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ABSTRACT 13 

 14 

Elastic instability is proposed as a promising method to intensify heat transfer under  15 

very low Reynolds number conditions. However, the onset of elastic instability and its 16 

influence on heat transfer is highly dependent on the rheological properties of polymer 17 

solution, which has not been revealed. By varying polymer concentration, sucrose 18 

proportion and the degree of salinity, the heat transfer performance due to the variations 19 

of rheology is investigated in a swirling flow configuration between parallel plates. The 20 

results indicate that both the increase of polymer concentration and the reduction of the 21 

salinity can induce elastic instability easily, leading to a better heat transfer performance 22 

when the swirling velocity is fixed. However, the salinity effects become weakened as 23 

the swirling velocity continually increases and the maximum enhancement seems to be 24 

independent on salinity. In particular, the heat transfer performance based on pure 25 

elastic instability shows larger enhancement than that of inertial-elastic instability at 26 

low Reynolds number. 27 

 28 
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1.  Introduction 1 

Efficient heat transfer plays an important role in many industrial sectors 2 

including power generation, information computing technology, chemical production, 3 

and ultra-high heat flux encountered in aerospace field [1]. Driven by industrial needs 4 

of process intensification and device miniaturization, the development of high-5 

performance heat transfer technique at low Reynolds number, Re, has been intensively 6 

investigated in the past a few decades [2]. A conventional method to intensify heat 7 

transfer at low Re number is to induce turbulent-like flow motion by geometrical 8 

modifications [3-7], which however is not always practical due to the laminar flow 9 

nature encountered.   10 

One of the proposed approaches is to use viscoelastic fluid, which is usually 11 

formed by adding small amounts of high-molecular-weight polymer into a pure 12 

Newtonian solvent [8]. This viscoelastic fluid exhibits dramatic flow instability in the 13 

presence of elastic nonlinearity, which is characterized by a normalized Weissenberg 14 

number, defined as Wi=·, where  is the shear rate applied to the flow and  is the 15 

polymer relaxation time. In particular, when the inertial effect is neglected at vanishing 16 

Reynolds number, the viscoelastic fluid is pronounced to induce purely elastic 17 

instability at Wi > 1 [9-11], and with further increase of the value of Wi, the flow is 18 

excited to a so called elastic turbulence regime [12, 13]. 19 

The occurrence of elastic instability or turbulence is attributed to the coupling 20 

effects between the stretch of long polymer chains induced by the shear stress and 21 

counteractive perturbations to the primary flow [14]. This turbulent-like phenomenon 22 

has been identified in many conventional geometries both in macroscale and microscale, 23 

including swirling flow between two parallel plates [15-17], Taylor-Couette flow set-24 

up [18-20], curvilinear serpentine channel [18, 21-23] and some self-designed 25 

geometries such as cross slot channel [24, 25] and straight channel with obstacles 26 

inserted [26, 27]. Although whether the curvature of the flow geometry is an essential 27 

condition for the onset of elastic instability is still controversial, the transition to the 28 

elastic turbulence is always accompanied by a sharp growth of the flow resistance, 29 

which is similar to the features of inertial turbulence. In addition, the elastic turbulence 30 

has been proved to be an effective method to intensify the mixing performance [28-30].   31 
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It would be expected that such vigorous mass transport and dramatic increase 1 

in the flow resistance could affect the heat transfer, which however has received little 2 

attention [31]. Traore et al [32] investigated the effective heat conduction in a bulk fluid 3 

by a sucrose-based polymer solution in a swirling flow between parallel disks, where 4 

heat was transferred four time rapidly than that in a pure sucrose solution. Besides, a 5 

convective heat transfer performance up to 380 % between the fluid and the wall was 6 

achieved in a millimetre-sized curvilinear channels by Abed et al [33, 34]. An 7 

enhancement up to two orders of magnitude higher was observed by using polymer 8 

aqueous solution without sucrose as the size of the curvilinear channel was scaled down 9 

to micro meter size by Li et al [35, 36]. A few other experiments [37-42] were 10 

conducted in different geometries, and all showed the capability of elastic turbulence 11 

in improving heat transfer performance with the presence of different levels of heat 12 

transfer intensification.  13 

It shall be noted that our current understanding on elastic turbulence and its 14 

relationship with heat transfer are still highly limited. The enhancement of heat transfer 15 

begins after the occurrence of elastic instability, which is highly dependent on polymer 16 

rheology [9-11]. However, few studies were focused on this area and only rheology 17 

effects based on polymer concentration were investigated. Even within these published 18 

studies there are still some inconsistent results. For example, the heat transfer 19 

enhancement against Wi increases with increasing polymer concentration in Refs [34, 20 

43], which contradicts to the observation of Li et al [36]. Indeed, polymer rheology 21 

being sensitive with many other factors that could affect the heat transfer performance 22 

has not received attention so far [34, 44]. It becomes clear that the variations of polymer 23 

concentration and solvent viscosity could modify polymer rheological and elastic 24 

property significantly, whose effects on the heat transfer side, however, have not 25 

considered. Specially, with functional groups modification, the polymer rheology is 26 

affected by many water chemistry elements. The hydrolysed polyacrylamide (HPAM), 27 

which is capable of inducing elastic turbulence in porous media for enhancing oil 28 

recovery (EOR) [45-47], is sensitive to the  surrounding ion effects due to the charged 29 

carboxylate groups [48]. The presence of different ions, typified by the salinity effect, 30 

is prevail in most of oil reservoirs and shall have large impacts on the polymer 31 

rheological properties [49], whose effects on the heat transfer have not been 32 

investigated as well.  33 
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Addressing these limitations, this work aims to conduct a systematic study to 1 

reveal the effects of polymer rheological properties on the heat transfer performance by 2 

elastic turbulence in a swirling flow configuration between two parallel plates. The 3 

rheological properties, including viscosity and polymer relaxation time, based on 4 

various polymer concentration, sucrose concentration and salinity are first evaluated. 5 

By mounting thermocouples along the gaps between the two plates, the corresponding 6 

temperature distribution are measured. To quantitatively characterize the concomitant 7 

heat transfer performance, both effective thermal conductivity and surface heat transfer 8 

Nusselt number are defined to characterize the heat transfer augments within bulk fluid 9 

and between the fluid and wall, respectively.  10 

 11 

2.  Materials and methods 12 

2.1 Experimental system (set-up) 13 

 14 

Fig. 1 Schematic view of the experimental setup 15 

The experimental rig used to investigate the behaviour of the flow and 16 

convectional heat transfer performance of viscoelastic fluids in swirling flow is shown 17 

in Fig. 1. It consists of an acrylic fluid container with the inner diameter of Din=56 mm 18 

and surrounded by optically transparent walls. The thicknesses of side wall and bottom 19 

wall are 10 mm and 5 mm, respectively. The flow is driven by a rotating round disk 20 

with a radius Rd=25 mm mounted on the shaft of the rheometer. The distance between 21 

the top disk and the inner wall of the bottom of the fluid container is set at a constant 22 

value, H=40 mm, for all experiments. The bottom of the fluid container is mounted at 23 

the base of the rheometer and the temperature of which is set to a value of 5 °C during 24 

experiments to reduce thermal convection inside the bulk flow. To ensure a good 25 
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repeatability and reproducibility of the experiments, the room temperature was 1 

maintained around 22 °C by an air conditioning system.   2 

Two thermocouples were mounted on both sides of the bottom of the fluid 3 

container to measure the temperatures and to calculate the heat flux transferred between 4 

bulk fluid and the wall. The temperature distribution of the flow is monitored by an 5 

array of five thermocouples (T1 to T5) installed equidistantly (5mm each point) along 6 

the vertical direction z and positioned at the radial position at half radius of the fluid 7 

container. All thermocouples used in this work are K-type thermocouples with probe 8 

diameter of 0.25 mm and are calibrated against a mercury thermometer of certified 9 

accuracy (± 0.3 °C) in ice water mixture. The signals of the thermocouples are collected 10 

by national instrument data acquisition system (NI 9185) and post-analysed by 11 

LabVIEW software. 12 

2.2 Working fluids preparation 13 

The working fluids applied in this study were comprised of different amounts 14 

of hydrolysed polyacrylamide (HPAM), sucrose and sodium chloride (NaCl). Sucrose 15 

and sodium chloride with laboratory reagent grade were supplied by Fisher Scientific 16 

Ltd. The HPAM with molecular weight 22M g/mole were purchased from Shandong 17 

Tongli Chemical Co., Ltd. (China). A concentrated HPAM solution with 2000 ppm was 18 

prepared first. By adding specific amounts of concentrated HPAM solution, sucrose 19 

and NaCl into deionized water, the working fluids were then well prepared after 3h 20 

moderate mixing by a mechanical stirrer and stayed overnight to degrade the polymer 21 

with the largest molecular weight. With each variable was set different, the effects of 22 

polymer concentration, solvent viscosity and degree of salinity were investigated, 23 

respectively. The overview of working fluids is listed in the Table 1. To reduce the 24 

effects of polymer molecular weight and the long-time instability, the working fluids 25 

of experiments for each sensitive factor were freshly prepared with the same 26 

concentrated stock solution before the measurement to obtain a good repeatability. 27 

Table 1 Working fluids applied in this study 28 

Controlled  

parameters 
Index HPAM (ppm) Sucrose (%) NaCl (%) 

Thermal 

conductivity 

(W·m-1·K-1) 

Polymer concentration 

1 100 65 1 0.356 

2 200 65 1 0.372 

3 300 65 1 0.366 

Degree of salinity 1 200 65 0 0.362 
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2 200 65 0.1 0.364 

3 200 65 0.5 0.373 

Proportion of solvent 

1 200 0 1 0.563 

2 200 20 1 0.510 

3 200 40 1 0.453 

4 200 65 1 0.362 

 1 

2.3 Data analysis method 2 

 3 

Fig. 2 Schematic diagram of the heat transfer process during experiments 4 

The heat transfer process is schematically drawn in Fig. 2. The amount of heat 5 

flux removed by the cooling plate can be quantitatively calculated by equation (1). 6 

                                               (1) 7 

where δ is the thickness of the acrylic wall, Tinner and Tb are the temperatures of the top 8 

and the bottom surface of the wall, respectively; kacrylic = 0.18 W·m-1·K-1 is the standard 9 

thermal conductivity of acrylic materials. To evaluate the heat transfer performance, 10 

the effective thermal conductivity, k*, and the global heat transfer coefficient, h*, are 11 

adopted here to characterize the heat transfer enhancement inside the bulk fluid and 12 

between the fluid and the wall, which are represented by equations (2) and (3), 13 

respectively:  14 

 15 

                                                        (2) 16 

                                                (3) 17 

𝑄 = 𝑘𝑎𝑐𝑟𝑦𝑙𝑖𝑐 ∙ 𝑇𝑖𝑛𝑛𝑒𝑟 − 𝑇𝑏𝛿  

𝑘∗ = 𝑄𝑇5 − 𝑇1𝑥5 − 𝑥1 ∙ 
ℎ∗ = 𝑄(𝑇𝑎𝑣𝑒 − 𝑇𝑖𝑛𝑛𝑒𝑟) 
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where T1 and T5 are the equilibrated temperature of thermocouples mounted near the 1 

bottom and top plates, respectively; Tave is the average temperature of working fluids 2 

and Tinner is the temperature of the bottom of the fluid container; x1 and x5 indicate the 3 

z-coordinates position of thermocouples T1 and T5. The corresponding Nusselt number 4 

can be obtained by equation (4). 5 

                                                               (4) 6 

2.4 The uncertainties of experimental measurement 7 

The uncertainties of the effective thermal conductivity and the averaged Nu 8 

come from the energy balance equation parameters [50]. The uncertainty of these 9 

experimental results are calculated as: 10 

𝑘∗ = √{(𝜀∆𝑇𝑏∆𝑇𝑏 )2 + (𝜀𝛿𝛿 )2 + (𝜀∆𝑥∆𝑥 )2 + (𝜀∆𝑇𝑙∆𝑇𝑙 )2}                           (5) 11 

𝑁𝑢 = √{(𝜀∆𝑇𝑏∆𝑇𝑏 )2 + (𝜀𝛿𝛿 )2 + (𝜀∆𝐻∆𝐻 )2 + (𝜀∆𝑘∆𝑘 )2 + (𝜀∆𝑇𝑚∆𝑇𝑚 )2}                   (6) 12 

where, k*and Nu are the percent uncertainty in calculating k* and Nu. Tb, Tm, and 13 

Tl, with value of ±0.3 °C, represent the uncertainty of the temperature differences 14 

between bottom walls, liquid and the inner wall, and bottom and top of the bulk liquid, 15 

respectively. δ = ±0.1 mm is the uncertainty of the thickness of the bottom wall. H = 16 

±0.1 mm is the uncertainty of the height between the upper plates and the inner wall of 17 

the bottom. x = ±0.1 mm is the uncertainty of the distance between the T1 and T5. k 18 

= ±2.4% represents the uncertainty of the measurement of thermal conductivities of the 19 

working fluids. The uncertainties for each experiment with different working 20 

conditions could be estimated by the equation (5) and (6). The minimum and maximum 21 

uncertainty values of k* and Nu are demonstrated in Table 2 for all working fluids, 22 

while the others are displayed as error bars in the figures shown in the following 23 

sections. It should be noted that the most uncertainty in determining Nu came from the 24 

measured temperatures of the walls and fluids, approximately over 90% of the total 25 

error, whilst the others such as the determination of the thermal conductivity and the 26 

gap between the two plates contribute the remaining error.  27 

As shown in the later, the agreement between the averaged Nu from the experimental 28 

results and the simulation for the pure sucrose solution suggests the estimated 29 

uncertainties are reasonable. In addition, two repetitive experiments were conducted for 30 

𝑁𝑢∗ = ℎ∗𝐻𝑘  
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the pure sucrose solution and the HPAM solution with 65% sucrose and 1% NaCl. Both 1 

repetitions show similar trends with previous experiments and the measured Nu values 2 

are within the error tolerance.  3 

2.5 Rheology investigation 4 

The rheological properties of working fluids were measured by a cone and plate 5 

geometry in a stress-controlled rheometer (Anton Paar MCR 301) at a temperature of 6 

15 °C, which is similar with the average temperature of bulk fluid. The effects of 7 

polymer concentration on the rheology are shown in Fig. 3. The viscosity increases with 8 

increasing polymer concentration for a given shear rate, which is ascribed to the 9 

increased frictional effects among polymer chains. All curves exhibit a shear-thinning 10 

behaviour whereas a higher polymer concentration induces more dramatic reduction. 11 

Fig. 3(b) shows the response of complex viscosity profiles as a function of angular 12 

velocity for different polymer concentrations. The results show both the out-of-phase 13 

viscosity and in-phase viscosity increase as the polymer concentration increases. The 14 

values for polymer-driven in-phase and out-of-phase viscosity were obtained by 15 

excluding the solvent contribution at same working conditions, p’ = ’-s’ and p” = 16 

”- s”, respectively. Then the polymer relaxation time was calculated according to 17 

equation (7), as shown in Fig. 3(c) for the 200 ppm HPAM solution with 65% sucrose 18 

and 1% NaCl at different shear rates. The dependence of the polymer relaxation time 19 

on the shear rate with different polymer concentration is shown in Fig. 3(d). Both curves 20 

show a clear shear thinning behaviour as a function of the shear rate, with scaling −α, 21 

similar to previous investigation in Ref [51], which also explains why the increase of 22 

Wi is normally slower than the increase of shear rate. In addition, with higher polymer 23 

concentration, the polymer relaxation time becomes longer, leading to an increased 24 

elasticity of HPAM solution, which may contribute to the onset of elastic turbulence or 25 

instability.  26 

𝜆 = lim𝜔→0 {1𝜔 [𝜂𝑃′′(𝜔)𝜂𝑃′ (𝜔)]}                                                         (7) 27 
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Fig. 3 The variations of polymer rheology with polymer concentration. (a) The viscosity 2 

profiles as a function of shear rate with different polymer concentration; (b) The measured 3 

complex viscosity at oscillating mode with different shear rate; (c) Angular frequency 4 

dependence of p”/(p’ω) for 200 ppm polymer solution, (d) The shear rate dependence of 5 

polymer relaxation time with different polymer concentration 6 

Fig. 4 highlights the salinity effects on the rheology of polymer solution. The 7 

presence of salts has a buffering effect, shielding the charges along the polymer chain 8 

with salt cations, resulting in polymer molecules shrinkage and consequent viscosity 9 

reduction. This shrinkage also contributes to the alignment of polymer molecules, 10 

which significantly reduces the shear-thinning phenomenon.  As the shielding effect is 11 

limited by the numbers of charge groups along the polymer chain, a critical salinity 12 

value shall exist, above which the salinity effect become ineffective.  With continuous 13 

increase of the salinity, a so-called poor solvent is obtained, i.e., increasing the polymer 14 

interactions would lead to an increase of viscosity. In such conditions, the salinity is 15 

not the only influential parameter anymore. In this study, the salinity of 1% was 16 

excluded to eliminate the effects of poor solvent. The corresponding relaxation times 17 

with different salinity are concluded in Fig. 4(d).  18 



10 

 

10
-1

10
0

10
1

0

1

2

3

4

10
-1

10
0

10
1

0.0

0.4

0.8

1.2

1.6

2.0

0 1 2 3 4 5 6 7 8

0

2

4

6

8

0 2 4 6

2

4

6

8

10

(c)

  s−1

 
 P

a
s−1

 200 ppm HPAM_65%_Sucrose_0% NaCl

 200 ppm HPAM_65%_Sucrose_0.1% NaCl

 200 ppm HPAM_65%_Sucrose_0.5% NaCl

 / rads−

co
m

p
le

x
 v

is
co

si
ty

 /
 P

a
s−1

 / rads−

 p


(
p


) 
 s

 

  =0.5 s
−1

  =1.0 s
−1

  =2.0 s
−1

  =4.0 s
−1

  =6.0 s
−1

 fitted with  −
 

=−

=−
=−

  s−1

 
 s

 200 ppm HPAM_65%_Sucrose_0% NaCl

 200 ppm HPAM_65%_Sucrose_0.1% NaCl

 200 ppm HPAM_65%_Sucrose_0.5% NaCl

 Fitted curves: −

(d)

(b)(a)

1 

Fig. 4 The variations of polymer rheology with salinity. (a) The viscosity profiles as a function 2 

of shear rate with different salinity; (b) The measured complex viscosity at oscillating mode 3 

with different shear rate; (c) Angular frequency dependence of p”/(p’ω) for 200 ppm polymer 4 

solution with 0% NaCl, (d) The shear rate dependence of polymer relaxation time with different 5 

salinity 6 

Fig. 5 demonstrates the effects of solvent on the rheological properties of 7 

polymer solutions by varying the proportion of sucrose. With the addition of  sucrose 8 

into the polymer solution, as expected, both the viscosity and relaxation time increase, 9 

which is consistent well with previous investigations that the polymer relaxation time 10 

is proportional to the viscosity of solvent [11]. One can see that the difference between 11 

polymer solution with 20% sucrose and 40% sucrose is small, which interprets why at 12 

high applied swirling velocity, the heat transfer enhancement of polymer solution with 13 

20% sucrose is better than that of 40% sucrose.  14 
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Fig. 5 Effects of sucrose proportion on the rheology of polymer solution. (a) Viscosity profiles 2 

of working fluids applied in the following investigation; (b) Shear rate dependence on polymer 3 

relaxation time for polymer solution with different amount of sucrose addition 4 

 5 

3.  Results and Discussions 6 

The heat transfer behaviours of all working fluids were conducted at rotating 7 

speed ranging from 0 to 14 rpm. It should be noted that the shear rate within the bulk 8 

fluids was highly inhomogeneous due to the large gaps between the two parallel plates. 9 

The shear rate hence was modified based on the viscosity profiles for pure sucrose 10 

solutions, as shown in Fig. S1 in the supplementary document. A normalised reduced 11 

temperature θ, calculated as equation (8), was applied to represent the temperature 12 

profiles along the axial direction. 13 𝜃 = 𝑇0−𝑇𝑇0−𝑇𝑏                                                         (8) 14 

3.1 Effects of polymer concentration 15 

The equilibrated reduced temperatures along the vertical direction as a function 16 

of rotating speed with different polymer concentration are shown in Fig. 6. Without 17 

rotation, the temperature distribution along the vertical direction are in layers and the 18 

temperature difference between neighbouring thermocouples are almost similar. With 19 

the top disk starting to rotate, for polymer solutions, the temperature distribution 20 

gradually tends to be homogeneous as the speed increases, which indicates the existence 21 

of irregular flows. In comparison with pure sucrose solution, such flow instability is 22 

attributed to the elastic stress rather than viscous stress due to there is no collapsing 23 

phenomenon observed in the latter case. The interaction between polymer coil-stretch 24 

transition and the primary flow induces the secondary flow along the vertical direction, 25 

which accelerates the heat transfer and unifies the temperature. Especially, when the 26 
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polymer concentration is higher, more numbers of polymer reacts with the primary flow. 1 

Therefore, at same rotation, the concentrated polymer solution intends to generate more 2 

intensive elastic flow instability, which strengthens the temperature homogeneity in the 3 

bulk.4 
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 5 

Fig. 6 Equilibrated reduced temperature profiles of pure sucrose solution and polymer solutions 6 

with different concentration: (a) pure 65% sucrose solution with 1% NaCl, (b) 100 ppm HPAM 7 

sucrose solution with 65 % sucrose and 1% NaCl, (c) 200 ppm HPAM sucrose solution with 8 

65 % sucrose and 1% NaCl, (d) 300 ppm HPAM sucrose solution with 65 % sucrose and 1 % 9 

NaCl 10 

To quantitatively evaluate the onset of elastic instability and the heat transfer 11 

augment due to elastic instability, the effective thermal conductivity and the convective 12 

Nusselt number are shown in Fig. 7 and Fig. 9. The effective thermal conductivity 13 

represents the heat conduction within the bulk. A sharp increase of that could be 14 

regarded as a signal of the onset of elastic instability.  It is clear found that polymer 15 

solution with higher concentration is much easily to induce elastic instability as 16 

demonstrated in Fig. 7(a). The critical rotating speed to induce elastic instability is 17 

estimated varying from 4.2 rpm to 1 rpm when the polymer concentration increases 18 

from 100 ppm to 300 ppm, respectively. The corresponding critical Wic numbers is also 19 

reduced, which is consistent well the previous results in Ref [52]. Indeed, the elastic 20 
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instability is highly dependent on geometry gap ratio, d/R, polymer contribution to 1 

viscosity, p/, and degree of stretching of the polymers by the base flow, Wi. With the 2 

shear thinning phenomenon is probably considered, the elastic instability threshold 3 

could be determined by a parameter K, defined as: 4 𝐾~ 𝜂𝑝𝜂 𝑑𝑅 𝑊𝑖2                                                (8) 5 

The elastic instability then occurs when K exceeds a certain threshold. The 6 

polymer contribution to the viscosity is more significant with the increase of polymer 7 

concentration. Therefore, when the gap ratio is fixed, the Wi at the instability threshold 8 

should depend on it as Wic  (p/)-0.5, which results in the reduction of Wic. In the 9 

present work, the relationship between estimated Wic from the Fig. 7(b) and p/ from 10 

Fig. 3(a) is demonstrated in Fig. 8, where the dependence can be well fitted by the 11 

power law Wi ~ (p/)-α, with the exponent α = 0.6, which is quite close to the expected 12 

value of 0.5. 13 

 

0 1 2 3 4 5

0

5

10

15

0 1 2 3 4 5

0

10

20

30 100ppm HPAM_65%sucrose_1%NaCl

 200ppm HPAM_65%sucrose_1%NaCl

 300ppm HPAM_65%sucrose_1%NaCl

 65% sucrose_1%NaCl

k*
 /

 W
m

 1
K

 1

n / rotmin
-1

n
c
 = 1 rpm


c
 = 3 s

n
c
 = 2 rpm


c
 = 1.9 s

n
c
 = 4.2 rpm


c
 = 1.3 s

(b)

Wi
c
=1.8

Wi

 300 ppm HPAM_65% sucrose

 200 ppm HPAM_65% sucrose

 100 ppm HPAM_65% sucrose

 65% sucrose

 Linear fitting curve

 Exponential fitting curve

 Exponential fitting curve

 Exponential fitting curve

Wi
c
=1.4

k*
 /

 W
m

 1
K

 1

(a)

Wi
c
=2.5

 14 

Fig. 7 The variations of effective thermal conductivity with different polymer concentrations 15 

(a) as a function of rotating speed and (b) as a function of Wi 16 
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Fig. 8 The generalized Wic number as a function of p/ at the onset of elastic instability 1 

with different polymer concentrations 2 

After the occurrence of elastic instability, a remarkable rise of k* appears. For 3 

a given swirling flow, the polymer solution with higher concentration exhibits better 4 

heat transfer performance within the bulk, indicates that the degree of flow irregularity 5 

intensifies as the polymer concentration increases, which results in more heat is 6 

transferred between flow layers. The enhancement of effective thermal conductivity for 7 

the 300 ppm polymer solution could reach to 23 times larger than that of sucrose 8 

solution, which is even higher than the enhancement of inertial turbulence of a 9 

Newtonian fluid in swirling flow at Re=2500 [53], where 10 times incremental was 10 

obtained.   11 
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Fig. 9 The variations of convective heat transfer performance with different polymer 13 

concentration (a) as a function of rotating speed and (b) as a function of Wi 14 

Fig. 9(a) demonstrates the Nu between wall and fluid against degree of rotation 15 

with different polymer solutions. Similar trends are observed with the results of 16 

effective thermal conductivity. The Nu increases with increasing the polymer 17 

concentration. When n=10 rpm, the convective heat transfer of 300 ppm HPAM 18 

solution can reach to 6 times more efficiency than that of the sucrose solution, which is 19 

in same orders with previous studies [32, 34, 37]. The small discrepancy is ascribed to 20 

the polymer properties and streamline curvature of the geometry. As discussed above, 21 

when the rotating speed is fixed, higher polymer concentration allows more polymer 22 

molecules to be stretched by the primary flow. Therefore, more elastic energies are 23 

diffused into flow kinetic energy, resulting in more dramatic turbulent behaviours, 24 

reducing the thermal boundary layer near the wall and transferring the heat more rapidly. 25 
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However, this dependence becomes different when the k* and Nu are 1 

demonstrated as a function of Wi, where the polymer relaxation discrepancy is 2 

normalised. The polymer solutions with higher concentration still show slight heat 3 

transfer enhancement before the elastic instability is induced in lower concentration 4 

polymer solution. After the occurrence of the elastic instability, continually increase Wi,  5 

a steep enhancement in heat transfer is observed for all polymer solutions with the Nu 6 

collapsing linearly by Nu  1.2Wi, which is consistent well with the observations from 7 

Ref.[34]. In dilute polymer solutions, due to the presence of the high salt concentrations, 8 

the shear thinning phenomenon is not such dramatic. Therefore, when the stretching 9 

degree of polymer solution (characterised by Wi) is in same level, the intensity of elastic 10 

instability should be similar, and the concomitant heat transfer enhancement shows 11 

similar behaviours. However, it should be mentioned that the saturation of fully 12 

developed elastic turbulence is limited by the polymer concentration. More numbers of 13 

polymer contribute to the stronger flow intensifications, which also implies that the 14 

experiments conducted here, the flow is still in transition regime and on its way to fully 15 

developed elastic turbulence.  16 

3.2 Effects of salinity 17 

In this section, the effects of salinity on the heat transfer performance are 18 

investigated. Fig. 10 describes the equilibrated reduced temperature distribution against 19 

rotating speed with different salinity. Increasing salinity makes the temperature 20 

distribution curves more difficult to converge. Especially, when the salinity is 0.5 %, 21 

even at the maximum applied rotating speed, the temperature distribution is still in 22 

layers, which indicates the flow haven't been fully perturbed. The salinity effect on the 23 

onset of elastic instability is estimated from the Fig. 11. The polymer solution with 24 

lower salinity is capable of inducing elastic instability at relatively smaller rotating 25 

velocity, n = 0.5 rpm, thereby perturbing the flow and intensifying the heat transfer 26 

within the bulk. While increasing the salinity, more driven forces and higher rotating 27 

velocity, n = 3.8 rpm are required to trigger the flow instability. As discussed above, 28 

with presence of salt cations, the polymer is shielded into a coiled state, leading to the 29 

reduction of the polymer relaxation time and viscosity. Therefore, the polymer solution 30 

with high salinity behaves more like Newtonian fluid and has less elasticity. In order to 31 

achieve the polymer coil-stretch transition, additional forces are required to overcome 32 
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the shielding effects and the occurrence of the elastic turbulence is postponed 1 

consequently.    2 

The reduction of the salinity, on the other hand, induces significant shear-3 

thinning phenomenon due to the realignment of the elongated polymer chains, which 4 

enlarges the polymer contributions to the viscosity. As a result, the critical Wic on the 5 

onset of elastic instability decreases. The dependence of estimated Wic from the Fig. 11 6 

on the p/ is shown in the Fig. 12. The results can still be fitted with power law Wi ~ 7 

(p/)-α. However, rather than expected value of 0.5, the exponent α goes higher to 0.95, 8 

which is consistent with our previous investigations [54]. The additional effects by 9 

shear-thinning which cannot be captured by the standard criterion of the onset of elastic 10 

instability were also investigated in curvilinear channel [34, 55]. The detailed 11 

mechanism of such effects is still missing. One possible interpretation is that there is an 12 

existence of second normal-stress difference may lead to a stabilizing effect of the flow. 13 

The magnitude of the second normal-stress difference is small compared to the first 14 

normal-stress difference (which is characterised by Wi) for weak shear thinning fluids. 15 

However, for strong shear-thinning fluids the second normal-stress difference may 16 

become important, and postpone the increase of the elastic instability, which as shown 17 

in Fig. 13, the Nu increases slowly with Wi for polymer solution with low salinity. 18 
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Fig. 10 Equilibrated reduced temperature profiles for polymer solutions with different salnity: 20 

(a) 200 ppm HPAM solution without salt; (b) 200 ppm HPAM solution with 0.1% NaCl; (c) 21 

200 ppm HPAM solution with 0.5% NaCl 22 

The effective thermal conductivity and convective Nusselt number with various 23 

salinity are displayed in Fig. 11 and Fig. 13, respectively. With same rotating velocity, 24 

the polymer solution with lower salinity exhibits better heat transfer performance which 25 

is mainly because the polymer relaxation time reduction by shielding effect decreases 26 

the elastic nonlinearity. However, this trend is different when the degree of the rotation 27 

exceeds a certain value, here n=10 rpm in this study. Similar Nu values which are 28 
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approximately 6 time higher than sucrose solution are obtained for all working fluids. 1 

Indeed, the total shear stress of the upper plate and the frequency power spectra of the 2 

flow velocity in the fully elastic turbulence regime are independent on salinity but 3 

limited by polymer concentration as shown in our previous study [54]. Therefore, the 4 

elastic flow irregularities on the primary flow are in similar level, which results in the 5 

analogous heat transfer augment. With such intensive flow irregularity, the motion of 6 

the salt ions and the polymer molecules is random and disordered, weakening the static 7 

electronic repulsion between each other, making the shielding effect insufficient 8 

Particularly, the Nu of the polymer solution with 0.5 % NaCl is smaller than that of 9 

other solutions with lower salinity, which is mainly because the elastic instability has 10 

not fully evaluated across the whole bulk fluid. 11 
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Fig. 11 Effects of degree of salinity on the effective thermal conductivity (a) as a function of 13 

rotating speed; (b) as a function of Wi 14 
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Fig. 12 The generalized Wic number as a function of p/ at the onset of elastic instability due 16 

to the existence of salt  17 

It also should be noticed that the heat transfer enhancement after the occurrence 18 

of elastic instability for higher salinity seems to be more rapid, which also can imply 19 
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the insufficient effects of shielding effect at high swirling velocity. The onset of elastic 1 

instability is suppressed by the reduction of the polymer elasticity due to the shielding 2 

effect of cations. The more amounts of cations are, before the critical value based on 3 

the limitation of carboxylate groups are reached, the stronger the shielding forces are, 4 

and the more difficult for polymer solution to be perturbed. However, if the shielding 5 

effect is overcome by additional driven forces (increasing rotating speed), the elastic 6 

instability is induced, and the concomitant heat transfer performance increases. As 7 

discussed above, with increasing the flow velocity the shielding effect weakens, 8 

accelerating the flow irregularity and relative the heat transfer enhancement close to the 9 

polymer solution without salt.  10 
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Fig. 13 Effects of degree of salinity on the convective heat transfer performance (a) as a function 12 

of rotating speed; (b) as a function of Wi  13 

The salinity is not only reducing the polymer elasticity but also weaken the 14 

shear-thinning degree, which also has significant influences on the elastic instability or 15 

turbulence. By normalising the polymer elasticity, the variations of k* and Nu* as a 16 

function of Wi are presented in Fig. 11(b) and Fig. 13(b), respectively. Unlike the 17 

discussion for the effects of polymer concentration, the increase of Nu as a function of 18 

Wi is no longer concreated into a single curve but is highly dependent on the shear-19 

thinning degree, indicating that the Nu is a function of both Wi and the degree of shear-20 

thinning of the fluids. The significant shear-thinning phenomenon suppresses the 21 

evolution of Nu. As discussed above, for strong shear-thinning fluids, a stable 22 

secondary flow prevents the development of the flow instability, leading to the heat 23 

transfer enhancement increases slowly without expectation. Indeed, the shear rate 24 

inside the flow is more significant non-uniform of a strong shear-thinning fluid and 25 

these various gradients of shear force could balance with stretch of polymer to somehow, 26 
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which, as a result, the flow becomes stable and exhibits less heat transfer enhancement. 1 

The effects of shear thinning are quite complicated and further investigations are 2 

required to reveal the mechanism. 3 

3 Effects of solvent concentration 4 
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Fig. 14 Equilibrated reduced temperature profiles for polymer solutions with different amounts 6 

of sucrose addition: (a) pure water (b) 200 ppm HPAM solution without sucrose; (c) 200 ppm 7 

HPAM solution with 20% sucrose; (d) 200 ppm HPAM solution with 40% sucrose; (e) 200 8 

ppm HPAM solution with 65% sucrose 9 

The solvent effects were conducted in this section by varying the proportion of 10 

the sucrose of the polymer solution. The reduction of sucrose is expected to decrease 11 

the viscosity of the polymer solution as well as weaken the polymer relaxation capacity, 12 

which leads to a higher Re and a lower Wi at a given shear rate. On one hand, the 13 

increase of Re intensifies the inertial nonlinearity and makes the flow more instable. On 14 

the other hand, the highly reduction of the polymer relaxation time is less capable of 15 

inducing the elastic instability. The temperature distribution and the heat transfer 16 

performance for pure water were presented in Fig. 14 and 16, respectively. Compared 17 

with those of 65% sucrose solution, a clear increase of Nu is observed, which indicates 18 

the existence of the inertial instability. Therefore, by changing the proportion of sucrose 19 

from 65% to 0%, the flow instability is not solely driven by the elastic stress. A so 20 

called inertial-elastic instability should be considered instead. Based on the Nu profiles 21 

of water solution, the inertial nonlinearity could be neglected below n=7 rpm. 22 
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Besides the pure water solution, the reduced temperature distribution of 1 

polymer solutions with different sucrose concentrations are also shown in Fig.14. The 2 

temperature curves of polymer solutions without sucrose and with 65% sucrose additive 3 

are first collapsing, sequentially followed by polymer solutions with 20% sucrose and 4 

40% sucrose, respectively, which indicates that the onset of flow instability is first 5 

postponed by increase the sucrose concentration and continually increasing will make 6 

the flow instability more easily induced. This could also be implied from the heat 7 

transfer performance in Fig. 16(b) at n < 7 rpm, where the flow instability is mainly 8 

ascribed to elastic instability. The instability criterion presented in equation (8) may not 9 

capture the effects of shear-thinning, however one can hope it still can serve least as a 10 

guide for a scaling relation in this case. The effects of addition of sucrose on the 11 

rheological properties of polymer solution is complicated. In the first place, the polymer 12 

contribution to the viscosity decreases with increasing the sucrose concentration as 13 

shown in Fig.15, which indicates a relatively smaller critical Wic is required to trigger 14 

the elastic instability. When the shear rate is fixed, the polymer solution with short 15 

polymer relaxation time can trigger the elastic instability. For another, the addition of 16 

sucrose enhances the polymer elasticity and concomitant polymer relaxation time 17 

becomes larger. Therefore, the occurrence of the elastic instability is determined by the 18 

combination of these two effects. When the sucrose concentration has not reach as high 19 

as 65 %, the polymer contribution to the viscosity is dominant, which makes the 20 

polymer solution with lower sucrose concentration is more easily to induce the elastic 21 

instability. However, when the sucrose concentration saturates at 65 %, the significant 22 

increase of the polymer relaxation time makes the polymer solution even at low shear 23 

rate can become instable. As a result, at low rotating speed of n < 7 rpm, the polymer 24 

solution with 65 sucrose shows best heat transfer performance, followed by 0%, 20% 25 

and 40%, respectively. 26 
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Fig. 15 The variations of polymer contribution to the viscosity with different sucrose addition 2 

With increase of the rotating speed, the inertial instability exists after n > 7 rpm, 3 

where the heat transfer enhancement is not sole driven by the elastic instability and it 4 

should be influenced by the coupling effects between inertial and elastic nonlinearity. 5 

The heat transfer enhancement of the polymer solutions with 65 % sucrose is still most 6 

significant, followed by 20%, 0% and 40%, respectively. Compared with the pure 7 

HPAM solution, the HPAM solution with 20% sucrose can generate more intensively 8 

elastic irregularity due to the improvement of the polymer relaxation time, and the 9 

corresponding heat transfer performance increases. Continually increasing the sucrose 10 

concentration to 40%, the polymer elasticity does not change significantly, while the 11 

Re decreases rapidly which weakens the inertial instability and makes the heat transfer 12 

performance of the polymer solution with 40% sucrose even worse than pure HPAM 13 

solution without sucrose addition. Indeed, the elasticity numbers, El, of the polymer 14 

solutions with 20% and 40% sucrose are similar as shown in Fig. S4. The elasticity 15 

number represents the relative importance of elastic stress to inertial effect. With same 16 

El, the flow tends to small-scale vortex at high Re but large-scale at low Re. This small-17 

scale vortex is much closer to the turbulent-like behaviours and results in a more 18 

significant enhancement of heat transfer [56]. When the sucrose concentration reaches 19 

to 65%, though the inertial nonlinearity does not exist anymore, the strong elastic 20 

nonlinearity perturbs the flow and enhance the heat transfer consequently. It also 21 

reveals that the heat transfer enhancement based on elastic instability at low flow rate 22 

is more dramatic than that based on inertial instability. Due to the low flow velocity, 23 
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the inertial instability is far from the turbulence region thereby the degree of flow 1 

irregularity is not strong enough. In other words, the elastic instability or elastic 2 

turbulence does a promising method for heat transfer intensification at low Re 3 

conditions. 4 

0 2 4 6 8 10 12 14

0

4

8

12

16

20

0 2 4 6 8 10 12 14

3

6

9

12

15

18

n / rotmin
-1

k
*
 /

 W
m

-1
K

-1

 200 ppm HPAM 0% sucrose

 200 ppm HPAM 20% sucrose

 200 ppm HPAM 40% sucrose

 200 ppm HPAM 65% sucrose

 water

Inerial-Elastic

 instability

(b)

n / rotmin
-1

N
u

 200 ppm HPAM 0% sucrose

 200 ppm HPAM 20% sucrose

 200 ppm HPAM 40% sucrose

 200 ppm HPAM 65% sucrose

 water

7(a)

Elastic instability

 5 

Fig. 16 Effects of sucrose concentration on (a) effective thermal conductivity; (b) Nusselt 6 

number as a function of rotating speed. 7 

It is also should be noticed that the profiles of the effective thermal conductivity 8 

and convective Nu show different trends especially for polymer solutions with 0% and 9 

20% sucrose. The effective thermal conductivity is dependent on the temperature 10 

distribution, which is highly sensitive with the onset of flow instability. It cannot reveal 11 

the amounts of heat removal from the wall, which is ascribed to the intensity of flow 12 

irregularity. Therefore, both the effective thermal conductivity and convective surface 13 

Nu are required to investigate the heat transfer performance within the bulk and between 14 

wall and liquid. In addition, the thermal conductivity of working fluids is different. The 15 

thermal conductivity decreases with increasing the sucrose concentration and such 16 

reduction declines the effective thermal conductivity as well. However, this 17 

discrepancy is delimited when calculates the Nu due to its definition. 18 

4. Conclusions 19 

Convective heat transfer performance under various polymer sensitive factors 20 

were investigated in a swirling flow configuration between two parallel disks. The 21 

bottom disk was cooled as a constant temperature of 5 °C with thermocouples mounted 22 

both on the wall and inside the flow, the Nu dependences on polymer concentration, 23 

solvent concentration and degree of salinity were achieved. The following conclusions 24 

can be obtained: 25 
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1. With the increase of the polymer concentration and reduction of the salinity, the 1 

onset of elastic instability shifts to an earlier critical swirling velocity and 2 

Weissenberg number. The heat transfer enhancement begins after the 3 

occurrence of elastic instability. 4 

2. For a given swirling velocity, the enhancement increases with increasing 5 

polymer concentration. The maximum enhancement is dependent on polymer 6 

concentration. For a polymer solution with 300 ppm, the convective Nusselt 7 

number could reach more than 6 time higher than that of pure sucrose solution 8 

at the maximum rotating speed. After the occurrence of the elastic instability, 9 

the heat transfer enhancement exhibits linear relationship on Wi, i.e., Nu/Nus  10 

1.2Wi, which is independent on polymer concentration. This independence is 11 

attributed to the small discrepancies of shear-thinning in the dilute regime. 12 

3. At low rotating speeds, the heat transfer enhancement increases with the 13 

reduction of the salinity for a giving swirling velocity. However, the 14 

enhancement becomes independent on the salinity when the swirling velocity 15 

exceeds a critical value, which is possible due to the reduction of the shielding 16 

effect. It becomes clear that the salinity influences the onset of elastic instability, 17 

but the maximum enhancement is limited by the polymer concentration. In 18 

addition, due to the significant discrepancies of shear-thinning, the Nu 19 

dependence on Wi varies with different salinities. The polymer solution with 20 

low salinity shows more dramatic shear-thinning phenomenon, suppressing the 21 

increase of the heat transfer enhancement. 22 

 23 

4. The effects of solvent concentration on the enhancement is complicated due to 24 

the coupling effects between inertial and elastic nonlinearity. However, the 25 

enhancement based on pure elastic instability is the most dramatic and 26 

promising at low Reynolds numbers. 27 
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