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a b s t r a c t 

Computational stereo is one of the classical problems in computer vision. Numerous algorithms and so- 

lutions have been reported in recent years focusing on developing methods for computing similarity, ag- 

gregating it to obtain spatial support and finally optimizing an energy function to find the final disparity. 

In this paper, we focus on the feature extraction component of stereo matching architecture and we show 

standard CNNs operation can be used to improve the quality of the features used to find point correspon- 

dences. Furthermore, we use a simple space aggregation that hugely simplifies the correlation learning 

problem, allowing us to better evaluate the quality of the features extracted. Our results on benchmark 

data are compelling and show promising potential even without refining the solution. 

© 2018 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Computational stereo is one of the classical problems in com-

uter vision systems whereby two cameras placed at different

iewpoints can be used to extract 3D information by analyzing

he relative position of the objects in the two perspectives of the

cene. Finding relative displacements between image pairs from

tereo cameras is usually called stereo matching [2,15] . By us-

ng the fundamental constrains in the two-view geometry of two

erspective cameras, it is possible to reduce the stereo match-

ng problem to a 1D search space in horizontally rectified im-

ges. Despite the reduced search space, accurately finding stereo

orrespondences in real world images is still very challenging be-

ause occlusions, reflective surfaces, repetitive patterns, textureless

r low detail regions that can affect the similarity metric and un-

erpins the search. 

Recently, since the first winning entry in the ImageNet Large

cale Visual Recognition Challenge, deep learning has been at the

orefront of most computer vision breakthroughs [13] . Convolu-

ional neural networks (CNNs) are able to learn very complex non-

inear representations from raw visual data, creating effective and

ersatile models for complex problems. CNNs are now widely used

cross different vision problems and also in a vast range of ap-

lications, such as robotics and medical endoscopic imaging. Deep

earning models have also recently been applied to stereo match-
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ng and are now among the most accurate methods reported on

he public common evaluation datasets [4,9,14] . 

One of first successful uses of deep learning for stereo matching

reats the problem as a binary classification [17] , where different

NNs are trained to recognize two input patches centered around

orresponding pixels. However, because each pixel is processed in-

ividually, and no spatial constrains are imposed in the decision,

he resulting disparity map can be quite noisy. To mitigate noise,

xtensive post processing steps are used to smooth the result using

and-crafted regularization functions. Several improvements have

een reported since then, usually by stacking extra convolution

ayers after the feature extraction, allowing the CNNs to learn their

wn spatial regularization. The current top stereo method ranked

n the KITTI benchmark dataset also focuses on context and con-

istency by using a very deep end-to-end learned architecture with

-D convolutions that is able to infer disparity maps capable of

eating any hand-crafted regularized method [5] . 

While spatial consistency is essential for good stereo matching,

here has been limited focus on the quality of the high-level rep-

esentation learned to match corresponding points. Several meth-

ds proposed different architectures, correlation operations or reg-

larization approaches but the majority of CNN stereo methods

o not present any major discussion about the siamese architec-

ure that it uses. The main objective of this work is to fill this

ap and study the importance of the representations learned by

 siamese architecture. We take a step back from deep complex

NN architectures and focus on the type of features that are used

o find correspondences. We propose the use of pooling and de-

onvolution operations in the siamese architecture that allows the
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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extraction of features with a wider receptive field around the tar-

get pixels. The intuition is that, a wider context view allows the

feature extraction of more visual cues, allowing better point cor-

respondence. Furthermore, we study the effect of a simple fea-

ture space transformation that significantly simplifies the learning

problem, allowing the CNNs to learn end-to-end correlation with a

very shallow architecture. Our main objective is to show that im-

provements can be achieved simply by enhancing the way stereo

features are extracted and aggregated. Because siamese architec-

tures are part of most matching CNNs available, this work can eas-

ily be combined with more complex approaches (hand-crafted or

deep learned) presented in the literature. 

2. Related work 

A range of approaches have been proposed to solve the stereo

matching problem in the last decade. For the sake of brevity, we

will focus on the work that exploits deep learning as a viable way

to find point correspondences in image pairs [2,15] . 

The introduction of large scale, high resolution datasets, such

as KITTI [4,9] and Middlebury [14] , has opened the opportunity for

the use of learning approaches in stereo matching. As stated be-

fore, Zbontar and LeCun [17] used a siamese CNN to binary classify

matching or non-matching pairs of points. The method required an

extensive post processing step, where edge and texture informa-

tion were used as smoothness constrains. 

More recently, Luo et al. [8] expanded on Zbontar’s work and

proposed a way to obtain disparity values for all possible displace-

ments without manually pairing patch candidates. In other words,

a wider image is passed though one of the branches of the siamese

architecture and the computed features are correlated with the

ones extracted from the target patch. This allows the computation

of matching costs for all disparities with one-pass of the CNN. This

work also shows that the inner product is an effective way to com-

pute feature correlation. Again, because inference for each pixel is

made independently, hand-crafted feature regularization is used to

smooth the results. 

Currently, the top performing stereo methods in the KITTI

datasets [4,9] focus on end-to-end network learning with spatial

regularization and do not use any type of hand-crafted post pro-

cessing. Shaked and Wolf [16] employ a second network that is

trained to smooth the matching cost obtained by a deep residual

architecture. Kendall et al. use 37 layered network with multi-scale

3D convolutions to learn how to match a block of concatenated

features from both images. Pang et al. [10] tackled the matching

problem in two stages: first, a tweaked version of DispNet is used

to estimate disparities with more detail and then a second net-

work is used to rectify the results of the first stage. Knöbelreiter

et al. [7] also achieved excellent performance by combining CNNs

and conditional random fields into a hybrid model for stereo es-

timation. Despite the huge difference in architectures and training

methodology, all these methods start roughly the same way, with a

siamese architecture that acts as a feature descriptor for the stereo

image pair. Most recent work chooses to focus on the spatial reg-

ularization rather than the feature extraction step. We argue that

significant improvements can be achieved by simply increasing the

amount of context that is extracted by the siamese architecture. 

The work presented here is most similar to the one developed

by Luo et al. [8] but with two major contributions. First, we show

that the loss of the detail from pooling operations can be com-

pensated with deconvolution operations if these are applied in the

feature space, before computing correlation. This allows to hugely

increase the global receptive field of the feature extractors, result-

ing in a more robust matching even before spatial regularization.

Second, we show that a simple feature aggregation can be used

to simplify the learning problem, resulting in effective, more easily
earned, data driven correlation metric. To reiterate, we are study-

ng the feature extraction step and how much it can influence cor-

espondences by itself. Our aim is not to beat the current state-

f-the-art for full stereo matching pipelines. Our contribution pro-

ides an effective stereo matching network that can easily be fur-

her improved by plugging it to most current CNN stereo matching

odels. 

. Methodology 

Typically, stereo methods use a similarity function between

andcrafted representations of small patches around the pixels [2] .

lternatively, CNNs can be used to learn complex, high dimen-

ional feature extractors that allow a more robust patch compar-

son [17] . 

Some of the most accurate stereo algorithms proposed in re-

ent years employ CNNs to score the patch similarity measure

5,8,11,16,17] . Even though these methods proceed with different

pproaches, every model starts with a siamese architecture that

rocesses the left and the right images. While subsequent layers

ay allow more complex correlation inference or spatial regular-

zation of the cost volume, the matching is still in essence based

n the features extracted by the siamese branches. As a conse-

uence, the architecture of the siamese CNN plays a crucial role

n the quality of the stereo matching, much like the role of a tradi-

ional low level vision similarity metric. We therefore focus on en-

ancing the underlying siamese network in order to improve per-

ormance. 

.1. Siamese network architecture 

We construct our network by layering sequential blocks of 2D

onvolutions, batch normalization and a rectifier linear unit (ReLU).

ust like most architectures, we use layers with 64 neurons of 3 × 3

onvolutions and the parameters between branches are shared. The

ast layers are added without batch normalization and ReLU oper-

tions. 

Generally speaking, wider patches allow the extraction of more

isual cues and help matching, especially in textureless regions or

reas of aperture problems. The area around the target pixel that

s considered in the matching process depends on the global re-

eptive field of the CNN architecture. If we denote the input of the

 th layer indexed by the coordinates i, j as x p ( i, j ), then a network

ith n layers will output y (i, j) = x n (i, j) . Mathematically, we can

efine the global receptive field as the range of pixels in x 0 that

ffects each y ( i, j ). Intuitively, the global receptive field is the size

f the region that a CNN uses towards making a single prediction. 

More convolution layers and bigger filters allow small increases

n the global receptive field but cause an exponential increase in

omputation time and memory requirements. A common practice

n classification CNNs is the use of strided pooling to downsample

eature maps withing the network, allowing for much wider global

eceptive fields [11] . Pooling operations have also been reported to

rovide translation invariance to CNN models [11] . However, the

roperties that make pooling useful in classification tasks are not

esirable for stereo matching, so most stereo algorithms avoid this

peration. The loss of detail from feature downsampling makes it

arder to recognize very small differences, something crucial for

ixel-level matching. We address this problem by using transpose

onvolution (deconvolution) operations. 

Deconvolution operations allow CNNs to learn filters capable

f upsampling feature maps. The operation is especially useful in

ixel-level applications, such as semantic segmentation or genera-

ive networks. For example, for optical flow, where the matching

earch space is bidimensional, the FlowNet [3] sequentially down-

amples the features maps with pooling operations and uses a se-
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Fig. 1. Representation of our 7 layered stereo matching CNN. Patches extracted from the left and right stereo images are processed in the blue and orange branches, 

respectively. During training, the width of the right patch depends of the max disparity ( D ) considered. After feature extraction with the siamese architecture, the features 

are aggregated according to their relative displacement. The correlation between features for each disparity is computed by a simple two layer correlation architecture. The 

final disparity volume represents a correlation value of each possible integer disparity between zero and D for every left patch pixel. 
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ies of deconvolutions to obtain a dense prediction map. Unlike

lowNet, we argue that it is easier to match upsampled features

han upsampling matching scores. Because of this we choose to

mplement deconvolution layers before computing any correlation

etric. Just like represented in Fig. 1 , we implement the same

mount of 2 strided 3 × 3 deconvolutions as the number of max

oolings within the CNN. This creates a dense feature space that

an be used for computation of a correlation score for every possi-

le disparity level. 

.2. Correlation layer 

Several stereo matching CNNs use the inner product as a corre-

ation metric between features vectors extracted from the siamese

ranches [8,11,17] . The operation is computationally efficient, fast

nd differentiable, which allows backpropagation during training.

n these cases, the CNN learns feature extractors that maximize the

nner product between two corresponding points. While this pro-

ides a fast and effective way to compute correlation, it would be

referable to allow the network to learn a correlation that best fits

he stereo data. Note that the inner product only measures one di-

ection/component of similarity between vectors. Whereas the net-

ork could learn more complex relationships/metrics. 

Recent methods choose to concatenate the output from the

iamese network along the feature dimension and follow it with

ore convolution layers [11,16,17] . To a certain extent, this allows

he CNN to learn how to correlate matching points, but the max-

mum disparity that the network is able to find is intrinsically re-

ated to the global receptive field of the layers stacked after the

iamese portion of the CNN. 

Let’s consider the case where we want to find the disparity map

or a left stereo image I l with W × H dimensions. Considering D ,

he maximum disparity possible between the stereo pair, correla-

ion needs to be computed with all pixels within a D + 1 range in

he right stereo image I r . By using a siamese network with a θ di-

ensional output its possible to extract two feature vectors with

 × H × θ dimensions. To learn how to match pixels for D + 1 pos-

ible disparities from the concatenated volume, the network needs
o process 2 θ values in its third dimension and to account for

 range of D + 1 pixels in the input second dimension. In other

ords, the correlation layers would need to start with 2 θ neurons,

nd their global receptive field would need to be equal or supe-

ior to D + 1 in the image width dimension. Using the common

pproach where we stack n layers of w × w convolution blocks the

lobal receptive field of a network is equal to n × (w − 1) + 1 . In

he KITTI dataset [4] , for example, where D = 256 , it would take

t least 128 layers of 3 × 3 convolutions for a network to have a

lobal receptive field wide enough to match 256 pixels apart with-

ut downsampling the feature space. This is not only challeng-

ng from a computational point of view but it greatly complicates

he learning process. Beyond learning how to correlate features of

atching points, the model would also need to correspond fea-

ure positions with the intended disparity. We use a feature space

ransformation that greatly simplifies the learning problem of a

on-linear correlation metric through convolutional layers, need-

ng as little as two convolution layers to compute a disparity map

or any size D . 

Defining the θ-dimensional feature vectors computed from I l 
nd I r as the ψ l and ψ r , respectively, we construct a new feature

pace � as: 

(i, j) = | [ | ψ l (i, j) ψ r (i, j − d) | ] , ∀ d ∈ N 0 | 0 � d � D | (1)

here | . | represents a concatenation operation. Note that we are

till concatenating vectors along the feature dimension, but we

eplicate the left features and pair them with right features of

very possible disparity. The new feature space � has the di-

ensions W H × D + 1 × 2 θ where, for all ( i, j ) pixels, there is a

aired 2 θ-dimensional feature vector for all D + 1 possible dis-

arities. This simple transformation radically changes what kind

f information convolution filters receive. Let’s consider applying

 single 1 × 1 convolution layer that outputs a single value from

 2 θ dimensional input to the new feature space � . Note that a

ingle value would be computed for D + 1 disparities for all ( i, j )

ixels, using only the corresponding right and left feature pair-

ng as input. This way, the correlation layer only needs to learn

ow to correlate two concatenated θ-dimensional vectors, inde-
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Fig. 2. Comparison between standard feature concatenation and a built feature space. The left and right �-dimensional features are computed by the siamese architecture. 

Similar color squares represent point correspondences between the stereo image pair. Differences in tone are just meant to represent small variations between both images. 

Black squares represent zero padding. 
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pendently of their original position, considerably simplifying the

learning problem. This layer would output a W H × D + 1 × 1 map

that can be easily transformed to the intended disparity volume

with a W × H × D + 1 shape. Beyond this, in this feature space, fil-

ters of size 1 × z allow the network to learn a correlation metric

that accounts for z neighbor disparity pairs, creating the opportu-

nity for a more robust disparity correlation. Finally, because the

filters learned during training always correlate 2 θ-dimensional fea-

ture pairs, � can be rebuilt for a variable number of max dispari-

ties without needing to retrain the model. 

The idea of aligning features is similar to the one presented by

Kendall et al. [5] . However, this is followed with a second big 3D

network that is responsible to learn not only a correlation metric,

but to regularize the disparity map. While this is an obvious ad-

vantage for the global performance of a stereo matching network,

it would make it harder to exclusively evaluate the quality of the

features extracted. Our feature space transformation meaning that,

each disparity is processed individually by the same learned cor-

relation layer, making it that only the features learned from the

stereo pair are taken into consideration. 

In our experimental results, we compare the performance of the

cost volumes computed with inner product and with our correla-

tion layer. We use the simplest architecture that allows non-linear

logical operations [12] . For our correlation layer, we use a single

activated convolutional hidden layer with 2 θ neurons and 1 × 3

filters, and an output convolutional layer with a singular output

channel also with a 1 × 3 filter. A smaller filter wound not allow

the correlation layer to take into account neighborhood informa-

tion and bigger filters did not improve the results. 

3.3. Training 

We train our models with randomly extracted small patches

from the left stereo image and the same coordinate patch from

the right image extended by the maximum disparity under con-

sideration. This allows to diversely sample training batches while

being memory efficient. We treat each disparity value as a mutu-
lly exclusive classification problem. The values outputted from the

orrelation step are normalized using a softmax function and the

etwork is trained by minimizing cross-entropy loss. All parame-

ers are trained with stochastic gradient descent and gradients are

ackpropagated using the standard Adam optimization [6] . 

.4. Testing 

During testing, memory constrains us to compute disparity

aps for high resolution images with big max displacements in

 single network pass. Instead of processing subsections of the im-

ge individually, we follow the same procedure suggested by Luo

t al. [8] . First, we extract the feature representation for all pixels

f the stereo image pair with the siamese architecture. Then in the

orrelation step, the same feature values can be reused for compu-

ation of disparity maps of multiple pixels. This results in signifi-

ant increases in the inference speed. The final disparity values are

hosen with a winner-takes-all approach ( Table 2 ). 

. Experimental evaluation 

We train and evaluate our models using both the KITTI 2012

4] and KITTI 2015 [9] datasets. Both are composed of rectified nat-

ral images captured by a stereo camera. KITTI 2012 consists only

f static environments while moving objects are present in KITTI

015. Just like most methods [5,8,16,17] , we use the sparse avail-

ble labels from non-occluded pixels for training. 

We evaluate our methodology by training three different

iamese architectures: S 4 , S 7 and S 9 , with 4, 7 and 9 convolution

ayers and with 1, 2 and 3 max pooling layers, respectively. We

lso compare all models trained with inner product and with the

roposed correlation architecture. We verified no performance im-

rovement by adding skip connections between the encoding, so

e only present the results with non-skip architectures. 

All parameters are randomly initialized with a normalized

aussian distribution and input images are normalized to have

ero mean and unit standard deviation. Every CNN is trained for
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Table 1 

Comparison of several error metrics in % of our three different siamese architectures trained with inner product 

(inner prod) and with our correlation architecture (learned) on the KITTI 2012 validation set. 

> 2 pixel > 3 pixel > 5 pixel Runtime (s) 

Siamese CNN Correlation Non-Occ All Non-Occ All Non-Occ All 

S 4 Inner prod 12.42 14.18 11.38 13.16 9.98 11.76 1.15 

Learned 11.27 13.05 10.39 12.13 9.08 10.82 5.25 

S 7 Inner prod 7.57 9.45 6.72 8.61 5.64 7.53 1.15 

Learned 6.65 8.23 5.84 7.58 4.80 6.48 5.27 

S 9 Inner prod 7.47 9.34 6.50 8.36 5.31 7.17 1.16 

Learned 7.57 10.29 6.59 9.05 5.34 7.80 5.28 

Table 2 

Comparison of several error metrics in % of our three different siamese architectures trained with inner product 

(inner prod) and with our correlation architecture (learned) on the KITTI 2015 validation set. 

> 2 pixel > 3 pixel > 5 pixel Runtime (s) 

Siamese CNN Correlation Non-Occ All Non-Occ All Non-Occ All 

S 4 Inner prod 11.19 12.68 10.01 11.50 8.57 10.05 1.15 

Learned 8.26 10.72 7.10 9.71 6.82 8.40 5.25 

S 7 Inner prod 7.80 9.36 6.81 8.37 5.75 7.30 1.15 

Learned 6.79 8.21 5.92 7.30 4.92 6.24 5.27 

S 9 Inner prod 6.89 8.47 6.02 7.61 5.18 6.74 1.16 

Learned 7.47 8.96 6.42 7.88 5.41 6.82 5.28 
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5K iterations with a 1 e −3 starting learning rate. Training is done

ith randomly extracted patches from left image with sizes 10 × 10

or S 4 , 28 × 28 for S 7 and 56 × 56 for S 9 . We use the biggest batch

ize that our system allowed for each model. For CNNs trained

ith inner product, this translates to batches of 128, 32 and 20

or S 4 , S 7 and S 9 , respectively, and batches of 128, 20 and 8 for

he same models trained without correlation architecture. All mod-

ls were implemented in Tensorflow [1] and executed on a NVIDIA

itax-X GPU. 

.1. KITTI 2012 

KITTI 2012 datasets consists of 194 image pairs for training and

95 for testing. Because no ground truth is given for the testing im-

ges, and multiple online submissions are not allowed, we evaluate

ur models by splitting the training data in a training and valida-

ion sets. As in the work developed by Luo et al. [8] , we randomly

se 160 image pairs for training and 34 for testing. Even though we

o not guarantee the same split as [8] , we argue that the difference

n performance is big enough to prove the importance in widening

he receptive field of the Siamese network, independently of the

raining/validation set split. Again, our main objective is to study

nd improve the siamese architecture that initializes most recent

NN stereo matching systems, so we do not implement an end-

o-end system capable of competing with current state-of-the-art

ystems. The performance of our models in the validation set is

hown in Table 1 . 

When we use the inner product for feature correlation, a direct

omparison with the same depth architectures from [8] allow us to

erify the effect of pooling and deconvolution layers. All our mod-

ls outperform the corresponding networks proposed by Luo et al.

8] , which shows the benefit of our pooling/deconvolution ap-

roach. Despite the overall increase in performance, Table 1 shows

hat there is a limit to the benefit of increasing the receptive field

rough downsampling pooling layers. While the 2-pixel is reduced

ubstantially from S 4 to S 7 , the extra pooling layers in S 9 did not

reatly decreased the matching error. 

Table 1 also shows that slightly better matching was achieved

y learning correlations from the transformed feature space.

atching improvements are present in S 4 and S 7 when the cor-

elation layer is used, but a slightly worst performance is achieved
n S 9 . This indicates that the loss of detail from successive pool-

ng might hinder the ability of the network to learn a good cor-

elation function. The best results were achieved with S 7 , where

he receptive field is big enough for robust matching, but the lost

f detail is not enough to stop the network from computing an

ffective correlation. Fig. 3 shows that, even without spatial reg-

larization, our architecture is able to smoothly match low detail

egions while maintaining sharp edges in cars and trees. Because

he focus of our work is the evaluation of the feature extraction,

e did not invest a huge amount of time in performance improve-

ents. We used a slow naive implementation of the feature space

ransformation that is significantly slower than the inner product.

owever, this operation can still be greatly optimized with a GPU

mplementation. 

.2. KITTI 2015 

KITTI 2015 has 200 image pairs for training and for testing.

gain, just like Luo et al. [8] , we randomly split the training set

n 160 images for training and 40 for validation. This allows a bet-

er direct comparison with their method. 

A similar analysis to the one made for KITTI 2012 is valid for

he KITTI 2015 results. Bigger receptive fields allow lower matching

rrors for features learned with the inner-product implementation.

hen learning a correlation, a compromise between a wider global

eceptive field with less loss of detail is found in the S 7 architec-

ure. In Fig. 4 , we continue to predict big smooth disparities in low

exture regions, even without any post-processing. This shows that

ider global receptive fields allow a much more effective correla-

ion computation. Furthermore, even with the downsampling oper-

tion within the networks, features capable of representing small

tructures like traffic signs, fences and trees can be successfully ex-

racted. Stacking further layers should easily allow spatial regular-

zation to be learned without significant increase in computation

ost, since the concatenation and reshaping operations of the fea-

ure space transformation are the bottleneck of the method. 

.3. Comparisons with other methods 

As stated before, we do not propose a full stereo pipeline for

tereo matching. Our main objective is to improve a crucial part
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Fig. 3. Examples of non-regularized disparities (middle) and errors (right) of KITTI 2012 validation images (left) computed with the S 7 architecture and learned correlation. 

Fig. 4. Examples of non-regularized disparities (middle) and errors (right) of KITTI 2015 validation images (left) computed with the S 7 architecture and learned correlation. 

Table 3 

Comparison of the 2 pixel % error of different matching siamese 

architectures without post-processing on the 2012 and 2015 KITTI 

validation set. 

Method KITTI 2012 KITTI 2015 

Non-Occ All Non-Occ All 

MC-CNN-acrt 15.02 16.92 15.20 16.83 

MC-CNN-fast 17.72 19.56 18.47 20.04 

Luo et al. 10.87 12.86 9.96 11.67 

S 9 + inner product 7.57 10.29 6.89 8.47 

S 7 + correlation 6.65 8.23 6.79 8.21 
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of most of the current CNN stereo matching models: the siamese

architecture. Because of this, we compare our work with other

non-spatial regularized architectures. These results are presented

in Table 3 . 

Table 3 shows that when compared with other non regularized

Siamese architectures, our wider models have a significantly lower

2-pixel error in both 2012 and 2015 KITTI datasets. Furthermore,

the proposed space transformation allows S 7 to learn a shallow

correlation layer which allows it to outperform all other siamese

architectures. 

The results reported do not guarantee that replacing the

siamese architectures of more complex models, such as the one

proposed by Kendall et al. [5] , will improve matching performance,

but they show promising potential even without spatial regulariza-

tion. If nothing else, our models, just like the ones proposed by Luo
t al. [8] , provide a simple, fast and easy to train method, but much

ore accurate results. 

. Conclusion 

Similar to so many areas in computing, deep learning has al-

owed us to move at an incredible speed towards a robust solution

or stereo matching. As computation power increases, there is a

atural tendency to move to bigger and more complex CNN mod-

ls. In this work, we demonstrated that big improvements are still

ossible by small, problem-specific adaptations that simplify the

earning problem. For future work, we plan to incorporate the re-

ent approaches that use context for regularization, allowing us to

ake full advantage of the proposed feature extractor. 
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