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Abstract— We present a novel architecture for arm movement On this backdrop, an algorithm was proposed in [7] to
classification based on kinematic properties (joint angle and precisely detect specific movements of the stroke-impaired arm
position), computed from MARG sensors, using a quaternion- to enumerate the occurrences during daily activities which
based gradient-descent method and a 2-link model of the ppr  would help quantify movement quality on a longitudinal scale.
limb. The design based on Coordinate Rotation Digital Computer  The algorithm uses a 2-link upper limb model, in conjunction
framework was validated on stroke survivors and healthy suyects  with two MARG sensors attached proximal to the wrist and
performing three elementary arm movements (reach and reteve,  elhow, for estimating the upper limb kinematics in terms of
lift arm, rotate arm), involved in 'making-a-cup-of-tea’, an jsint angles and position of arm segments, through data fusion
archetypal daily activity, achieved an overall accuracy of 78%nd 5ing a quaternion-based gradient descent (GD) method. These
gir:/t"hégiszgf}l‘:t"ai%g TgeTl\(/jlﬁ:srgenlegt(r)gﬁi?: S'“ Sgﬁfﬁ Vteer(':'ﬁr?élcg?/s kinematic metrics act as discriminating features to detect three
occupies 340K NAND2 equivalent area and consumes 292 nwW @ investigated arm movements (reach and retrieve, lift arm and

rotate arm) in a dynamic environment. The algorithm selection

150 Hz, besides being functionally verified up to 25 MHz makg infl dbvi Ity i . limb ki )
it suitable for real-time high speed operations. The orientation, was influenced by its novelty in using upper limb kinematics to

arm position and the joint angle, are computedn-the-fly, with the  ¢lassify arm movements, besides negating the requirement of a

classification performed at the end of movement duration. large training dataset as common with majority of the
supervised learning techniques. Furthermore, it generalizes and

Keywords—MARG sensor, activity recognition, quaternion,  produces consistent outputs when tested upon a wide variety of
CORDIC, classification. movement profiles including both healthy and stroke survivors.

. INTRODUCTION In_ this paper, an optimisr-__\d algorith;mrarchitecture
mapping has been proposed using the various transcendental
Neurorehabilitation for post-stroke survivors require a longunctions realizable using Coordinate Rotation Digital
period for regaining impaired motor functionalities. Post initialComputer (CORDIC) [8] algorithm. We estimate the arm
period of rehabilitation within the clinic, it is important to position and angles on-the-fly from the sensor data, with the
ascertain patient mobility at home involving daily living classification achieved at the end of movement duration. The
activities. Activity recognition in natural settings for remote design was coded in System Verilog and synthesized using
health monitoring systems has been aided by the advent gffMicroelectronics 130 nm technology, which occupies 340K
mobile and ubiquitous computing facilities using low-coOStNAND2 equivalent cell area and consumes 292 nW, at 150 Hz,
inertial sensors [1], radio-frequency identification (RFID) [2] deemed sulfficient for capturing the kinematic information. The
and fusion of vision and inertial sensors [3]. MARG (magneticdesign was functionally verified at higher frequencies up to 25
angular rate-gyroscope and gravity-accelerometer) sensors ay#iz making it suitable for real-time high-speed operations.
non-intrusive and do not require a clear line of sight comparetihe evaluatiorof experimental data collected during a semi-
to the more accurate and expensive marker-baseaghturalistic experiment of ‘making-cupef-tea with 4 stroke
camera/optical systems. Sensor-based activity recognitiofurvivors and 4 healthy subjects yielded an overall detection
generally involves intensive computations in featureaccuracy of 78% and 85% for the three movements. The
engineering/classification using learning algorithms [4] orarchitecture although developed for upper limb, could be
Deep Learning [5]. Research into Wireless Sensor Networkgtilized for orientation/position estimation and joint angle
(WSN) have shown that for real-time continuous operationgomputation of different body parts using MARG sensors, an
using battery-powered wearable systems, the data analysistive research area in biomechanics. The remainder of this
primarily needs to be carried out at the sensor node to yielgaper is organized as follows. The algorittovarchitecture
energy efficient solutions as compared to systems transmittingapping in conjunction with a CORDIC framework is

data continuously to a remote station [6]. This necessitatesgresented in Section 1l whilst Section Il presents the
low-complexity architecture and its optimized implementationimplementation details along with the validation results.
for real-time operation. Finally, a discussion is presented in Section V.
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II.  ALGORITHM TO ARCHITECTUREMAPPING ~An ove_rviev_v of our p_roposed methodology has been
In this work, we aim to identify/recognize three arm lllustrated in Fig. 2, .ShOW”.‘g the datapath qulths and the
movements- (1) Action A— reach and retrieve, (2) Action B - modules - (1) orientation estimationQE), (2) position vector

; ; ; ; o timation PV), (3) joint angle estimationd®) and lastly, (%
lift arm and (3) Action C - rotate arm, which constitute majontyes e ; . . .
of the upper limb movements performed in daily life, beside lassification (CLASS), which have been described in detalil.

resembling a subset of wolf motor function test (WMFT) he architecture for each associated mpm@\owmn‘ F'g',3’
activities, an established clinical test battery for stroke¥here the CORDIC operations have been highlighted in “blue’.
rehabilitation. A 2-link limb model has been employed

represent the upper limb (cf. Fig. 1), where the link&2t3

model the upper/forearm respectively. The shoulder (jointl) is
fixed at origin of the global coordinate frame and the elbow is
modeled by joint2 connecting the two links. The orientation and
position vectors of the upper limb joints in space for dynamic  --------------------------------q--r--
movements can be determined by continuously calculating the 33 bit
MARG sensor orientation w.r.t the 2-link model. classified ;| classification

Movement /i Joint Angle

17-bit | Estimation 33-bit

Ace (X, Y, Z)
Sensor |Mag (X, Y, Z) Pre- Orientation Position

|
|
|
|
Estimation [—/—»|
Position :
|
|
|
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Gyr(X, Y, 2) 33-bit | (Quatemion)| 33-bit
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Fig. 2 Architectural overview of the algorithm.

A) Pre-Processing The raw sensor data were calibrated and
denoised wusing FIR filter. The accelerometer and
magnetometer data were low-pass filtered having respective
cut-offs 12 Hz and 10 Hz and the gyroscope data was band-
pasedbetween 0.5-25 Hz. For each MARG sensor position, we
have nine33-bit signals which are further processed. The
filtering architecture has not been discussed since FIR filter
implementation is a well-researched topic and here the primary
focus was on classification framework.

Fig.1 The -ink fimb model and corresponding sensositipn [7). B) OE - We use quaternions to mathematically represent the 3-

The body coordinate frame (viz. local) is used to obtain th® orientation of a rigid body (i.e. upper limb), which is devoid
initial orientation of each limb using MARG data and of the singularity issues often associated with Euler angle
correspondingly are mapped w.r.t a static global coordinateepresentations. The initial orientation of the upper arm and
frame (origin on shoulder), to obtain the joint angles andorearm is obtained from the 3-D orientation of the attached
position of the respective links. The body coordinate iSMARG sensors, by fusing data from three sensors and applying
considered aligned with the attached sensor coordinate framg quaternion GD algorithm proposed 0] during the arm
therefore thelatter’s orientation in effect represents the movements. The gyroscope outp) can be used for deriving
orientation of the body segmerihis helps to estimate the the rate of change of orientation ($q,,.) of the static global

flexion/extension angles from shoulder and elbow [7], WBed reference frame against the dynamic sensor frame, which can
arule-based engine to classify the investigated arm movementy. represented in quaternion as:

The architecture is based on CORDIC, an iterative 2D s, =[0 Wy @, ]
vector rotation algorithm for realizing various mathematical {S‘” 1a 1)
operations, implemented through shift-add mechanism making E9w,t = 5 Eest,t-1 Q Se

it a low-complexity design choice. For an input vecteryy", . C A . . .
CORDIC ca% opgrate |gn - (a) vectoring m%de{—y O),ﬁ;]he The orlgntatlor_] gq?w_l) can bg esumated b)_/ |_n_tegra.t|.ng the
magnitude of the vector and angle between the initial vector arfii/ternion derivativgq,, . over time, given an initialondition
the principal coordinate axis are computed; (b) rotation modand sampling frequency of the system. These independent
(z0 — 0), for a given angle of rotation, the final vector isquaternion estimations suffer from inherent sensor limitations,
computed, in three coordinate systemsircular, linear and namely accumulation of gyroscope error during integration
hyperbolic. We use vectoring mode functions in these thregsulting in distorted orientation and addition of linear
coordinates, denoted &ec,, Vec,, Vecy, for computing acceleration and magnetic interference. The final orientation is
arctangent operations and vector normalization (square rogtchieved through the gradient descent method whereby the

division), as shown in Table I [9]. integration of the rate of change of orientation (obtained from
gyroscope) after subtracting the magnitude of the gyroscope
TABLE I CORDIC VECTORINGMODES error  (f) along the direction specified by the
accelerometer/magnetometer readings.
CIRCULAR (Vec,) LINEAR (Vec;) HYPERBoOLIC (Vecy)
Xp = Xo S =34 + 3q * A (2)
Xy = K202 + 2 ; ~0 Xy = Ko/ %02 — 2 Elestt = EYestt—-1 T EYest;t t
Ya=0 e V=0 v
Yo S S f
o il = _— k — 3
Zy, =29+ arctan(iﬂ) =2t X Zp =275 + arctan(iﬁ) £destt = Eqwt = B (W73 3
0 0
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Fig. 3 CORDIC framework for orientation estimati@g), position vector®V), joint angle JA) estimation and arm movement classification (CLASS).Oke
module is replicated for computing orientation on dedenfboth MARG sensor positiorswrist and elbow.

OE module involves the following mathematical operations optained by-—. The normalizedSD output g) is used to
(@) 3D vector normalization for accelerometer and Il 2

magnetometer dataealized with Veeg ard Vea,, requiring 4 estimate the rate of change of quaternjgp, . in accordance

CORDIC operations for 1 square root and 3 divisiond© (1).

respectively; (b) quaternion normalization for the Gradient . ,

Descent (GD) computatiorVf), achieved similarly through ©) PV & JA—Two position vectorsy, andvy) w.r.t the body

Vecy and Veg, requiring 5 operations (1 sguare root and 4frame as illustrated in Fig.1 are US(.Ed to locate the position Of

divisions for 4D quaternions); (c) quaternion multiplication (1).the upper arm and the forearm during movements. The x-axis

) o ] of the body frame is aligned with the upper/forearm witile

Quaternion multiplication has been computed with 4Djying prone against the body and thus the relative position

CORDIC thereby avoiding the 16 multiplications and 12cqyid e expressed as (4), whérandl, are the lengths of

addition operationslfl]. However, in our design, we have used o earm and upper arm respectively. The elbow joint is dynamic

2D CORDIC primarily to achieve uniformity and resource re~pije the shoulder is fixed w.r.t the body coordinate frame

ut|I|tzat|on tsmce Ittlst' als?h&Jsedd f<|)r vgct%: normallzayonﬁ)n uring movement, the sensor placed at wrist measures the
arctangent computation (@Amodule). Furthermore, using 4D e ctor of whole armv,,; (upper limb + forearm). The relative

CORDIC prevents us from tailoring the iteration for known gcation of upper limb and forearm in the global coordinate

elements with zero value, which for example is the case Sm‘#rame is determined according to (5), wheze and q,,

our multiplicand (data) is i8D (cf. 1). Hence, we require 12 . ; .
multiplications and 8 additions for achieving a Qua,[emionrepresent the quaternions for the elbow and wrist respectively.

product. An example normalization can be illustrated with a
{vu= [-L, 0 0]

vectorV (x, y, z) or quaternion Qq(, 92, 93, q4), Where||[V||, 20 o (4)
[1Q]l (cf. Fig. 3 can be expressed a&z +y2 + 2% and vr =1k ]

V@i + 22 + q52 + q42, thus the norm of Vﬁh) and Q (ﬁ) v, =q, ®v, ®q

are computed throughecy andVec; . In Fig. 3 theOE module v =qw ® (Vr + 1) g, (5)

!

takes in tri-axial input from MagAcc and GYr; $Gescc—1 v} = vl — v,
u

represents the initial or previous orientation estimation. The

input Mag Acc are first normalized, whetM|| and||A|| refer  Here the 4D quaterniony{) multiplication with its conjugate
to thi modulis of each input vector, the normalized products(g+) in (5) is avoided by using a Rotation matrix notation (6)
Tl T 2T€ passed on to the Objective Function and Jacobidollowing the scheme proposed 9.
computation for th&D Algorithm. According to 10], Jacobian el ta?y 1 2 5
requires the reference direction of earth’s magnetic field _ (0" + ") = (qlzqz_Z"%) (@105 + d0d2) 6
(RDOEMF), which can be represented by a vectoff = | 2(@i% +dods) 204"+ =1 2(4245 = o) (6)

5 5 2(9193 — 49092) 2(9293 + 90q)  2(q0" +q5*) — 1
(0'\/}"6 +hy",0,h,), where, N0, hy hy,h,) refers to the The matrix is multiplied with the vectors (4) to achieve the final
measured direction of earth’s magnetic field (MDOEMEF), position vectors. This helps us to exploit the two zero elements



in the upper/forearm vectors (4). Hence, we require &rotocol of ‘making-a-cupsf-ted@ performed in semi-

multiplications and 4 additions in total to achieve each positiomaturalistic settings to incorporate maximal kinematic
vector (for upper/forearm), however, these resources can be neariability in the performed movements. The experiment
used fromOE. Using the position vectorsv(,, v's) 2 joint  comprised of 20 arm movements with interleaved
angles pertaining to the shoulder and elbow are computed asfgpresentations of Actions, B and C having 10, 5 and 5
(7). As shown in Fig. 3the cross product”vﬁxv}” is  occurrences respectively. Action Abeing a common activity in

implemented usingec;;, while v, = v} is achieved using aot daily life finds more number of occurrences in the protocol [7].

. . ) . . _The simulation results (accuracy) presented in Table IV (A -
product. Finally, the angle calculation using arctan is achleve99'5%, B - 90.5%, C - 82.5%, overall - 83.00%), demonstrate

by Vece. an average drop of 5% compared to software implementation
i o) [7], primarily caused due to truncation effects in fixed-point
sh_fle_ext = 90 +arctan(v1,‘(x)) implementation. Here, we have only presented validation
L (7) results from the stroke survivors as they present a challenge
el_fle_ext = arctan(M) owing to the inherent variability. The overall accuracy for
Yy healthy subjects was 85% (software accuracy of 89% [7]).
D) CLASS - The rule-based classificationbased on TABLE IV.  HARDWARE RESULTS OF DECTCTION FOR THE STKE
extension/flexion angles of the shoulder and elbow are SURVIVORS
summarized in Table Il. For a detailed understandifighe ' S TSk ACCORAGY00) S
formulated rules, please refer to [7]. We use a FIFO in NO A100) B@#50)  CR#/50) | (#/200)(%)

association with the classification module whereby the joint —gigectT [ 82(82%) 43(86%) 42(84%) | 167(83.5%)
angles and position vector computed from each tri-axial MARG  sussect2 | 78(78%) 42(84%) 41(82%) | 161(80.5%)
sample are stored till the end of duration of the arm movement.  Susiect3 | 57(57%) 41(82%) 38(76%) | 136(68%)
A FIFO depth of 1024 is selected, based on the longest duration __SUBJECT4 | 82(82%) 43(86%) 36(72%) | 161(80.5%)
of an action (approximately 20 seconds). This module works on ~ TOTALS | 299/400  169/200 ~ 157/200 | 625/800

a combinatorial logic to infer the performed movement at the 7475% 845% 785% [ 78.13%
end of task duration, using the information in the EIFO

The design was synthesized in ST130 nm technology library
TABLE II. TASK DEFINITION. and consumes a dynamic power of 292 nW, with a NAND2
equivalent area of 340K at 150 Hz. The design was functionally

Acti Feat ! 2 T :
ction eatures verified up to25 MhZ making it amenable for high-speed
A Reach and retrieve —el_fle_ext will have a minimum operations. TheOE module takes 1 clock cycle for the
value while sh_fle_ext has a maximum value that are quaternion computation from each sensor module, whereas the

nearly coincident in time.

Lifi object 10 mouth — el_fle_ext remains near constar PVandJAmodules together require 1 cycle to compute the joint

B and he movement distancef v, (z) will be a positive angle and position vector, therefore requiring 3 clock cycles in
value at the middle of task periéd fime. total (2 for OE, 1 for PV & JA) for a corresponding set of
Rotate an object — el_fle_ext remains constant and the M_ARG sample 'npUth- The compk_axny and area are traded'oﬂ:

c movement distance of v;(z) will be a negative value at the with respect to the high speed which has been the focus of this
middle of task period time. design, given its requirement for real-time joint angle

computation and classification. The design can be further
Qoptimized by re-utilizing one CORDIC module in various
coordinate systems depending on the required computation,
however, that would lead tOE requiring 20 cycles for each
sensor module, along with associated control logic and memory

A detailed list of arithmetic operations for each module i
presented in Table Il

TABLE lIl. SUMMARY OF ARITHMETIC OPERATIONS . 3 .
requirements for data-storage, negating on-the-fly computation.
FEATURES CORDIC MULT ADD/SUB ACC COMP
OE 19 93 88 0 0 IV. DISCUSSION
PV 0 16 8 0 1 . . ,
JA 3 9 8 0 0 In this paper,we have made a novel ‘proof-of-concept
CLASS 0 0 1 1 3 attempt to design the architecture for joint angle/body segment

position estimation based on quaternion computation for

Ill.  IMPLEMENTATION AND VALIDATION achieving movement classification. The design choice® hav

The design was coded in System Verilog and verified®€n Primarily guided by high-speed real-time computation

against a corresponding Matlab version. In order to achieve tjgauirements, —achieved through a uniform = CORDIC

desired 16-bit accuracy, a 22-bit word-length should be selectdggmework. Our design achieves 85% and 78% prediction
[13], according to the formulation (N + Log2N + 2) and have afccuracy on three movements performed semi-naturalistic

least 16 CORDIC iterations. In this design to obtain a higﬁnvironment having inherent variability. Future dissemination
accuracy, especially for angle calculation, we u8a-hit wide will focus on further optimisation based on detailed analysis of

datapath (cf. Fig. 2), with the final output using 2_pitsdesign choice, resource utilisation and timing/performance of
representation for the three performed movements. The desifft¢ implementation.
was validated on data collected during a bespoke experiment
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