 and 12 hr to account for loss processes within the
air mass and to test the sensitivity of the final integrated
emissions along the trajectory to the assumed timescale
for loss processes. Here, an e-folding lifetime is defined as
the time required for a quantity to reduce by a factor of
1/e. Following a similar methodology using the ROTRAJ
model in Arnold et al. (2010), we calculate integrated
NOx emission totals according to:

Ei = Ei−1 +ϕi:Δt:αi½ �e−Δt=τ, i=1,N andE0 = 0 ð1Þ

where EN is total accumulated NOx mass (kg), N is the
number of time steps within the trajectory (384), Ei is
accumulated NOx (kg) at any given point i along the tra-
jectory, ϕi is the emissions flux of NOx (kg�m−2�s−1) at
point i, Δt is the 15-min time step, αi is the surface area

TABLE 1 The 28 LWT classifications with their number

coding, grouped into circulation type and wind direction

Anticyclonic Neutral vorticity Cyclonic

0 A 20 C

North-easterly 1 ANE 11 NE 21 CNE

Easterly 2 AE 12 E 22 CE

South-easterly 3 ASE 13 SE 23 CSE

Southerly 4 AS 14 S 24 CS

South-westerly 5 ASW 15 SW 25 CSW

Westerly 6 AW 16 W 26 CW

North-westerly 7 ANW 17 NW 27 CNW

Northerly 8 AN 18 N 28 CN

Note: LWT also include −1 (unclassified) and − 9 (non-existent day) which
were not used in this study. Adapted from Jones et al. (2013).
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of the grid box (m2) at point i and τ is the assumed e-
folding NOx lifetime.

To remove the dependence on emission grid resolu-
tion (since we assume the air mass has the same width as
the emission grid box), the total accumulated NOx mass
(hereafter E) was divided by accumulated surface area
(S) and then scaled by 109. This results in E having units
of μm−2. S is given by:

S=
XN

i=1

αi ð2Þ

To obtain the UK fractional contribution of E, the
same approach was applied only when trajectories
entered the UK domain (8�W–2�E and 50�–60�N) to
obtain EUK (kg). EUK was also divided by S to get units of
μm−2. EUK/E, then represents the fractional contribution
of UK emissions to the integrated NOx emissions total.

Figure 2 demonstrates this methodology where inte-
grated NOx totals (using Equations 1 and 2) over the
4-year period (2010–2013) for London Bexley (back-
ground AURN site), but with no e-folding lifetime
(i.e., no decay). Trajectories coming from the north and

west originate in the Atlantic, where there are fewer and
more dispersed (i.e., shipping) pollution sources, whereas
trajectories from the south and east will originate from
mainland Europe. These trajectories are likely to have
passed over a number of NOx sources in neighbouring
countries including France, Germany and the Benelux
region before reaching the UK, accumulating NOx en
route.

To evaluate this methodological approach, we have
correlated the trajectory-integrated NOx emission totals
with the surface AURN NO2 concentrations, sampled at
12:00 UTC to match the LWT classification and de-
seasonalised as the emissions used represent annual
rates. Comparisons show robust positive correlation at
the 99% confidence level between the two quantities,
despite their representation of two different measures of
pollutant burden. Correlations of 0.45, 0.42, 0.45 and 0.25
are obtained at North Kensington, Bexley, Leeds and
Edinburgh, respectively. This indicates likely non-local
transport-driven variability in measured NO2 at the
London sites and Leeds providing some confidence in
this approach outlined in this study, while the AURN site
in Edinburgh appears to be less affected by non-local
sources, which is to be expected given its geographical

FIGURE 1 Location of background AURN sites used for the back-trajectory analysis. BEX, Bexley; EDI, Edinburgh; LDS, Leeds;

N. KEN, North Kensington

4 of 11 STIRLING ET AL.



position which means reduced susceptibility to emissions
from Southern England and continental Europe.

3 | RESULTS

3.1 | Surface AURN concentrations

Between 2010 and 2017, annual mean NO2 concentra-
tions at Marylebone, London (kerbside site) (Figure 3c)
remained above the EU annual mean target of 40 μg�m−3,
with no significant change over time (concentrations
remained between 85–100 μg�m−3). At North Kensington,
London (background site) annual mean concentrations
remained below 40 μg�m−3 over the study period
(Figure 3a). However, the upper range (SD) indicates
NO2 concentrations at this site frequently exceeded this
limit.

When NO2 concentrations are sub-sampled under the
flow classifications, a clear relationship between NO2 and
wind direction exists. At the North Kensington site, con-
centrations exceed 40 μg�m−3 under E and SE flows. At
Marylebone, concentrations are largest under S, SW and
W flows and in excess of 100 μg�m−3. The lowest mean
concentration of 65 μg�m−3 is observed under NE flow,

which is 25 μg�m−3 above the 40 μg�m−3 target. These
results potentially highlight the contribution of continen-
tal European sources to local concentrations from long-
range transport. A similar pattern exists at background
and kerbside sites in Leeds (see Figure S2), which is
likely typical of many other UK cities.

3.2 | Integrated NOx emission totals

Here, we present our results primarily based on an
e-folding NO2 lifetime of 6 hr. Multiple studies have
shown that European NO2 lifetimes range from a few
hours in summer to over a day in winter (Nunnermacker
et al., 2000; Ryerson et al., 2003; Alvarado et al., 2010;
Romer et al., 2016; Schaub et al., 2007). Therefore, as we
use annual emission inventories, we assume a median
lifetime of 6 hr. However, we present the sensitivity of
our results to different lifetimes (3, 9 and 12 hr) in the
SM (Figures S3-5) to provide context to our results. With-
out the application of an e-folding lifetime to the London
Bexley back trajectories, there is a clear pattern of ele-
vated integrated NOx emission totals in trajectories origi-
nating from continental Europe, while lower totals
originate from the North Atlantic.

FIGURE 2 Four-day back trajectories with 6-hr time steps arriving at the Bexley AURN background site between 2010 and 2013.

Trajectories accumulated NOx over time, with darker trajectories indicating higher levels of accumulated NOx with no e-folding lifetime

(i.e., no decay)
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The largest integrated NOx emissions totals, assuming
a 6-hr-folding lifetime, are found at the two London sites
(North Kensington and Bexley), exceeding 16 μg�m−2

under SE flow and 13 μg�m−2 under S and SW flows
(Figure 4). The cleanest flows are N, NE, E and NW
where integrated emission totals range between 9 and
13 μg�m−2. Under SE flow, the UK contribution to
London integrated emissions totals is approximately 75%,
suggesting a substantial contribution (�25%) from trans-
boundary sources (e.g., continental Europe and shipping
emissions in the English Channel). The largest UK con-
tributions (95–100%) occur under W, NW and N flows, as
most UK sources are situated to the west and north of
London. For longer e-folding lifetimes, the integrated
NOx emissions totals increase to over 25 μg�m−2 and the
UK contribution decreases to 50–60% under SE flow
(Figure S4 and S5). Air masses originating from the N,
NW and W show little change as the trajectories

primarily originate in the North Atlantic, with few NOx

sources. With a 3-hr e-folding lifetime, the integrated
NOx emission totals peak at approximately 12 μg�m−2

under S, SW and SE flow. The totals are lower and the
UK contribution is higher (>90%), due to the shorter
assumed lifetime limiting the contribution of European
emissions. The N, NW and W integrated NOx emission
totals decrease to 6–10 μg�m−2 and represent nearly 100%
UK sources.

At the Leeds site, peak integrated NOx emission totals
range from 8–12 μg�m−2 for the SE, S, SW and W flows
using a 6-hr e-folding lifetime (Figure 4). The NW, N, NE
and E flows are �50% lower (3–5 μg�m−2), typically rep-
resenting cleaner air masses. North of Leeds, there are
fewer NOx sources (i.e., predominantly national parks),
while south of Leeds there are a number of urban regions
including Manchester, Sheffield and Wakefield. The E
and SE flows, while not the most polluted air masses,

(a) (b)

(c) (d)

FIGURE 3 Annual NO2 concentrations (μg�m−3), between 2010 and 2017, for London AURN sites. (a) North Kensington background

and (c) Marylebone Kerbside. The NO2 concentrations sub-sampled under the flow regimes are shown for (b) North Kensington background

and (d) Marylebone Kerbside. Solid red lines show the annual mean concentration and dashed red lines are ±1 SD sampled from daily data

each year. The blue dashed lines represent the EU annual threshold limit for NO2 (40 μg�m3)
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have the lowest UK contribution (�75–80%). This sug-
gests that Leeds experiences relatively moderate pollution
contributions from European, shipping and off-shore
sources. At longer e-folding lifetimes, the integrated NOx

emission totals increase and the UK contribution
decreases to 50–60% whereas at a 3-hr lifetime, UK

contributions increase to nearly 100% (Figures S3–S5).
However, in all cases, the UK contributions are smallest
under the E and SE flows, highlighting the potential
impact of non-UK sources on Leeds pollution levels.

The lowest integrated NOx emission totals of all
locations are at the Edinburgh site (Figure 4), peaking

FIGURE 4 Integrated NOx emission totals (μg�m−2) for multiple UK sites (Edinburgh, Leeds, London Bexley and London North

Kensington) displayed by wind direction (as determined by the LWTs) using ROTRAJ back trajectories between 2010 and 2013. The

integrated emission totals assume an e-folding lifetime of 6 hr. Red dashed circles mark the UK fractional contribution to the emissions total

defining UK sources within the box of 8�W–2�E, 50�–60�N. Outside of this region, emission sources are defined as transboundary

(e.g., continental European emissions)
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at �4–5 μg�m−2 under NW and W flows (nearly 100%
UK contribution) using a 6-hr e-folding lifetime. There
are several regional pollution sources which can
explain this, including the M9 and Longannet Power

Station to the northwest and the M80 and Glasgow to
the west. The smallest total and UK contribution is
under E flow (1 μg�m−2; �60–65%), likely due to the
location of the city on the east coast. As the e-folding

FIGURE 5 Change to integrated NOx emissions totals (%) and UK contribution (%), using 6 hr e-folding lifetime, due to reduction and

removal of country emissions, binned by flow regime. Positive values (blue) show the increase in UK contribution, negative values (red)

show the decrease in integrated NOx emission totals

8 of 11 STIRLING ET AL.



lifetime increases from 3- to 12-hr, the dominant
source changes from westerly to southerly direction
(see Figures S3–S5) and the UK contribution from the
S flow decreases (�100% to 85%).

The largest integrated NOx emissions totals are
derived at the London sites, with larger absolute contri-
butions from transboundary sources. Typically, southerly
(S and SE) flows are the most polluted, as substantial
quantities of emitted NOx are transported into the UK
from continental Europe. Here, non-UK sources from
transboundary pollution (continental Europe) contribute
up to approximately 25% of the total contribution. This
relationship intensifies (peaking at �50% from trans-
boundary sources) at longer e-folding lifetimes (9 and
12 hr). However, at a 3-hr e-folding lifetime, trans-
boundary pollutants are less important yielding long-
range contributions of only 10–15% under SE flow. At
Leeds and Edinburgh, the integrated NOx emission totals
are reduced with a lower non-UK fractional contribution
than in London, as the chemical lifetime of NOx limits
the distance over which it can be transported. The main
exception being E flow, with substantial (30–40%) contri-
bution from non-UK sources, however with much lower
emissions totals. Here, pollution is transported from
Scandinavia, off-shore and shipping sources, but with the
majority lost en route over the North Sea. As there are
fewer sources within the UK to the east of Leeds and
Edinburgh, the transboundary contribution is larger than
seen in other flow directions.

3.3 | Emission control

Finally, we analyse the potential benefits to UK AQ which
may be gained from other European countries meeting
their 2020 and 2030 National Emission Ceiling Directive
(NECD) targets (see Table S1). Although these targets are
based on 2005 emission levels, we apply them to the
2010–2013 emissions used in this study. Therefore, our
results are potentially a conservative estimate given the
decrease in UK NOx emissions already achieved between
2005 and 2010. The potential benefits gained from the tran-
sition to zero emissions in neighbouring countries are rep-
resented in the “100%” column in Figure 5. By running
the ROTRAJ back trajectory model from London North
Kensington with the reduction or removal of emissions
from selected European countries, assuming a 6-hr e-
folding lifetime, we have been able to estimate the benefits
of individual countries' emission controls to UK NO2

AQ. The grouping defined as “All” indicates combined
emissions reductions occurring in all three regions of
interest: France, Germany and the Benelux region
(Belgium, The Netherlands and Luxembourg).

Generally, a decrease in emissions in the Benelux
region leads to the largest decrease in accumulated NOx

and an increase in UK contribution. As it is the closest of
the three regions to the UK, NOx is less likely to be lost
before reaching London. The largest decrease in NOx is
found under SE flow (�16%), with a corresponding
increase in UK contribution of �15% under the same
directions. There is a negligible change in both accumu-
lated NOx and UK contribution under N, W or NW flow.
In contrast, the smallest change to NOx totals and UK
contribution occurs with reductions in French emissions,
where the largest reduction in NOx occurring under SE, S
and SW flow (2–3%). Similar to Benelux, emission reduc-
tions in Germany lead to the largest decrease in NOx

totals under SE flow of �8% under 100% removal.
If all regions of interest were to achieve their 2020

emissions targets, there would be reductions in accumu-
lated NOx totals reaching North Kensington under the
majority of wind directions apart from NW, N and
W. The greatest decrease occurs under SE flow (�10%).
Trajectories from the north and west are unlikely to pass
over these countries before reaching the UK, therefore
their NOx levels remain unaffected by changes in emis-
sions. The decrease in NOx totals and increase in UK con-
tribution only grows larger as emissions in “All” are cut
to 2030 NECD targets and 100% emissions removal. The
largest change in trajectory totals continues to be under
SE flow, with a 25% decrease under the zero-emission
scenario, followed by E and S flow where NOx totals
would decrease �10–12%.

4 | DISCUSSION AND
CONCLUSIONS

We have shown that transboundary pollution can be an
important contributor to NOx accumulated by air masses
arriving at UK urban locations. Airflow from the south and
east leads to the highest accumulated NOx. When compar-
ing UK cities, AQ in London is more strongly influenced
by transboundary pollution than cities further north, with
transboundary pollution contributing to up to 25% of accu-
mulated NOx under SE flow. Trajectories under E, SE and
S flows are likely to have passed over emissions sources in
continental Europe, accumulating emissions before enter-
ing the UK domain. In contrast, trajectories under W, NW
and N flows originate over the clean maritime environment
of the Atlantic and are therefore less polluted with a higher
UK contribution (�99–100%).

For the first time, this study has estimated the contri-
bution of individual European regions to accumulated
NOx in the UK. If Germany, France and the Benelux
region were to achieve their 2030 NECD targets (applied
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to 2010–2013 emissions used here and not 2005 baseline),
the largest decrease in London's accumulated NOx

would occur under SE flow (>20%) and E and S flows
(>10%). Due to the small continental European contribu-
tion to trajectories from the north and the west, there is a
negligible change in NOx totals under N, NW and
W flows.

Overall, the LWT classifications and back trajectories,
in conjunctions with emissions inventories, are useful
tools in quantifying the contribution of European emis-
sions to UK AQ. The conclusions of this research are
applicable to the creation of future AQ policy and rein-
force the need for international cooperation to improve
regional AQ. This research has also allowed for a greater
understanding of the role of local and long-range transport
of emissions to the UK, without the need for a complex
AQ model.
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