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Abstract

As evidenced by an extensive empirical literature, multiplicative error models (MEM)

show good performance in capturing the stylized facts of nonnegative time series; ex-

amples include, trading volume, financial durations, and volatility. This paper devel-

ops a bootstrap based method for producing multi-step-ahead probability forecasts

for a nonnegative valued time-series obeying a parametric MEM. In order to test the

adequacy of the underlying parametric model, a class of bootstrap specification tests

is also developed. Rigorous proofs are provided for establishing the validity of the

proposed bootstrap methods. The paper also establishes the validity of a bootstrap

based method for producing probability forecasts in a class of semiparametric MEMs.

Monte Carlo simulations suggest that our methods perform well in finite samples. A

real data example illustrates the methods.
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1 INTRODUCTION AND MOTIVATION

Statistical models for non-negative random variables have been used in many areas,

including finance, economics, health sciences, and engineering. In finance, the family

of multiplicative error models plays a key role in modelling non-negative valued time

series processes (Engle, 2002; Pacurar, 2008). For example, they have been used for

modelling financial durations (Engle and Russell, 1998; Allen et al., 2008; Gao et al.,

2015), trading volume of orders (Manganelli, 2005), high-low range of asset prices

(Chou, 2005), spikes in electricity price (Christensen et al., 2012), absolute value of

daily returns (Engle and Gallo, 2006), and realized volatility (Brownlees et al., 2012).

This paper develops new methodology for producing multi-step ahead probability

forecasts for a nonnegative valued time-series obeying a multiplicative error model.

To complement the proposed methods a class of specification tests is also proposed.

Let {Zi : i ∈ Z} denote a series of nonnegative random variables, for example

realized volatility, where Z := {0,±1,±2, · · · }. A multiplicative error model [MEM]

takes the form,

Zi = Ψiεi, (1)

where Ψi is a function of the past information set at time i, denoted Hi−1, {εi}
are independent and identically distributed [iid] with unit mean and finite variance,

and εi is independent of Hi−1 (i ∈ Z); hence Ψi is identified as the conditional mean

of Zi given Hi−1 (i ∈ Z). Let F0 denote the distribution function of εi. Broadly, the

objective of this paper is to develop new methods for forecasting in MEMs. More

specifically, we are interested in constructing probability forecasts for future values

of Zn+k and Ψn+k, for some positive integer k; for example, multi-step-ahead interval

forecasts for Zn+k or prediction bounds for Ψn+k, assuming that the observations

{Z1, . . . , Zn} up to the current time n are available.

The existing methods for forecasting in MEMs are mainly based on point forecasts

(see Engle and Russell, 1997; Dufour and Engle, 2000; Bauwens and Giot, 2001;

Hautsch, 2011; Luca et al., 2017) and evaluating one-step-ahead density forecasts

(Bauwens et al., 2004; Corsi et al., 2008; Hautsch et al., 2014). Although such methods

have been widely used in empirical studies (see Bauwens and Giot, 2000; Fernandes

and Grammig, 2005; Engle and Gallo, 2006; Corsi et al., 2008; Gao et al., 2015 and

references there in), the literature is scant on methods for interval forecasts or multi-

step-ahead density/distribution forecasts. However, in risk management, for example

in managing financial investments, one needs to take into account of the forecast of

not only the very next observation, but also of those observations that are several

steps ahead. Hence, our focus on multi-step-ahead forecasting in MEMs is of interest.
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This paper develops bootstrap based methodology for producing probability fore-

casts in MEMs by considering two distinct approaches under different assumptions:

(A) Semiparametric approach: we assume a parametric model for Ψi but not for F0,

and develop a semiparametric method for forecasting, which includes a semiparamet-

ric component for estimating F0, (B) Parametric approach: in addition to the para-

metric model for Ψi in the previous approach, we also assume a parametric model

for F0, and develop a fully parametric method for probability forecasting. To com-

plete the methodology, we also develop a method for testing the adequacy of the

parametric specifications of Ψi and F0. Depending on the nature of the application of

interest, each of the aforementioned parametric and semiparametric approaches have

advantages and disadvantages, but none would be uniformly better than the other.

For example, under the correct specification of the MEM, the parametric approach is

expected to be more efficient than the semiparametric approach. However, in some

empirical applications, it is of interest to produce probability forecasts that rely only

on the specification of the conditional mean but do not require any parametric as-

sumptions on the error distribution. Hence, the semi parametric approach is also of

interest. Thus, it is of interest to develop the methodology for both these approaches.

Several bootstrap based methods that use a semiparametric approach similar to (A)

have been considered for producing probability forecasts in additive and conditionally

heteroscedastic time series models; see Christoffersen and Goncalves (2005), Pascual

et al. (2006), Chen et al. (2011), Mancini and Trojani (2011), and Mazzeu et al. (2017),

amongst others. However, the validity of bootstrap based probability forecasting, in

the context of MEMs, has not been discussed so far in the literature.

In summary, this paper makes the following main methodological contributions:

(1) First, we propose and establish the validity of a bootstrap method in paramet-

ric MEMs for constructing multi-step ahead probability forecasts, including distri-

butional forecasts, for Zn+k and Ψn+k, conditional on {Z1, . . . , Zn} (k = 2, 3, . . .).

(2) We extend the aforementioned parametric method to a semiparametric MEM that

does not specify a parametric form for F0. (3) To support the parametric method,

we develop a bootstrap based testing procedure for fitting a parametric MEM. We

state the regularity conditions used in the proof of each method, and provide rigorous

proofs for the validity of each of the aforementioned three methods. To demonstrate

that our regularity conditions are reasonable, we also show that they are satisfied by

MEM(p1, p2), which is perhaps the most widely used MEM.

One attractive feature of the proposed methods is that they have intuitively ap-

pealing simple structure, and are easy to program. The methods also perform well in

an extensive simulation study. Further, in an illustrative real data example, the proba-
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bility forecasts produced by the semiparametric method perform reasonably well, and

those produced by the parametric method perform better. These results indicate that

the methods we develop for probability forecasting are of practical interest.

The rest of this paper is structured as follows. Section 2 formulates the prob-

lem, defines the probability forecasts and test statistics, and provides several results

relating to the asymptotic validity of the proposed methods. Section 3 describes a

simulation study. A real data example involving daily annualized realized volatility

constructed from intraday spot price data for the S&P500 index, is provided in Sec-

tion 4. Section 5 concludes the paper. Appendix A contains some of the main proofs.

The details of the simulation results, additional figures for the empirical example, and

some of the omitted proofs are provided in an online supplementary material.

2 MAIN RESULTS

Let the class of MEMs and the definitions of Zi, εi,Hi, and F0 be as in the Intro-

duction. Let p and q be known positive integers. Let the transpose of any vector

or matrix be denoted by the superscript “⊤”. We say that a sequence of random

variables {Xi : i = 1, 2, · · · } converge exponentially almost surely to zero, denoted

Xi
e.a.s.→ 0, if there exist a γ > 1 such that γiXi → 0 almost surely (a.s.) as i → ∞.

Let F = {Fθ : θ ∈ Θ ⊂ R
q} be a given family of distribution functions, where Fθ has

mean 1, variance 0 < σ2
θ < ∞, and almost everywhere (a.e.) positive density fθ. Let

R
+ := [0,∞). Let A = {Ψi(φ) : φ ∈ Φ ⊂ R

p} be a given parametric family defined by

Ψi(φ) := gφ(Zi−1, · · · , Zi−p1 , Ψi−1, · · · , Ψi−p2), φ ∈ Φ, (2)

where {gφ, φ ∈ Φ} denotes a parametric family of nonnegative functions on (R+)p1+p2

with p1, p2 ≥ 0 being known integers. In many parametric MEMs, the conditional

mean Ψi := E(Zi | Hi−1) can be written in the general form in (2). For example, the

linear MEM of Engle and Russell (1998), denoted MEM(p1, p2), is given by Ψi(φ) =

α +
∑p1

j=1 βjZi−j +
∑p2

j=1 γjΨi−j(φ), where φ = (α, β1, . . . , βp1 , γ1, . . . , γp2)
⊤.

Let us assume that Φ(⊂ R
p) and Θ(⊂ R

q) are compact subsets, and

(Ψi, F0) ∈ A× F (3)

with the true parameter vector, denoted (φ⊤
0 , θ

⊤
0 )

⊤, being an interior point of Φ×Θ.

Let {Z1, . . . , Zn} be a sequence of n observations generated by the MEM given

by (1), (2) and (3); this defines a parametric form for the entire conditional distri-

bution of Zi given Hi−1. Our objective is to obtain asymptotically valid probability

forecasts for Zn+k and Ψn+k, for a given integer k > 1, conditional on {Z1, . . . , Zn}.
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Let us first outline the method of estimating the model defined by (1), (2) and (3).

Note that, the function Ψi(φ) in (2) depends on the unobserved part of the process

{. . . , Z−1, Z0} extending back to the infinite past. For example, in the MEM(1,1)

model, we have Ψi(φ) = α(1− γ)−1 + β
∑∞

j=1 γ
j−1Zi−j. Hence, to approximate Ψi(φ)

based on {Z1, . . . , Zn}, we use a sample estimate, denoted Ψ̃i(φ), obtained by assuming

(Z0, · · · , Z1−p1 , Ψ0, · · · , Ψ1−p2)
⊤ = ς0, where ς0 = (z0, · · · , z1−p1 , s0, · · · , s1−p2)

⊤ is a set

of suitable starting values in (R+)p1+p2 ; it will be shown later that the effect due to

the choice of the starting values is asymptotically negligible.

In view of Proposition 3.12 of Straumann and Mikosch (2006), if the family {gφ}
satisfies certain random coefficient Lipschitz conditions, then, irrespective of the start-

ing value ς0,

sup
φ∈Φ

|Ψ̃i(φ)− Ψi(φ)| e.a.s.→ 0, i → ∞, (4)

where
e.a.s.→ 0 denotes the exponential almost sure convergence to 0, as defined earlier.

In the case of the MEM(1,1), a sufficient condition for (4) is, E supφ∈Φ[log(βε1+γ)] <

0. A number of other MEMs, including the MEM(p1, p2) of Engle and Russell (1998),

also satisfy (4), under similar conditions.

Since (1), (2) and (3) specify a fully parametric MEM, it is appropriate to estimate

the model by maximum likelihood (ML). To this end, let ζ = (φ⊤, θ⊤)⊤ denote an

arbitrary point in Φ×Θ, and let ζ0 = (φ⊤
0 , θ

⊤
0 )

⊤ be the true value in (3). Let

χ̃i(ζ) := log Ψ̃i(φ)− log
[
fθ{Zi/Ψ̃i(φ)}

]
and Υ̃n(ζ) :=

n∑

i=1

−χ̃i(ζ),

where fθ denotes the probability density function [pdf] of the distribution function Fθ.

Consider the estimator ζ̂ = (φ̂⊤, θ̂⊤)⊤ of ζ0 defined by

ζ̂ = argmaxζ∈Φ×ΘΥ̃n(ζ). (5)

This is not the true ML estimator, because the objective function Υ̃n is based on Ψ̃i

instead of the true conditional mean function Ψi. Therefore, we refer to the estima-

tor ζ̂ as the approximate maximum likelihood estimator (AMLE). The true likelihood

function that corresponds to Ψi is defined by

Υn(ζ) :=
n∑

i=1

−χi(ζ), χi(ζ) := log Ψi(φ)− log [fθ{Zi/Ψi(φ)}] . (6)

The summands in (6) are stationary and, under (4), n−1Υ̃n approximates n−1Υn with

an error decaying to zero as n → ∞. By using these properties, and several regularity

conditions, we show that ζ̂ is consistent and asymptotically normal; see Appendix A.1.

In the next subsection we introduce the bootstrap method that we propose for

producing probability forecasts for MEMs by using Ψi(φ), Fθ, and the estimator ζ̂.
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2.1 Bootstrap probability forecasts: parametric approach

In this subsection we continue to assume the parametric MEM specified by (1), (2)

and (3). In order to produce probability forecasts for Zn+k and Ψn+k conditional on

the realized values {Z1, . . . , Zn}, we propose the following bootstrap procedure:

Step 1: Compute the estimate ζ̂ = (φ̂⊤, θ̂⊤)⊤ using the observed sample {Z1, . . . , Zn}.
Step 2: Generate m+ n+ 1 independent observations, ε∗−m, . . . , ε

∗
n from Fθ̂.

Step 3: Generate Z∗
−m, . . . , Z

∗
n recursively by

Z∗
i = Ψ ∗

i (φ̂)ε
∗
i , Ψ ∗

i (φ) := gφ(Z
∗
i−1, · · · , Z∗

i−p1
, Ψ ∗

i−1(φ), · · · , Ψ ∗
i−p2

(φ)), φ ∈ Φ,

i = −m, . . . , n, with (Z∗
−m−1, · · · , Z∗

−m−p1
, Ψ ∗

−m−1, · · · , Ψ ∗
−m−p2

)⊤ = ς0.

Step 4: Discard {Z∗
−m, . . . , Z

∗
0}, and use {Z∗

1 , . . . , Z
∗
n} as the bootstrap sample.

Step 5: Compute the bootstrap analogue ζ̂∗ = (φ̂∗, θ̂∗)⊤ of ζ̂ based on {Z∗
1 , . . . , Z

∗
n},

and generate k independent observations, ε∗n+1, . . . , ε
∗
n+k from Fθ̂.

Step 6: Generate Ž∗
n+k and Ψ̌ ∗

n+k(φ̂
∗) recursively, by

Ž∗
n+i = Ψ̌ ∗

n+i(φ̂
∗)ε∗n+i, i = 1, . . . , k,

Ψ̌ ∗
n+i(φ) := gφ(Ž

∗
n+i−1, · · · , Ž∗

n+i−p1
, Ψ̌ ∗

n+i−1(φ), · · · , Ψ̌ ∗
n+i−p2

(φ)), φ ∈ Φ,

with (Ž∗
n, · · · , Ž∗

n+1−p1
, Ψ̌ ∗

n, · · · , Ψ̌ ∗
n+1−p2

)⊤ = (Zn, · · · , Zn+1−p1 , Ψ̃n, · · · , Ψ̃n+1−p2)
⊤.

Step 7: Repeat Steps 2–6, B number of times and obtain the bootstrap replicates,

{Ž∗(1)
n+k, . . . , Ž

∗(B)
n+k } for Ž∗

n+k, and {Ψ̌ ∗(1)
n+k(φ̂

∗), . . . , Ψ̌
∗(B)
n+k (φ̂

∗)} for Ψ̌ ∗
n+k.

Step 8: Produce the required probability forecasts by using the empirical distributions

of {Ž∗(1)
n+k, . . . , Ž

∗(B)
n+k } and {Ψ̌ ∗(1)

n+k(φ̂
∗), . . . , Ψ̌

∗(B)
n+k (φ̂

∗)}; for example, with

GB,Ž∗,k(x) :=
1

B

B∑

b=1

I
{
Ž

∗(b)
n+k ≤ x

}
and GB,Ψ̌∗,k(x) :=

1

B

B∑

b=1

I
{
Ψ̌

∗(b)
n+k(φ̂

∗) ≤ x
}
, (7)

where I(·) denotes the indicator function, the 100(1 − ω)% prediction intervals for

Zn+k and Ψn+k, for 0 < ω < 1, can be obtained as

[G−1
B,Ž∗,k

(ω/2), G−1
B,Ž∗,k

(1− ω/2)] and [G−1
B,Ψ̌∗,k

(ω/2), G−1
B,Ψ̌∗,k

(1− ω/2)], (8)

respectively, and 100(1−ω)% upper prediction bounds for Zn+k and Ψn+k are given by

[0, G−1
B,Ž∗,k

(1− ω)] and [0, G−1
B,Ψ̌∗,k

(1− ω)], 0 < ω < 1. (9)

Later we show that the bootstrap method outlined in Steps 1–8 is asymptotically

valid, and that GB,Ž∗,k(x) and GB,Ψ̌∗,k(x) in (7) mimic the conditional distributions

of Zn+k and Ψn+k in large samples. In view of this, one may use {Ž∗(1)
n+k, . . . , Ž

∗(B)
n+k }
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and {Ψ̌ ∗(1)
n+k(φ̂

∗), . . . , Ψ̌
∗(B)
n+k (φ̂

∗)}, to produce various probability forecasts, and to ap-

proximate the pdfs (i.e. to produce density forecasts) of Zn+k and Ψn+k, conditional

on {Z1, . . . , Zn}. In this study, we illustrate the details for producing interval fore-

casts for Zn+k and Ψn+k as in (8) and (9). Similarly, other measures of uncertainty

related to Zn+k and Ψn+k, conditional on {Z1, . . . , Zn}, may also be produced; useful

examples include value-at-risk, expected utility, quantile forecasts, and sharpe-ratio.

The validity of the bootstrap method we propose by Steps 1–8 depends on the

conditional distribution of Zi specified by Ψi(φ) and Fθ. Therefore, prior to applying

the proposed method it is important to test the goodness-of-fit of (1), (2) and (3).

For this purpose, we develop a bootstrap testing procedure in Section 2.4. In the

next subsection, we propose a method for producing probability forecasts by using a

semiparametric approach which does not assume a parametric form for F0.

2.2 Bootstrap probability forecasts: semiparametric approach
(based on the empirical distribution of the residuals)

The probability forecasts in Section 2.1 require parametric specifications of both the

conditional mean Ψi and the error distribution F0. However, in some empirical ap-

plications, it is of interest to produce probability forecasts that rely only on the

specification of the conditional mean but do not require any parametric assumptions

on the error distribution. In fact, there are several tests available in the literature

for fitting a parametric model for Ψi without making any parametric assumptions

on F0 (see Hidalgo and Zaffaroni, 2007; Koul et al., 2012; Perera and Koul, 2017).

Therefore, in this section, we propose a method to produce probability forecasts by us-

ing bootstrap replicates obtained from the empirical distribution of the standardized

residuals instead of using the parametric distribution Fθ̂. This method can be viewed

as a variant of the procedure previously proposed by Pascual et al. (2006) in the

context of GARCH models and implemented by Mazzeu et al. (2017). The key idea

of this bootstrap method is to use an empirical distribution instead of a parametric

one, and hence not rely on any parametric assumptions on the error distribution.

For the rest of this subsection, we assume the semiparametric MEM specified

by (1) and (2); therefore, F0 may not be of the form Fθ. We continue to denote the

true value of φ by φ0. To estimate φ0 we use the quasi maximum likelihood estimator

(QMLE) based on the standard exponential distribution, defined by

φ̂qml = argmin
φ∈Φ

n∑

i=1

ℓi(φ), ℓi(φ) = log Ψ̃i(φ) + Zi/Ψ̃i(φ). (10)

The residuals are defined as ε̃
(qml)
i = Zi/Ψ̃i(φ̂qml), i = 1, . . . , n. We chose the QMLE
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in (10) because it provides consistent estimates, without relying on any parametric

assumptions on F0 (see Drost and Werker, 2004). Further, φ̂qml is usually asymptot-

ically linear for many models (see Lee and Hansen, 1994; Berkes and Horváth, 2004;

Francq and Zaköıan, 2004; Straumann and Mikosch, 2006; Ling, 2007), and thus, there

exist some constant c 6= 0 and a function ̺ such that E̺(ε1) = 0, E̺2(ε1) < ∞ and

n1/2(φ̂qml − φ0) = cΣ−1n−1/2

n∑

i=1

λi(φ0)̺(εi) + op(1), (11)

where λi(φ) := Ψ̇i(φ)/Ψi(φ) and Σ := E{λ1(φ0)λ
⊤
1 (φ0)}. The asymptotic linearity of

φ̂qml in (11) is used for establishing the validity of the probability forecasts.

QMLE versus AMLE

The quasi maximum likelihood (QML) estimation based on distributions belonging to

the standard gamma family (with two parameters), such as the exponential, provide

consistent estimates under the correct specification of the conditional mean, without

relying on any parametric assumptions on F0 (see Drost andWerker, 2004). Therefore,

if Fθ is misspecified then the QMLE is likely to perform better than the AMLE.

However, under the correct specification of Fθ, the AMLE is more efficient than the

QMLE (see Propositions 1 and 2 in Appendix A.1). Further, in some cases, the QMLE

based estimation of MEMs may perform quite poorly, even with quite large samples

(see Grammig and Maurer, 2000). Therefore, if the parametric model is ‘close’ to the

true model then it is desirable to use the AMLE instead of the QMLE.

Bootstrap using the empirical distribution of the standardized residuals

First, we define the standardized residuals as

ε̃
(std)
t =

{
n−1

n∑

i=1

ε̃
(qml)
i

}−1

ε̃
(qml)
t , t = 1, . . . , n, (12)

so that the empirical distribution of {ε̃(std)t }nt=1 has mean 1. This is important because

one of the model assumptions is that E(ε0) = 1. The effect of (12) is similar to that

of centering the residuals before resampling in additive regression models.

Step 1: Compute the QMLE φ̂qml using the observed sample {Z1, . . . , Zn}.
Step 2: Draw a random sample (with replacement) of size m+n+1, say εq∗−m, . . . , ε

q∗
n ,

from {ε̃(std)t ; 1 ≤ t ≤ n}.
Step 3: Generate Zq∗

−m, . . . , Z
q∗
n recursively by

Zq∗
i = Ψ q∗

i (φ̂qml)ε
q∗
i , Ψ q∗

i (φ̂qml) = gφ̂qml
(Zq∗

i−1, · · · , Zq∗
i−p1

, Ψ q∗
i−1(φ̂qml), · · · , Ψ q∗

i−p2
(φ̂qml)),



9

i = −m, . . . , n, with (Zq∗
−m−1, · · · , Zq∗

−m−p1 , Ψ
q∗
−m−1(φ̂qml), · · · , Ψ q∗

−m−p2(φ̂qml))
⊤ = ς0.

Step 4: Discard {Zq∗
−m, . . . , Z

q∗
0 }, and use {Zq∗

1 , . . . , Zq∗
n } as the bootstrap sample.

Step 5: Compute the bootstrap analogue φ̂∗
qml of φ̂qml based on {Zq∗

1 , . . . , Zq∗
n }, and

draw a random sample of size k, say εq∗n+1, . . . , ε
q∗
n+k, from {ε̃(std)t ; 1 ≤ t ≤ n}.

Step 6: Repeat the Steps 6–8 of the bootstrap procedure in Section 2.1 by using

{Zq∗
1 , . . . , Zq∗

n } and {εq∗n+1, . . . , ε
q∗
n+k}, instead of {Z∗

1 , . . . , Z
∗
n} and {ε∗n+1, . . . , ε

∗
n+k}, and

obtain the analogues of the probability forecasts in (7), (8) and (9) for the above setup.

This procedure can be viewed as a variant of the bootstrap method previously

proposed by Pascual et al. (2006) in the context of GARCH models. In Section 2.3, we

show that the bootstrap method outlined in Steps 1–6 above is asymptotically valid.

2.3 Asymptotic validity of the probability forecasts

In this section, we first show that the probability forecasts of Zn+k and Ψn+k given

by (8) and (9) are asymptotically valid. To this end, we assume that there exists

a compact neighbourhood Λ of φ0 and a stationary process {Ψ ∗∗
i }i∈Z, such that for

every integer r ≥ 0,

sup
φ∈Λ

|Ψ̌ ∗
n+r(φ)− Ψ ∗∗

n+r(φ)|
e.a.s.→ 0, as n → ∞, (13)

in probability. Note that, due to the effect of initial conditions and the use of Ψ̃i

instead of the unobservable Ψi, the bootstrap processes {Ž∗
n+i}i∈N and {Ψ̌ ∗

n+i}i∈N used

in (8) and (9) are not stationary. Heuristically speaking, condition (13) implies that

the non-stationary process {Ψ̌ ∗
n+i} can be approximated by an stationary {Ψ ∗∗

i } for

large samples. In view of Proposition 3.12 of Straumann and Mikosch (2006), condi-

tion (13) would follow if the parametric family {gφ} satisfies certain random coefficient

Lipschitz conditions, uniformly over the compact space Λ.

Because {(Ψi, Ψ
∗∗
i )} is stationary, with E

∗ denoting the bootstrap expectation,

sup
φ∈Λ

E{E∗[|Ψ̌ ∗
n+k(φ)− Ψn+k(φ)|]}

≤ sup
φ∈Λ

E{E∗[|Ψ ∗∗
n+k(φ)− Ψn+k(φ)|]}+ sup

φ∈Λ
E{E∗[|Ψ̌ ∗

n+k(φ)− Ψ ∗∗
n+k(φ)|]}

≤ E{E∗[sup
φ∈Λ

|Ψ ∗∗
n (φ)− Ψn(φ)|]}+ o(1), (14)

where the last bound follows from (13) and the Jensen inequality.

The validity of the probability forecasts for the parametric approach

To introduce the regularity conditions for the validity of the bootstrap, we need to

define the data generating model for a given point ζ = (φ, θ)⊤ ∈ Φ × Θ. To this
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end, let U = {Ui, i ∈ Z} be a sequence of iid random variables from the uniform(0,1)

distribution. Let εi(θ) = F−1
θ (Ui) := inf{x ≥ 0 : Ui ≤ Fθ(x)}, for i ∈ Z. The data

generating model for a given point ζ = (φ, θ)⊤ ∈ Φ×Θ is defined by the following:

Z
(ζ)
i = Ψ

(ζ)
i (φ)εi(θ), (15)

Ψ
(ζ)
i (φ̄) = gφ̄{Z(ζ)

i−1, · · · , Z
(ζ)
i−p1

, Ψ
(ζ)
i−1(φ̄), · · · , Ψ

(ζ)
i−p2

(φ̄)}, φ̄ ∈ Φ, i ∈ Z;

{εi(θ)} are iid with the common cumulative distribution function [cdf] Fθ.

We let functions of {Z(ζ)
i , Ψ

(ζ)
i } in (15) be denoted with a superscript “(ζ)”. For ex-

ample, λ
(ζ)
i (·) := Ψ̇

(ζ)
i (·)/Ψ (ζ)

i (·) is the analogue of λi(·) = Ψ̇i(·)/Ψi(·) for the observable
process {Zi : i ∈ Z}. If data are generated from (15) for only i ≥ −m (conditional on

the starting values ς0 = (z0, · · · , z1−p1 , s0, · · · , s1−p2)
⊤), then we use the superscript

“(m, ζ)” instead of “(ζ)”. For example, Ψ
(m,ζ)
i (·) and λ

(m,ζ)
i (·) := Ψ̇

(m,ζ)
i (·)/Ψ (m,ζ)

i (·)
are the analogues of Ψ

(ζ)
i (·) and λ

(ζ)
i (·), respectively, when the data generating model

obeys (15) for i ≥ −m (conditional on the starting values ς0). Note that, under (1),

(2) and (3), the probability laws of Ψ
(ζ0)
i (·), Ψ̇ (ζ0)

i (·) and λ
(ζ0)
i (·) are identical to those

of Ψi(·), Ψ̇i(·) and λi(·), respectively.
Let ζn = (φ⊤

n , θ
⊤
n )

⊤ denote a generic nonrandom sequence in Φ×Θ. Let Pn and En

denote the probability and expectation corresponding to ζ = ζn under model (15). Let

χni(ζ) := log Ψ
(ζn)
i (φ)− log

[
fθ{Z(ζn)

i /Ψ
(ζn)
i (φ)}

]
, ϕni(ζ) := −Σ−1

0 χ̇ni(ζ),

where Σ0 is as defined by (A.1) in Appendix A. The norm ‖ · ‖Λ for a continuous

r2× r3 matrix-valued function H on a compact set Λ ⊂ R
r1 , that is H ∈ C[Λ,Rr2×r3 ],

is defined by ‖H‖Λ := sups∈Λ ‖H(s)‖, where r1, r2, r3 are known positive integers. If

H is real valued, then ‖H‖Λ = sups∈Λ |H(s)|.
In order to establish the asymptotic validity of the bootstrap probability forecasts

based on the AMLE, we need to introduce the following additional assumptions.

Condition C.

C.1. For every ζ = (φ⊤, θ⊤)⊤ ∈ Φ×Θ, the model (15) has a unique stationary ergodic

solution {Z(ζ)
i : i ∈ Z} with E({Z(ζ)

0 }2+d), E[{Ψ (ζ)
0 (φ)}2+d] and E[‖λ(ζ)

0 (φ)‖2+d] being

finite for some d > 0.

C.2. For all nonrandom sequences ζn = (φ⊤
n , θ

⊤
n )

⊤ for which ζn → ζ0, we have

‖√n(ζ̂n − ζn) − [n−1/2
∑n

i=1 ϕni(ζn)]‖ = opn(1), where ζ̂n denotes the analogue of

the AMLE (5) when the true parameter is ζn. Further, En[λn1(φn)] → E[λ1(φ0)] and

En[ϕn1(ζn)ϕn1(ζn)
⊤] → E[ϕ1(ζ0)ϕ1(ζ0)

⊤] as n → ∞, with λni(φ) := Ψ̇ni(φ)/Ψni(φ)

where Ψni(φ) = Ψ
(ζn)
i (φ).
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C.3. There exist compact neighbourhoods K1 of φ0 and K2 of θ0, such that the fol-

lowing hold with K = K1×K2: (a) conditional on U = {Ui, i ∈ Z}, supζ∈K ‖Ψ (m,ζ)
i −

Ψ
(ζ)
i ‖K1

, supζ∈K ‖Ψ̇ (m,ζ)
i − Ψ̇

(ζ)
i ‖K1

, supζ∈K ‖Ψ̈ (m,ζ)
i − Ψ̈

(ζ)
i ‖K1

,
e.a.s.→ 0 as i → ∞;

(b) supζ∈K E‖Ψ̈ (ζ)
0 ‖2+d

K1
< ∞ and supζ∈K E‖λ(ζ)

0 ‖2+d
K1

< ∞ for some d > 0, where

λ
(ζ)
i := Ψ̇

(ζ)
i /Ψ

(ζ)
i ; (c) supθ∈K2

supx≥0 fθ(x) < ∞, supθ∈K2

∫
x≥0

xfθ(x) dx < ∞.

Condition C.1 is satisfied by most MEMs. For example, for the linear MEM(p1, p2)

given by (15) with

Ψ
(ζ)
i (φ) = α +

p1∑

j=1

βjZ
(ζ)
i−j +

p2∑

j=1

γjΨ
(ζ)
i−j(φ), φ = (α, β1, . . . , βp1 , γ1, . . . , γp2)

⊤,

the relation E[
∑p1

j=1 βjZ
(ζ)
0 +

∑p2
j=1 γj] < 1 is sufficient for the validity of C.1. Condi-

tion C.2 is similar to the Assumption E2 in Andrews (1997). As mentioned in Andrews

(1997), the proof of Proposition 2 for the asymptotic normality of the AMLE can be

altered to obtain the triangular array linear expansion in C.2. Condition C.3 is also

expected to be satisfied by a large class of MEMs. For example, the validity of C.3 for

the linear MEM(p1, p2) model of Engle and Russell (1998) can be verified as follows:

Verification of Condition C.3 for the linear MEM of Engle and Russell (1998)

Let the parametric linear MEM(p1, p2) model, denotedM -F , be defined as follows:

M -F :

{
Zi = Ψiεi, {εi : i ∈ Z} are iid, εi

d∼ Fθ0 ,
Ψi = α0 +

∑p1
j=1 βj0Zi−j +

∑p2
j=1 γj0Ψi−j

(16)

for some (φ0, θ0) where φ⊤
0 = (α0, β10, . . . , βp10, γ10, . . . , γp20). Let {Ui}i∈Z be iid uni-

form(0,1) random variables. Without loss of generality, let εi = F−1
θ0

(Ui). A typical

assumption made in empirical studies involving MEM(p1, p2) is that the following

constraints hold at the true parameter (φ0, θ0) (see Engle 2002):

{1−
∑

j

βj0 −
∑

j

γj0} > 0 and E{|F−1
θ0

(Ui)|2} < ∞. (17)

Next, let Vi = supθ̄∈Kθ
|F−1

θ̄
(Ui)| where Kθ denotes a closed ball in Θ containing θ0

as an interior point. If {1−
∑

j βj0 −
∑

j γj0} > 0 and E(V 2+δ
i ) < ∞ for some δ > 0

and Kθ, then the conditions in C.3 are also satisfied; these verifications require results

on e.a.s. convergence involving Stochastic Recurrence Equations and can be obtained

from the authors upon request. The additional requirement E(V 2+δ
i ) < ∞ is only

slightly stronger than E|F−1
θ0

(Ui)|2 < ∞ in (17). These conditions can similarly be

verified for many other MEMs.
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The next theorem shows that the probability forecasts proposed in Subsection 2.1

are asymptotically valid. Here and in the sequel GŽ∗,k(x) and GΨ̌∗,k(x) denote the

distribution functions of Ž∗
n+k and Ψ̌ ∗

n+k, respectively, conditional on {Z1, . . . , Zn}.

Theorem 1. Let {Zi; i ∈ Z} be a strictly stationary and ergodic process obeying the

model specified by (1), (2) and (3). Suppose that the assumptions of Proposition 2

in Appendix A.1 and (13) are satisfied. Additionally, assume that conditions C.1,

C.2, and C.3 hold, and that there exists a compact neighbourhood B (⊂ Φ) of φ0 with

supφ∈B |Ψ̃i(φ)−Ψi(φ)|, supφ∈B ‖ ˙̃Ψ i(φ)−Ψ̇i(φ)‖ e.a.s.→ 0 as i → ∞. Then, conditional on

{Z1, . . . , Zn}, for every 0 < ω < 1, the following hold: (a) P{Zn+k ≤ G−1
Ž∗,k

(ω)} →p ω

as n → ∞, (b) P{Ψn+k ≤ G−1
Ψ̌∗,k

(ω)} →p ω as n → ∞.

The proof of Theorem 1 makes use of (13) and (14) and is given in Appendix A. By

the Glivenko-Cantelli theorem we have that, supx |GŽ∗,k(x)−GB,Ž∗,k(x)|
P ∗

n−a.s.→ 0 and

supx |GΨ̌∗,k(x) − GB,Ψ̌∗,k(x)|
P ∗

n−a.s.→ 0, as B → ∞. Hence, one may make GB,Ž∗,k(x)

and GB,Ψ̌∗,k(x) arbitrarily close to GŽ∗,k(x) and GΨ̌∗,k(x), respectively, by selecting B

large enough. Thus, it follows from Theorem 1 that the probability forecasts in (8)

and (9) are asymptotically valid.

The validity of the probability forecasts for the semiparametric approach

The next theorem shows that the probability forecasts proposed in Section 2.2 based

on bootstrap replicates obtained from the empirical distribution of the standardized

residuals, are also asymptotically valid. First, we introduce several regularity condi-

tions on the error distribution F0 and the functional form Ψi(φ).

L.1. The support of the error distribution F0 is [0,∞), ε2i has a non-degenerate dis-

tribution, and E[ε
(2+d)
0 ] < ∞ for some d > 0.

L.2. The function (φ, s) 7→ gφ(z, s) is twice continuously differentiable in its domain,

E{| log Ψi(φ0)|} < ∞, and E[‖λi(φ0)‖2] < ∞.

L.3. The parameter φ0 is an interior point in Φ, and there exists a compact neighbour-

hood B (⊂ Φ) of φ0 such that supφ∈B |Ψ̃i(φ)−Ψi(φ)|, supφ∈B ‖ ˙̃Ψ i(φ)− Ψ̇i(φ)‖ e.a.s.→ 0 as

i → ∞. Furthermore, φ̂qml →p φ0, n
1/2(φ̂qml − φ0) = Op(1), and φ̂qml satisfies (11).

Condition L.2 follows from the regularity assumptions B.5, D.2, and D.4 stated in

Appendix A.1. The convergence properties and the root-n consistency of the QMLE

in L.3 are typically valid for many parametric models of the form (2); see Bauwens

and Giot, 2001; Francq and Zaköıan, 2010; Hautsch, 2011.
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Theorem 2. Let {Zi; i ∈ Z} be a strictly stationary and ergodic process obeying (1)

and (2) with Ψi = Ψi(φ0). Let Fn denote a sequence of non-random cdf’s. Suppose that

L.1, L.2, L.3, B.6, and B.7 are satisfied, and that the analogue of (13) holds for the

bootstrap process in Section 2.2. Additionally, assume that the analogues of C.1, C.2,

and C.3 hold if Fθ is replaced by a non-parametric cdf F , Fθn is replaced by Fn with

(φn, Fn) → (φ0, F0), and AMLE is replaced by QMLE. Let GŽ∗qml,k(x) and GΨ̌∗qml,k(x)

be the analogues of GŽ∗,k(x) and GΨ̌∗,k(x) for the bootstrap algorithm in Section 2.2.

Then, conditional on {Z1, . . . , Zn}, for every 0 < ω < 1 we have the following:

(a) P{Zn+k ≤ G−1
Ž∗qml,k

(ω)} →p ω, (b) P{Ψn+k ≤ G−1
Ψ̌∗qml,k

(ω)} →p ω, as n → ∞.

The proof of Theorem 2 is given in Appendix A. Note that, the analogue of C.2 for

the setting in Theorem 2 is that, for all non-random sequences (φn, Fn) → (φ0, F0), as

n → ∞, we have ‖√n(φ̂n,qml − φn)− [cnΣ
−1
n n−1/2

∑n
i=1 λ

†
ni(φn)̺(ε

†
ni)]‖ = opn(1), with

cnΣ
−1
n → cΣ−1, ε†ni ∼ Fn, and λ†

ni(φ) := Ψ̇ †
ni(φ)/Ψ

†
ni(φ), where φ̂n,qml is the analogue

of the QMLE (11) when the true parameter is φn, and Ψ †
ni denotes the conditional

mean process for the model with the true parameter φn and the error distribution Fn

as defined by (A.6) in Appendix A.2.

In the next subsection we propose a class of specification tests to test the adequacy

of the parametric specifications of the conditional mean and the error distribution.

2.4 Specification tests for the conditional distribution

In the bootstrap method proposed in Section 2.1, we assume that {Zi : i ∈ Z} obeys

a parametric MEM of the form (1), (2) and (3). Because such a parametric model

specifies the entire conditional distribution of Zi, it is prudent to first test for the

adequacy of this parametric model. To this end, we need to test the null hypothesis

H0 : Pr(Zi ≤ z|Hi−1) = Fθ0(z/Ψi(φ0)), z ≥ 0, for some (φ0, θ0) ∈ Φ×Θ, (18)

against the alternative ‘H1 : Not H0’.

There are several tests in the literature that we can use for this purpose; see,

for example Fernandes and Grammig (2005), Gao et al. (2015), and Perera and Sil-

vapulle (2017). However, these tests rely on QMLE for estimating the null model

and hence sacrifice efficiency in favour of achieving robustness against distributional

misspecifications. Since AMLE is more efficient than QMLE under H0, in this pa-

per, we develop a testing procedure based on AMLE for testing H0. The bootstrap

tests of Perera et al. (2016) are based on QMLE and applicable only for testing the

conditional mean function but not (18). The tests proposed in Hidalgo and Zaffaroni

(2007) are based on a Gaussian QMLE and can be applied for fitting an ARCH(∞)
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model which includes several GARCH-type models; these tests cannot be used for

testing the adequacy of a distributional model such as (18).

To describe the testing procedure that we develop, let ζ̂ = (φ̂⊤, θ̂⊤)⊤ and Ψ̃i(·) be
as in the previous section. Let ‘plim’ denote the probability limit operator. Define

ζ0 = (φ0, θ0)
⊤ := plim ζ̂, so that ζ0 is the true value under H0, and it denotes a pseudo

true value under H1. Let F̃n(x) = n−1
∑n

i=1 I(ε̃i ≤ x) be the empirical distribution

function of the estimated residuals {ε̃1, . . . , ε̃n}, where ε̃i := Zi/Ψ̃i(φ̂), i = 1, · · · , n.
Let the residual empirical process W̃n estimated under the null hypothesis be

W̃n(x) :=
√
n
{
F̃n(x)− Fθ̂(x)

}
, x ≥ 0. (19)

Let D[0,∞) and D[0, 1] be the spaces of càdlàg functions on [0,∞) and [0, 1],

respectively, equipped with the uniform metric. Certain functionals of W̃n defined

on D[0,∞) may be used as possible test statistics for testing H0 against H1. We

consider a test statistic Th, of the following general form, that satisfies

Th := h(W̃n ◦ F−1

θ̂
) = h(W̃n ◦ F−1

θ0
) + op(1), (20)

under H0, where h is a known continuous functional on D[0, 1].

Possible candidates for h include: (a) the Kolmogorov-Smirnov functional

h(W̃n ◦ F−1

θ̂
) := supt∈[0,1] |W̃n ◦ F−1

θ̂
(t)|, and (b) the Cramér-von Mises functional

h(W̃n ◦ F−1

θ̂
) :=

∫ 1

0
{W̃n ◦ F−1

θ̂
(t)}2dt, among others (D’Agostino and Stephens, 1986).

Similar functionals have also been considered in Meintanis et al. (2017) in a simulation

study for testing the goodness-of-fit of the error distribution in ACD models. Guo and

Li (2018) propose specification tests for MEMs when the conditional mean admits a

Markov structure, such that Ψi = E[Zi | Zi−1] (i ∈ Z); in this paper, we do not make

this assumption.

Next, we introduce some notation. The composition of two functions f1 and f2 is

denoted by f1 ◦ f2. The empirical distribution function Fn(x) and the corresponding

empirical process Wn(x) of the unobserved errors {ε1, . . . , εn} are defined by

Fn(x) = n−1

n∑

i=1

I(εi ≤ x) and Wn(x) =
√
n{Fn(x)− Fθ0(x)}, x ≥ 0.

Under Conditions D.1–D.4, there exist martingale difference sequences {ϕ(1)
i (ζ)}

and {ϕ(2)
i (ζ)}, with ‖n1/2(φ̂−φ0)− [n−1/2

∑n
i=1 ϕ

(1)
i (ζ0)]‖ = op(1) and ‖n1/2(θ̂− θ0)−

[n−1/2
∑n

i=1 ϕ
(2)
i (ζ0)]‖ = op(1), where [(ϕ

(1)
i (ζ))⊤(ϕ

(2)
i (ζ))⊤]⊤ = ϕi(ζ) := Σ−1

0 χ̇i(ζ),

‖Eϕ(1)
i (ζ0)ϕ

(1)
i (ζ0)

⊤‖ < ∞ and ‖Eϕ(2)
i (ζ0)ϕ

(2)
i (ζ0)

⊤‖ < ∞ [see (A.2) in the proof

of Proposition 2 in Appendix A]. By using these asymptotic representations, and

Conditions D.1–D.4, the next theorem establishes the weak convergence of W̃n ◦F−1
θ0

.
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Theorem 3. Let {Zi; i ∈ Z} be a stationary and ergodic process that obeys the model

described by (1), (2) and (3) under H0. Suppose that the assumptions of Theorem 1

are satisfied. Additionally, assume that Ḟθ0(y) and yfθ0(y) are uniformly continuous

on R
+. Then, W̃n ◦F−1

θ0
converges weakly in D[0, 1] to a centred Gaussian process R,

defined by the covariance kernel Cov{R(s), R(t)} := min{s, t}−st+R(s, t, ζ0), where

R(s, t, ζ) = F−1
θ (s)fθ(F

−1
θ (s))E[λ1(φ)]

⊤
E[ϕ

(1)
1 (ζ)I(εi ≤ F−1

θ (t))]

−[Ḟθ(F
−1
θ (s))]⊤E[ϕ

(2)
1 (ζ)I(εi ≤ F−1

θ (t))]− [Ḟθ(F
−1
θ (t))]⊤E[ϕ

(2)
1 (ζ)I(εi ≤ F−1

θ (s))]

−E

{[
Ḟθ(F

−1
θ (s))

]⊤
ϕ
(2)
1 (ζ)E[λ1(φ)]

⊤ϕ
(1)
1 (ζ)

}
F−1
θ (s)fθ(F

−1
θ (s))

+F−1
θ (t)fθ(F

−1
θ (t))E[λ1(φ)]

⊤
E[ϕ

(1)
1 (ζ)I(εi ≤ F−1

θ (s))]

−F−1
θ (t)fθ(F

−1
θ (t))E

{
E[λ1(φ)]

⊤ϕ
(1)
1 (ζ)ϕ

(2)
1 (ζ)⊤Ḟθ(F

−1
θ (s))

}

+F−1
θ (t)fθ(F

−1
θ (t))E

{
E[λ1(φ)]

⊤ϕ
(1)
1 (ζ)ϕ

(1)
1 (ζ)⊤E[λ1(φ)]

}
F−1
θ (s)fθ(F

−1
θ (s)),

and λi(φ) := Ψ̇i(φ)/Ψi(φ) for φ ∈ Φ.

The next corollary yields the limiting distributions of the test statistic Th under

the null and under a fixed alternative. Here, and in the sequel, ‘
d−→’ and ‘

p−→’ denote

convergence in distribution and convergence in probability, respectively.

Corollary 1. Suppose that the assumptions of Theorem 3 are satisfied. Let h be a con-

tinuous functional on D[0, 1]. Then, under H0, h(W̃n◦F−1
θ0

)
d−→ h(R) as n → ∞, and

under any fixed alternative, with probability (w.p.) 1, h(W̃n ◦F−1
θ0

) −→ ∞ as n → ∞.

Since h is a continuous functional on D[0, 1], and Th = h(W̃n ◦ F−1
θ0

) + op(1)

under H0, it follows from Corollary 1 that the limiting null distribution of Th is h(R).

Therefore, an asymptotic test based on Th would reject H0 if Th > ch, where ch is

the (1 − α)th quantile of h(R). The distribution of h(R) is model-dependent and is

not free from the nuisance parameters ζ and Fθ. Hence, asymptotic critical values

cannot be computed for general use. Therefore, to implement the tests, in this paper,

we adopt a parametric bootstrap approach that is commonly used in the literature,

for example, as considered in Horváth et al. (2004), Fernandes and Grammig (2005),

and Meintanis et al. (2017), amongst others. In implementing this approach, in the

bootstrap data generation, we use the AMLE ζ̂ in (5) instead of using the QMLE;

this approach has its roots in the parametric bootstrap approach originally proposed

by Andrews (1997). We expect that this method would complement the existing

methods for specification testing in MEMs, including Hidalgo and Zaffaroni (2007);

Koul et al. (2012); Perera and Koul (2017); Meintanis et al. (2017); Guo and Li (2018),

amongst others. The bootstrap testing procedure is described by the following steps:
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Bootstrap procedure

Step 1: Compute the estimate ζ̂ = (φ̂⊤, θ̂⊤)⊤ and the test statistic Th based on the

observed sample {Z1, . . . , Zn}.
Step 2: Generate a bootstrap sample {Z∗

1 , . . . , Z
∗
n} by repeating Steps 2–4 of the

bootstrap procedure in Section 2.1.

Step 3: Based on the bootstrap sample {Z∗
1 , . . . , Z

∗
n}, compute the bootstrap coun-

terparts of ζ̂, Ψ̃i, {ε̃1, . . . , ε̃n}, F̃n and W̃n, which we denote by ζ̂∗ = ({φ̂∗}⊤, {θ̂∗}⊤)⊤,
Ψ̃ ∗
i , {ε̃∗1, . . . , ε̃∗n}, F̃ ∗

n and W̃ ∗
n , respectively. Then, compute T ∗

h = h(W̃ ∗
n ◦ F−1

θ̂∗
), the

bootstrap analogue of Th = h(W̃n ◦ F−1

θ̂
).

Step 4: Estimate the distribution of T ∗
h by repeating Steps 2 and 3 many times and

compute c∗h, the (1 − α)th quantile of the sampled values of T ∗
h . Now, reject H0 at

level α if Th > c∗h.

Theorem 4 and Corollary 2 below show that the foregoing bootstrap test is asymp-

totically valid. Theorem 4 establishes the weak convergence of the estimated boot-

strap empirical process W̃ ∗
n◦F−1

θ̂
. Corollary 2 shows that, conditional on {Z1, . . . , Zn},

T ∗
h converges in distribution (in the bootstrap sense). All the convergence results re-

lating to bootstrapped processes such as W̃ ∗
n ◦ F−1

θ̂
hold almost surely.

Theorem 4. Suppose that the assumptions of Theorem 3, except the null hypoth-

esis H0, are satisfied. Additionally, assume that the Conditions C.1, C.2 and C.3

are also satisfied. Then, conditional on {Z1, . . . , Zn}, w.p. 1, the process W̃ ∗
n ◦ F−1

θ̂

converges weakly in D[0, 1] to a centred Gaussian process S with covariance kernel

Cov{S(s),S(t)} := min{s, t} − st+R(s, t, ζ0), where R(s, t, ζ) is as in Theorem 3.

Let Op∗n , op∗n , and E∗ denote the usual stochastic orders of magnitude and expecta-

tion, respectively, with respect to the bootstrap law, P ∗
n , conditional on {Z1, . . . , Zn}.

The convergence in distribution of bootstrap statistics is denoted by ‘
d∗−→’. The fol-

lowing corollary establishes the asymptotic validity of the bootstrap tests.

Corollary 2. Suppose that the assumptions of Theorem 4 are satisfied. Let S be

as in Theorem 4. Then, conditional on {Z1, . . . , Zn}, w.p. 1, T ∗
h

d∗→ h{S}. Further,

conditional on {Z1, . . . , Zn}, w.p. 1, the bootstrap implementation of Th has asymptotic

power one against any fixed alternative.

Suppose that H0 is true. Then ζ0 = (φ⊤
0 , θ

⊤
0 )

⊤ is the true value satisfying [Ψi, F0] =

[Ψi(φ0), Fθ0 ], and hence, the process S in Theorem 4 is the same as the centred

Gaussian process R in Theorem 3. Thus, under H0, the distribution of h{S} is the

same as that of h{R}, the asymptotic null distribution of Th. Therefore, it follows

from Corollary 2 that the bootstrap test based on Th is a valid level α asymptotic test.
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3 SIMULATION STUDIES

We conducted two separate simulation studies. In the first simulation study, we eval-

uated the finite sample performance of the prediction intervals and upper prediction

bounds proposed in Section 2.1. In the second simulation study we evaluated the

specification tests proposed in Section 2.4 in terms of size and power. These two

simulation studies involve several models and evaluations with respect to different

criteria. Therefore, in this section, we provide a summary of the main observations,

and relegate the detailed tables to Appendix S.1 in the supplementary material.

Simulation Study 1: Evaluating predictions for Zn+k and Ψn+k

Let us first describe the design of the study. For the error distribution, we con-

sidered the following families of distribution functions on R
+ with mean 1 and pdf f :

(i) Exponential, denoted E: f(x) = exp(−x).

(ii) Weibull [W (κ)]: f(x) = (κ/c)(x/c)κ−1 exp{−(x/c)κ}, κ > 0, c = [Γ(1 + κ−1)]
−1
.

(iii) Burr [B(a, b)]: f(x) = (a/σ)(x/σ)a−1[1 + b(x/σ)a]−(1+b−1), a > b > 0, and

σ = {Γ(1 + a−1)Γ(b−1 − a−1)}−1b(1+a−1)Γ(1 + b−1).

(iv) Generalized gamma [GG(a, c)]:

f(x) = c{σΓ(a)}−1(x/σ)ac−1 exp{−(x/σ)c}, a, c > 0, and σ = {Γ(a+ c−1)}−1Γ(a).

The first two distributions have been identified as having important roles in mul-

tiplicative error models (see Engle and Russell, 1998; Drost and Werker, 2004; Engle

and Gallo, 2006). The next two have been suggested in various empirical studies (see

Lunde, 1999; Grammig and Maurer, 2000; Grammig and Wellner, 2002).

Let AM and M denote the following two models, with unknown parameters:

AM [Asymmetric MEM(1,1); Fernandes and Grammig (2006)]:

Ψi(φ) = φ1 + φ2Ψi−1(φ){|εi−1 − φ4|+ φ5(εi−1 − φ4)}+ φ3Ψi−1(φ), (21)

εi−1 = εi−1(φ) = Zi−1/Ψi−1(φ), φ = (φ1, φ2, φ3, φ4, φ5)
⊤,

M [Linear MEM(1,1); Engle and Russell (1998)]:

Ψi(φ) = φ1 + φ2Zi−1 + φ3Ψi−1(φ), φ1 > 0, φ2 ≥ 0, φ3 ≥ 0, φ2 + φ3 < 1. (22)

The term {|εi−1 − φ4| + φ5(εi−1 − φ4)} in the asymmetric model (21) allows the

conditional mean {Ψi} to respond in distinct manners to small and large shocks,

through the additional shift and rotation parameters φ4 and φ5 (see Fernandes and

Grammig, 2006). The linear MEM(1,1) in (22) may be recovered from this general

model by setting φ4 = φ5 = 0 in (21).
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The data generating processes were based on the following two multiplicative error

models for the conditional mean Ψi, with εi = Zi/Ψi.

M1 : Ψi = 0.20 + 0.10Zi−1 + 0.70Ψi−1,

AM1 : Ψi = 0.1 + 0.2Ψi−1{|εi−1 − 0.1|+ 0.5(εi−1 − 0.1)}+ 0.6Ψi−1.

Clearly, M1 belongs to M and AM1 belongs to AM . We use the notation M -F to

denote the class of MEMs defined by Zi = Ψiεi, where Ψi is of the form M and

{εi; i ∈ Z} are iid with common distribution F ∈ F as in (16). Similarly, AM -F
denotes the class of MEMs, where Ψi follows the model AM and {εi; i ∈ Z} are iid

with common distribution F ∈ F . For example, AM -GG represents the class of

MEMs defined by the asymmetric conditional mean function of AM in (21) and a

generalized gamma error distribution, denoted GG.

We carried out several sets of simulations to evaluate the accuracy of the condi-

tional probability forecasts for Zn+k and Ψn+k given by the bootstrap method pro-

posed in Section 2.1. For each generated sample, the prediction intervals and bounds

given by (8) and (9) were constructed under several parametric MEMs that nest the

DGP. The simulations are based on 1000 Monte Carlo samples. For each Monte Carlo

sample, we used 1000 bootstrap replicates to produce the probability forecasts.

The accuracy of the left and right limits of the prediction intervals are also of

interest to know about whether the prediction intervals are properly centred and

accurate. Therefore, we also considered the following procedure in our simulations.

The accuracy of the left and right limits of the prediction intervals:

Let Gz,k(·) denote the cdf of Zn+k conditional on {Z1, . . . , Zn}. Let qL and qU

denote the lower and upper quantiles of the distribution Gz,k at the nominal level α.

Let q∗L and q∗U denote the lower and upper limits of the bootstrap prediction intervals,

conditional on {Z1, . . . , Zn}, at level α. In order to measure the accuracy of q∗L and

q∗U we adopt the following procedure.

Step 1: For the ℓth Monte Carlo sample, say {Zℓ
1, . . . , Z

ℓ
n}, generate M = 100, 000

independent observations of Zℓ
n+k, and obtain approximate conditional quantiles, say

qℓL and qℓU , by using the generated M values, ℓ = 1, . . . , N , N = 1000; note that, qℓL
and qℓU can be made arbitrarily close to their true values by selecting M large enough.

Step 2: Compute the lower and upper limits of the bootstrap prediction intervals,

say q∗ℓL and q∗ℓU , conditional on {Zℓ
1, . . . , Z

ℓ
n}, ℓ = 1, . . . , N .

Step 3: Compute the standard deviations of {(q∗1L − q1L), . . . , (q
∗N
L − qNL )} and {(q∗1U −

q1U), . . . , (q
∗N
U − qNU )}, denoted sdL and sdU , respectively, and also compute

RL = N−1

N∑

ℓ=1

[q∗ℓL − qℓL], RU = N−1

N∑

ℓ=1

[q∗ℓU − qℓU ]. (23)
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If q∗L and q∗U are centred around their corresponding population values qL and qU ,

then we expect RL and RU to be close to zero, and sdL and sdU to be not (relatively)

too large. One may also obtain similar measures for the accuracy of the prediction

intervals of Ψn+k and prediction bounds of Zn+k and Ψn+k.

A summary of the results for prediction intervals of Zn+k, for k = 2 and 4, are given

in Tables S.1–S.3 in Appendix S.1 in the supplementary material. Results for upper

prediction bounds of Zn+k, for k = 2 and 4, and those of Ψn+k, for k = 3 and 5, are

summarized in Tables S.4–S.6 and Tables S.7–S.9, respectively; see Appendix S.1 in

the supplementary material. As illustrated by these results, the coverage percentages

of the interval forecasts were all close to the nominal levels, while the widths of

the intervals exhibited some variation among the different parametric models. Since

the estimated coverages of the prediction intervals and bounds were all close to the

nominal levels our simulation results also indicate good coverage properties on the left

and right of the prediction intervals. Thus, the results suggest that our probability

forecasts perform well in finite samples. The results for the measures RL, RU , sdL,

and sdU , indicate that even if the variation in the parameter estimation is small, if

a prediction is to be made for few steps ahead, then the resulting variations in the

probability forecasts can still be significant (see Tables S.1–S.9 in Appendix S.1).

Simulation Study 2: Comparison of tests in terms of size and power

To evaluate the finite sample performance of the specification tests, in addition to

Exponential [E], Weibull [W (κ)], Burr [B(a, b)], and Generalized gamma [GG(a, c)],

we also considered the following families of distribution functions on R
+ with mean 1:

(v) Gamma [G(α)]: the pdf is f(x) = ααΓ(α)−1xα−1 exp(−αx) and α > 0.

(vi) G-mixture [GmGG(δ)]: δG(2) + (1 − δ)GG(3, 0.5), a mixture of Gamma and

Generalized gamma distributions with mixing proportion δ.

(vii) W-mixture [WmGG(δ)]: δW (0.6)+ (1− δ)GG(3, 0.5), a mixture of Weibull and

Generalized gamma distributions with mixing proportion δ.

(viii) Generalized Extreme Value Distribution [GEV (k, σ, µ)]: the pdf is

f(x) = σ−1 exp(−(1 + k(x− µ)/σ)−1/k)(1 + k(x− µ)/σ)−1−1/k, k 6= 0,

1 + k(x− µ)/σ > 0, µ = 1− σ{Γ(1− k)− 1}/k.
The mixture familiesGmGG(δ) andWmGG(δ) were used for evaluating the power

of the tests near gamma and Weibull distributions. In view of the regularity condi-

tions, the first order validity of our bootstrap tests is established under the assumption

E[ε2+d
0 ] < ∞ for some d > 0. Hence, it is of interest to investigate how tests per-

form when this assumption breaks down. For this purpose we use the last family of
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distributions, GEV (k, σ, µ). This family has infinite second moment when the shape

parameter k ≥ 1/2; the condition µ = 1− σ{Γ(1− k)− 1}/k ensures that mean is 1.

For the data generating processes, in addition to M1 and AM1, we also considered

the following models:

M †
1 [Non-stationary MEM(1,1)]: Ψi = 0.20 + 0.20Zi−1 + 0.80Ψi−1,

M2 [MEM(2,1)]: Ψi = 0.10 + 0.20Zi−1 + 0.10Zi−2 + 0.60Ψi−1,

TM1 [3-regime Threshold MEM(1,1), see Zhang et al. (2001)]:

Ψi =





1.05 + 0.09Zi−1 + 0.90Ψi−1 for 0 < Zi−1 < 0.25,

0.50 + 0.55Zi−1 + 0.10Ψi−1 for 0.25 ≤ Zi−1 < 1.5,

0.05 + 0.05Zi−1 + 0.60Ψi−1 for 1.5 ≤ Zi−1 < ∞,

Recall that M1 belongs to M and AM1 belongs to AM , where AM and M denote the

asymmetric MEM in (21) and linear MEM(1,1) in (22), respectively, with unknown

parameters. The data generating processes M2 and TM1 do not belong to M or AM .

Hence, we use M2 and TM1 to evaluate the power of the tests. The DGP M †
1 is also of

the form M , but it does not satisfy the condition φ2+φ3 < 1 in (22), and hence is not

in the parameter space where the stationarity holds. Thus, we use M †
1 to investigate

the behaviour of the bootstrap tests when the stationarity does not hold.

We considered the following five test statistics:

KS = supx≥0 |W̃n(x)| [Kolmogorov-Smirnov].

Ku = supx≥0 W̃n(x)− infx≥0 W̃n(x) [Kuiper].

CvM =
∫
W̃ 2

n(x)dFθ̂(x) [Cramér-von Mises].

A2 =
∫
W̃ 2

n(x)[Fθ̂(x){1− Fθ̂(x)}]−1dFθ̂(x) [Anderson-Darling].

U2 =
∫ {

W̃n(x)−
∫
[W̃n(x)]dFθ̂(x)

}2

dFθ̂(x) [Watson].

Each of the above test statistics is of the form Th in (20). These functionals have

previously been employed in the literature for goodness-of-fit testing in other settings

(see D’Agostino and Stephens, 1986).

For comparison, the FG (Fernandes and Grammig, 2005) and JG (Janssen et al.,

2005) tests were also considered. The results are based on 1000 Monte Carlo repeti-

tions. In order to reduce the computational burden, we adopted the “Warp-Speed”

Monte Carlo method of Giacomini et al. (2013) for evaluating the bootstrap method.

A summary of the results for 5% level bootstrap tests is given in Tables S.10–S.14

in Appendix S.1 in the supplementary material. The patterns of the results at the

other levels of significance, for example 10% and 2.5%, were similar to those at the

5% level, and hence those results are not given, but are available from the authors.

The results on Type I error rates indicate that all the tests performed well in terms

of size (see Table S.10). However, in terms of power (see Tables S.11–S.14), the
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tests proposed in this paper performed significantly better than JG and FG tests. In

particular, the Anderson-Darling type A2 test, exhibited the best overall performance,

followed by the Cramér-von Mises type test CvM.

In a related study, Meintanis et al. (2017) provide a simulation study of bootstrap

tests for the error distribution in MEM(1,1). They considered several tests, including

A2, CvM , and KS tests, which are similar to the ones in our study, and hence

the results in Meintanis et al. (2017) could be used for comparison with ours. It is

reassuring to note that the general nature of their results agree with ours. In this

regard, both studies note that A2 generally performed the best among the empirical

process based tests, and the FG-test exhibited low power. Our tests also performed

well under violations of the moment condition E[ε2+d
0 ] < ∞ (see Table S.12) and

when stationarity does not hold (see Tables S.12 and S.13). Thus, the simulation

results indicate that even if some of the regularity conditions required for the first

order validity of the tests are not satisfied, the bootstrap tests may still perform well.

However, it should be noted that, under violations of the regularity conditions, the

results we provide on the asymptotic validity of the bootstrap tests cannot be applied.

4 AN EMPIRICAL ILLUSTRATION

In this section we illustrate an application of the probability forecasts and the testing

procedure using a real data example. The variable of interest is a measure of daily

annualized realized volatility, {Zi}, constructed from intraday spot price data for

the S&P500 index.1 The dataset that we consider spans the period September 12,

2005 to December 17, 2012. The first 1518 observations (from September 12, 2005

to September 20, 2011) are used as the initial dataset for fitting a parametric MEM.

The rest of the sample (from September 21, 2011 to December 17, 2012) is reserved

to evaluate predictions for Zn+k and Ψn+k using both parametric and semiparametric

bootstrap methods.

Fitting a parametric MEM

In order to fit a parametric model to the entire conditional distribution of Zi,

we consider the Asymmetric MEM(1,1) in (21) for Ψi, and proceed to evaluate it in

combination with several distributions for the error term; namely, Exponential[E],

Weibull[W], Gamma[G], Generalized-gamma[GG] and Burr[B]. The results of apply-

ing the specification tests developed in this paper, together with the FG and JG tests

1 The data for this example were obtained from Gael Martin. The raw index data have been
cleaned using methods similar to those of Brownlees and Gallo (2006). For details regarding data
handling and the construction of realized volatility, see Maneesoonthorn et al. (2012).
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discussed in the previous section, are given in Table 1. The p-values for the tests

were computed by applying the bootstrap algorithm in Subsection 2.4. These results

show that models other than AM − B do not fit well, where AM − B stands for

the Asymmetric MEM(1,1) with Burr conditional distribution as in Section 3. The

p-value for AM − B ranges from 0.08 to 0.76, depending on the test.

Table 1: The p-values for specification tests of different multiplicative error models
for the S&P 500 realized volatility data.

Tests

Null model JG FG CvM U2 A2 KS Ku

AM − E 0.00 0.00 0.00 0.00 0.00 0.00 0.00

AM −W 0.00 0.00 0.00 0.00 0.00 0.00 0.00

AM −G 0.00 0.00 0.00 0.00 0.00 0.00 0.00

AM −GG 0.00 0.00 0.00 0.00 0.00 0.00 0.00

AM − B 0.50 0.76 0.19 0.26 0.16 0.08 0.14

Note: The conditional mean specification AM : Ψi(φ) = φ1 + φ2Ψi−1(φ){|εi−1 − φ4|+
φ5(εi−1 − φ4)} + φ3Ψi−1(φ), εi−1 = εi−1(φ) = Zi−1/Ψi−1(φ), φ = (φ1, φ2, φ3, φ4, φ5)

⊤.
The tests CvM, U2, A2, KS and Ku are described in Section 3. The JG and FG tests
are, Janssen et al. (2005) [JG] and the D-test of Fernandes and Grammig (2005) [FG].

Apart from the p-values, it is also of interest to see graphically the extent to

which the fitted and the empirical distributions of the residuals differ. To this end we

constructed the QQ-plots of the residuals for different distributions. Figure 1 shows

the QQ plots for evaluating the goodness-of-fit of Generalized gamma and Burr error

distributions, after fitting the Asymmetric MEM(1, 1) model for the conditional mean.

The plot for the Burr distribution appears to be significantly closer to a straight

line than that for the Generalized gamma which is consistent with the conclusion

based on the specification tests. The QQ plots for Exponential, Weibull and Gamma

distributions were also constructed (not shown here). They exhibited systematic

departures from a straight line, and hence there are indications that the conditional

distribution of Zi is not Exponential, Weibull, Gamma or Generalized gamma. The

results of the bootstrap tests given in Table 1 are consistent with this observation.
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Figure 1: QQ-plots for evaluating the goodness-of-fit of the error distributions; (a):
Burr, and (b): Generalized gamma, after fitting the Asymmetric MEM(1,1) model to
the conditional mean process of the realized volatility data.
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Out of sample forecasting performance: Since our main objective is to choose a

suitable model for forecasting, it is also of interest to evaluate the models in terms

of out-of-sample forecasting performance. To this end, we compute the Average Cu-

mulative Predictive Likelihood [ACPL] for the out-of-sample period. To introduce the

definition for ACPL let {Z1, . . . , Zn} denote the initial dataset (from Sep 12, 2005 to

Sep 20, 2011), with n = 1518. Let N∗ = 312 denote the number of out-of-sample

observations. First, we estimate the Asymmetric MEM(1,1) model under each of the

error distributions by using the observations {Z1, . . . , Zn+j−1} for j = 1, 2, . . . , N∗,

thus expanding the time period by 1 for each new observation in the out-of-sample

period. For j = 1, 2, . . . , N∗, we compute the predictive (conditional) mean Ψ̂n+j(φ̂),

for the next period (n+ j) by using the data {Z1, . . . , Zn+j−1} up to the current time

(n+ j − 1) and the in-sample parameter estimates. Then ACPL is defined as

ACPL(n∗) := (n∗)−1

n+n∗∑

j=n+1

{Ψ̂j(φ̂)}−1fθ̂[Zj/Ψ̂j(φ̂)], (24)

for n∗ = 1, . . . , N∗; for example, see Chan et al. (2014). For each n∗, ACPL(n∗) gives

the average cumulative predictive likelihood based on the observed {Zn+1, . . . , Zn+n∗}.
A large value of ACPL indicates better predictive ability of the underlying model. Fig-

ure 2 provides a plot of ACPL(n∗) against n∗ for several parametric models, and a non-

parametric kernel density estimator obtained by using the asymmetric gamma kernel

approach, as proposed by Chen (2000), based on QMLE residuals (n∗ = 1, . . . , N∗).
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Ranking of the models in terms of ACPL values turned out to be consistent with the

p-values given by the specification tests (see Table 1).

Figure 2: Average Cumulative Predictive Likelihood [ACPL] for the Asymmetric
MEM(1,1) model with F : Exponential, Weibull, generalized-Gamma, Burr, and a
non-parametric kernel density estimator obtained based on QMLE residuals.
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Predictions for Zn+k and Ψn+k

We evaluate the performance of the parametric bootstrap method in Section 2.1,

based on the Burr-AMLE, in comparison with the semiparametric bootstrap method

in Section 2.2, over the out-of-sample period. First to evaluate the two estimation

methods for the in-sample period, in Figure 3, we compare the autocorrelogram of the

realized volatility with the residual correlograms for the Asymmetric MEM(1,1): (a)

when the model is estimated by the QMLE based on the exponential distribution, and

(b) when the model is estimated by the Burr-AMLE. The correlogram for the QMLE

residuals indicates a very significant autocorrelation even up to lag 30. By contrast,

the autocorrelations of the residuals obtained from the Burr-AMLE are significantly

smaller. This may be related to the fact that AMLE is more efficient than the

QMLE if the parametric model used by AMLE is correctly specified. Despite its

asymptotic consistency, the QML method has been found to perform unsatisfactorily
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for some parametric forms of Ψi even in quite large samples (see Grammig and Maurer,

2000; Fernandes and Grammig, 2005). Thus, our empirical observation appears to be

consistent with the observations in the aforementioned literature.

Figure 3: Autocorrelogram of the realized volatility (first panel), and the Residual
Correlograms for AMEM [the Asymmetric MEM(1,1)], when estimated by the QMLE
(the middle panel) and when estimated by the Burr-AMLE (bottom panel).
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We compute prediction intervals and upper prediction bounds for Zn+k and Ψn+k

for the out of sample period consisting of 312 daily annualized realized volatilities from

n = 1519 to n = 1830 of the full sample, for several lead times k. To have a clearer

idea about the adequacy of the interval forecasts, we also compute the Interval Score

proposed by Gneiting and Raftery (2007) to evaluate the accuracy of the interval

forecasts over the out-of-sample period. If the forecaster quotes the (1 − α) × 100%
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prediction interval [l, u] and x materializes, then the negatively oriented interval score

of Gneiting and Raftery (2007) is defined by

Sint
α (l, u; x) := (u− l) +

2

α
(l − x)I{x < l}+ 2

α
(x− u)I{x > u}. (25)

This scoring rule has intuitive appeal as the forecaster is rewarded for narrow predic-

tion intervals, and incurs a penalty, based on α, if the observation misses the interval.

A summary of the main results is presented in Tables 2–3 and Figures 4–5. The

results for the parametric method are based on the aforementioned Burr-AMLE. For

the lead times k = 2, 3, and 4, the bootstrap interval forecasts produced by the para-

metric bootstrap method yield good empirical coverage (EC) properties for both Zn+k

and Ψn+k, at 80%, 95%, and 99% levels (see Tables 2 and 3). The corresponding fore-

casts produced by the semiparametric bootstrap method also exhibit good coverage

properties, but not as good as those from the parametric method. In this regard, we

make the following observations: the semiparametric method yields good coverage

properties at the 99% level and for some cases at the 95% level, but at the 80% level,

the ECs for the semiparametric method are all either significantly below/above the

desired nominal rate; for example, (a) in the 80% prediction intervals (PIs) for Zn+3

(see Table 2), the EC for the semiparametric method is only 70.3%, and, by contrast,

for the parametric method it is 81.3% which is much closer to the desired level of

80%; and (b) in the 80% prediction bounds for Zn+2 (see Table 3), the semiparamet-

ric method yields an EC of 90.0%, and the parametric method yields an EC of 80.4%

which is again comparably much closer to the desired nominal level.

In terms of the average width and the average value of the interval score in (25),

the interval forecasts produced by the parametric method perform uniformly better

than those produced by the semiparametric method (see Tables 2–3 and Figures 4–5).

For example, for the 99% PIs for Zn+3, the average width for the semiparametric PIs

is over 0.08 higher than that for the parametric PIs (see Table 2). Similar significant

differences in average width can also be observed for most of the other cases. Graph-

ical illustrations of such differences in terms of the prediction bounds for Zn+2 are

provided in Figures 4 and 5. Additional graphical illustrations for other interval fore-

casts are provided in Figures S.1–S.6 in Appendix S.2 in the supplementary material.

Overall, in terms of the out-of-sample probability forecasts produced in this em-

pirical example, the semiparametric method performs reasonably well, and the para-

metric method performs better. However, we emphasize that the better performance

of the parametric method is not a general result, but an observation in one empiri-

cal example. It is almost certainly the case that there are empirical settings in which

the semiparametric method would perform better in view of the weaker assumption
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that it does not require a parametric form for the error distribution.

Table 2: Empirical coverage (EC) percentage, average width (AW), and average
Interval Score (AIS) of k-step-ahead bootstrap Prediction Intervals for Zn+k and
Ψn+k for the out of sample period from Sep 21, 2011 to Dec 17, 2012 (i.e. n = 1519
to n = 1830) at different Nominal Coverage (NC) rates.

k = 2 k = 3 k = 4

NC(%) EC(%) AW AIS EC(%) AW AIS EC(%) AW AIS

Parametric bootstrap with Burr-AMLE

Zn+k 99 98.7 0.097 0.141 99.4 0.116 0.128 99.4 0.135 0.145
95 95.5 0.055 0.086 94.2 0.062 0.098 96.4 0.071 0.084
80 78.5 0.027 0.049 81.3 0.030 0.051 85.1 0.033 0.050

Ψn+k 99 98.7 0.047 0.103 99.4 0.068 0.078 99.0 0.088 0.090
95 94.5 0.027 0.051 94.8 0.040 0.056 95.5 0.049 0.062
80 79.7 0.014 0.029 80.3 0.020 0.033 84.8 0.024 0.037

Semiparametric bootstrap with QMLE

Zn+k 99 99.0 0.174 0.180 98.7 0.198 0.214 99.0 0.219 0.220
95 91.6 0.084 0.101 91.9 0.096 0.125 90.3 0.101 0.116
80 73.0 0.039 0.059 70.3 0.042 0.065 68.3 0.043 0.067

Ψn+k 99 99.4 0.083 0.148 99.7 0.121 0.124 99.7 0.135 0.147
95 97.1 0.044 0.078 94.2 0.057 0.069 95.1 0.064 0.085
80 69.8 0.022 0.040 70.0 0.026 0.041 69.3 0.028 0.044

Note: The values under AIS denotes the average value of the negatively oriented
interval score (25) for the prediction intervals over the out-of-sample period.

Table 3: Empirical coverage (EC) percentages of k-step-ahead bootstrap Prediction
Bounds for Zn+k and Ψn+k for the out of sample period from Sep 21, 2011 to Dec 17,
2012 (i.e. n = 1519 to n = 1830) at different Nominal Coverage (NC) rates.

Parametric Burr-AMLE Semiparametric QMLE

NC(%) k = 2 k = 3 k = 4 k = 2 k = 3 k = 4
Zn+k 99 98.7 98.4 99.4 99.7 99.0 100.0

95 95.2 97.4 98.1 97.4 98.4 97.4
80 80.4 82.3 84.5 90.0 90.3 89.0

Ψn+k 99 98.7 99.0 99.4 98.7 99.7 99.0
95 93.6 95.8 96.8 96.1 97.1 97.4
80 82.6 78.1 81.2 86.5 91.0 90.3
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Figure 4: Burr AMLE based bootstrap prediction bounds for S&P500 daily annu-
alized realized volatility (Zn+2) for the out of sample period from Sep 21, 2011 to
Dec 17, 2012 (n = 1519 to n = 1830). Empirical coverage rates of the prediction
bounds are, top panel: 80.4%, middle panel: 95.2%, and bottom panel: 98.7%.
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Figure 5: QMLE based semiparametric bootstrap prediction bounds for S&P500 daily
annualized realized volatility (Zn+2) for the out of sample period from Sep 21, 2011
to Dec 17, 2012 (n = 1519 to n = 1830). Empirical coverage rates are, top panel:
90.0%, middle panel: 97.4%, and bottom panel: 99.7%.
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5 CONCLUSION

The class of multiplicative error models [MEM] for nonnegative random variables, has

been the subject of considerable methodological development. This paper contributes

to advance the current state of econometric methodology in MEM for constructing

multi-step ahead forecasts of quantities related to a nonnegative valued time series.

In particular, we propose a parametric bootstrap procedure to construct probability

forecasts for Zn+k and its conditional mean Ψn+k, given Z1, · · · , Zn (k = 2, 3, . . .), for

a time series {Zi} that obeys a parametric MEM. A variant of the proposed boot-

strap method for producing probability forecasts for a semiparametric MEM is also

considered. Our bootstrap methods are easy to implement and are flexible enough to

be applied to a wide range of MEMs. The proposed bootstrap methods are placed on

firm grounds by providing rigorous proofs for their asymptotic validity. The proofs

are provided under a set of high-level conditions, which we demonstrate to be real-

istic by showing that they are satisfied by the well-known family MEM[p1, p2]. We

also consider the problem of fitting a fully parametric MEM, that specifies separate

parametric forms for the error distribution and the conditional mean. The test statis-

tics are functionals of an estimated empirical process, and are not asymptotically

pivotal. The tests are implemented using a bootstrap method which is shown to be

asymptotically valid. Our estimation method is based on an approximate maximum

likelihood approach, and hence it is expected to be more efficient than the quasi max-

imum likelihood estimation under the correct specification. Our bootstrap methods

performed well in an extensive simulation study. We illustrate the proposed methods

by considering an empirical example based on realized volatility.

A APPENDIX: Regularity conditions and proofs

This appendix provides the proofs for the main results stated in Section 2. We relegate

the proofs of some of the results to the supplementary material. First, we state the

regularity conditions and obtain several preliminary results.

A.1 Some regularity conditions and preliminary results

We first list several regularity conditions on the family of pdfs F ′ = {fθ : θ ∈ Θ}.

B.1. For each θ ∈ Θ and x ≥ 0, fθ(x) > 0.

B.2. The map (θ, x) 7→ fθ(x) is continuous on Θ× [0,∞).
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B.3. For θ1, θ2 ∈ Θ, fθ1(x) = fθ2(x) for all x ≥ 0 implies that θ1 = θ2.

B.4. supζ∈Φ×Θ |n−1Υ̃n(ζ)− n−1Υn(ζ)| a.s.→ 0 as n → ∞.

Conditions B.1 and B.2 are technical assumptions and B.3 is required for the

identifiability of the parameter θ. If Fθ is the standard exponential distribution or a

member of the standard gamma family (with two parameters), then Condition B.4

follows from (4) (see Straumann and Mikosch, 2006). We expect that this would hold

for many other parametric families too. We also make following model assumptions.

B.5. Model (1) admits a unique stationary ergodic solution {(Zi, Ψi)} such that Ψi =

Ψi(φ0), F0 = Fθ0, and E{| log Ψi(φ0)|} < ∞ with φ0 ∈ Φ and θ0 ∈ Θ being inte-

rior points.

B.6. The family of functions {gφ, φ ∈ Φ} is bounded from below by some constant

αL > 0, such that gφ(z, s) > αL, for every (z, s) ∈ (R+)p1 × (R+)p2 and φ ∈ Φ. The

map (φ, s) 7→ gφ(z, s) is continuous for every z ∈ (R+)p1 .

B.7. For all φ ∈ Φ, Ψ0 = Ψ0(φ) almost surely if and only if φ = φ0.

Conditions B.5 and B.6 are satisfied by most MEMs, including MEM(p1, p2) and

asymmetric MEM(p1, p2), and B.7 is an identifiability assumption. Conditions similar

to B.5–B.7 are typically required for the consistency of Gaussian quasi maximum like-

lihood estimation in closely related GARCH models (see Francq and Zaköıan, 2010).

Proposition 1. Let {Zi; i ∈ Z} be a stationary and ergodic process that obeys the

model defined by (1), (2) and (3) with the true value ζ0 = (φ⊤
0 , θ

⊤
0 )

⊤. Suppose

that B.1–B.7 and (4) are satisfied. Assume additionally that E{| log fθ0(ε0)|} < ∞.

Then, ζ̂
a.s.→ ζ0 as n → ∞.

If the almost sure convergence in B.4 is replaced by the weaker assumption

sup
ζ∈Φ×Θ

|n−1Υ̃n(ζ)− n−1Υn(ζ)|
p→ 0 as n → ∞,

then we could obtain that ζ̂ is weakly consistent, i.e., ζ̂
p→ ζ0, instead of ζ̂

a.s.→ ζ0.

This result follows from the proof of Proposition 1 in Appendix A.1.1, once the argu-

ments on the pointwise almost sure convergence n−1Υ̃n(ζ)
a.s.→ Υ(ζ) are replaced by

n−1Υ̃n(ζ)
p→ Υ(ζ) for ζ ∈ Φ×Θ, where Υ(ζ) = −E[log Ψ0(φ)]+E[log{fθ(Z0/Ψ0(φ))}].
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Higher order conditions on Fθ, gφ, and Ψi(φ)

Next we state some higher order conditions that we assume for establishing the

validity of bootstrap and the asymptotic normality of the AMLE ζ̂ in (5). Let

γ0(ζ) = −χ0(ζ) and υ(φ) = 1/Ψ0(φ). Then,

γ0(ζ) = log υ(φ) + log [fθ{Z0υ(φ)}] .

We assume that Ψ0(φ) and fθ(x) are twice continuously differentiable. Let us intro-

duce the following notation: For a differentiable function m(s, x) on Φ × R or on

Θ×R, write ṁ(s, x) and m
′

(s, x) for the derivatives with respect to s and x, respec-

tively. Thus, ḟθ(x) = ∂fθ(x)/∂θ, f
′

θ(x) = ∂fθ(x)/∂x and υ̇(φ) = Ψ̇0(φ){Ψ0(φ)}−2 with

Ψ̇0(φ) = [(∂/∂φ1)Ψ0(φ), ..., (∂/∂φp)Ψ0(φ)]
⊤. ‖ · ‖ denotes the Euclidean norm.

The first order derivatives of the function γ0(ζ) are as follows:

∂γ0
∂φ

=
υ̇(φ)

υ(φ)
+

f ′
θ{Z0υ(φ)}Z0υ̇(φ)

fθ{Z0υ(φ)}
and

∂γ0
∂θ

=
ḟθ{Z0υ(φ)}
fθ{Z0υ(φ)}

.

One may obtain expressions for the matrices [∂2γ0/∂φ∂θ], [∂
2γ0/∂θ

2], and [∂2γ0/∂φ
2]

similarly. We need to make the following additional regularity assumptions.

D.1. Assumptions B.1–B.7 and (4) are satisfied, and E{| log fθ0(ε0)|} < ∞.

D.2. The functions (φ, z, s) 7→ gφ(z, s) and (θ, x) 7→ fθ(x) are twice continuously

differentiable in their domains.

D.3. n−1/2 supζ∈Φ×Θ ‖[∂Υ̃n/∂ζ]− [∂Υn/∂ζ]‖ a.s.→ 0 as n → ∞.

D.4.

E

[
sup

ζ∈Φ×Θ

∥∥∥∥
∂2γ0(ζ)

∂ζ2

∥∥∥∥
]
< ∞, E

[∥∥∥∥
∂γ0(ζ0)

∂ζ

∥∥∥∥
2
]
< ∞.

Condition D.2 guarantees that Ψ0(φ) and fθ(x) are twice continuously differen-

tiable. Condition D.3 is used for ensuring that the maximizer of Υn(ζ) is asymp-

totically equivalent to ζ̂, and D.4 introduces two moment conditions for the random

element γ0. Similar conditions, in the simpler case where Fθ is the standard expo-

nential distribution, have previously been used in the literature (see Straumann and

Mikosch, 2006). The next proposition establishes the asymptotic normality of ζ̂.

Proposition 2. Let {Zi; i ∈ Z} be a stationary ergodic process that obeys the model (1),

(2) and (3) with the true parameter ζ0 = (φ⊤
0 , θ

⊤
0 )

⊤ being an interior point of Φ×Θ.

Suppose that Conditions D.1–D.4 are satisfied. Further, assume that

Σ0 := E

[
∂2γ0
∂ζ2

(ζ0)

]
= −E

[{
∂γ0
∂ζ

(ζ0)

}⊤ {
∂γ0
∂ζ

(ζ0)

}]
(A.1)

is negative definite. Then, n1/2(ζ̂ − ζ0)
d→ N(0,−Σ−1

0 ) as n → ∞.
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A.1.1 Proofs of Propositions 1 and 2

Lemma 1. Suppose that the assumptions of Proposition 1 are satisfied. Then, the func-

tion Υ(ζ) := −E[log Ψ0(φ)] + E[log{fθ(Z0/Ψ0(φ))}] is uniquely maximized at ζ = ζ0.

Lemma 2. Suppose that the assumptions of Proposition 2 are satisfied. Let ζ̃ denote

the maximizer of the function Υn(ζ) in (6). Then, n1/2(ζ̃ − ζ̂)
a.s.→ 0 as n → ∞.

We relegate the proofs of Lemmas 1 and 2 to the supplementary material.

Proof of Proposition 1. From Lemma 1 we have that the objective function Υ(ζ)

is uniquely maximized at ζ = ζ0. Note that by Conditions B.2 and B.6, the function

ζ 7→ χi(ζ) = log Ψi(φ)− log [fθ{Zi/Ψi(φ)}]

is continuous on Φ×Θ w.p. 1. Hence, by an application of the ergodic theorem, we ob-

tain that n−1
∑n

i=1 −χi(ζ)
a.s.→ Υ(ζ) as n → ∞, for every (fixed) ζ ∈ Φ×Θ. By arguing

as in the proof of Lemma 3.11 of Pfanzagl (1969), one obtains that the function Υ is

upper semicontinuous on Φ×Θ and that lim supn→∞ supζ∈K n−1Υn(ζ) ≤ supζ∈K Υ(ζ)

w.p. 1 for any compact subset K ⊂ Φ × Θ. By Condition B.4, it also follows that

lim supn→∞ supζ∈K n−1Υ̃n(ζ) ≤ supζ∈K Υ(ζ), w.p. 1. Since, an upper semicontinuous

function attains its maximum on compact sets, it follows by the arguments of the

proof of Theorem 4.1 of Straumann and Mikosch (2006) that ζ̂
a.s.→ ζ0 as n → ∞.

Proof of Proposition 2. From Lemma 2, we obtain that n1/2(ζ̃ − ζ̂)
a.s.→ 0. There-

fore, it suffices to establish the asymptotic normality of ζ̃. Since Υ̇n(ζ̃) = 0 and

Υ̇n(ζ0) = −
∑n

i=1[∂χi(ζ0)/∂ζ], from Taylor series expansion, n−1Ϋn(ζ
∗
n)n

1/2(ζ̃ − ζ0) =

n−1/2
∑n

i=1 χ̇i(ζ0), for some ζ∗n satisfying ‖ζ∗n−ζ0‖ ≤ ‖ζ̃−ζ0‖, where χ̇i(ζ) = [∂χi(ζ)/∂ζ].

Since ζ∗n
a.s.→ ζ0, we obtain by arguing as before that n−1Ϋn(ζ

∗
n)

a.s.→ Σ0. Since Σ0 is

invertible and n−1/2
∑n

i=1 χ̇i(ζ0) = Op(1) then it follows that

n1/2(ζ̃ − ζ0) = n−1/2

n∑

i=1

ϕi(ζ0) + op(1), ϕi(ζ) := Σ−1
0 χ̇i(ζ). (A.2)

From a martingale central limit theorem (Theorem 18.3 in Billingsley, 1999) fol-

lowed by an application of Slutsky’s lemma one obtains that n−1/2
∑n

i=1 ϕi(ζ0)
d→

N(0,−Σ−1
0 ) as n → ∞, and hence the proof follows.

A.2 Proofs of Theorems 1 and 2

First, we obtain several preliminary results required for the main proofs. Recall that,

the data generating model in (15) for a given point ζ = (φ, θ)⊤ ∈ Φ×Θ, is

Z
(ζ)
i = Ψ

(ζ)
i (φ)εi(θ), Ψ

(ζ)
i (φ) = gφ

(
Z

(ζ)
i−1, · · · , Z

(ζ)
i−p1

, Ψ
(ζ)
i−1(φ), · · · , Ψ

(ζ)
i−p2

(φ)
)
, i ∈ Z,
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where εi(θ) = F−1
θ (Ui) = inf{x ≥ 0 : Ui ≤ Fθ(x)}. In what follows, P (ζ) and

E
(ζ) denote the corresponding Probability and Expectation, respectively. The terms

derived from (Z
(ζ)
i , Ψ

(ζ)
i ), such as Ψ̃

(ζ)
i and λ

(ζ)
i = Ψ̇

(ζ)
i /Ψ

(ζ)
i , are denoted with the

superscript “(ζ)”, highlighting the fact that the data generating process corresponds

to ζ. Further, for brevity, for any given non-random sequence ζn = (φ⊤
n , θ

⊤
n )

⊤ where

ζn → ζ0, we write (Zni, Ψni, εni) for (Z
(ζn)
i , Ψ

(ζn)
i , ε

(ζn)
i ), with the probability and the

expectation operators being denoted by Pn and En, respectively.

First, we state two lemmas (Lemmas 3 and 4), and relegate the proofs to Ap-

pendix S.3 in the supplementary material.

Lemma 3. Suppose that B.5, B.6, and B.7 are satisfied, and E[‖λi(φ0)‖2] < ∞.

Then, we have that max1≤i≤n ‖λi(φ0)‖ = op(n
1/2). Additionally, assume that Condi-

tions C.1 and C.3 are also satisfied. Then, max1≤i≤n ‖λni‖K1
= opn(n

1/2).

Lemma 4. Suppose that B.5, B.6, and B.7 are satisfied, and the function (φ, z, s) 7→
gφ(z, s) is twice continuously differentiable. Let B be an open neighbourhood of φ0

such that E[‖Ψ̈0‖2+d
B ] < ∞ for some d > 0. Let 0 < M < ∞. Then,

(a) n1/2 sup |Ψi(t) − Ψi(s) − (t − s)⊤Ψ̇i(s)|/Ψi(φ0) = op(1), where the supremum is

taken over 1 ≤ i ≤ n, and over {(t, s) : t, s ∈ B,
√
n‖t− s‖ ≤ M}.

Additionally, assume that Conditions C.1 and C.3 are satisfied and B ⊂ K1, where

K1 is as in C.3. Then,

(b) n1/2 sup |Ψni(t) − Ψni(s) − (t − s)⊤Ψ̇ni(s)|/Ψni(φn) = opn(1), with the supremum

being taken over the same domain as in (a).

In what follows, d2(FX , FY ) denotes the Mallows metric for the distance between

two probability distributions FX and FY defined by d2(FX , FY ) = inf{E|X −Y |2}1/2,
where the infimum is over all square integrable random variables X and Y with

marginal distributions FX and FY . Further, the bootstrap convergence results are

“in probability”. In particular, the orders op∗n(1) and Op∗n(1) are defined as follows:

(a) X∗
n = op∗n(1) if P

∗
n{|X∗

n| > δ} →p 0 for all δ > 0, (b) X∗
n = Op∗n(1) if for any δ > 0,

there exists a finite M > 0 such that P{P ∗
n(|X∗

n| > M) < δ} −→ 1 as n → ∞.

Next, we provide the proof of Theorem 1.

Proof of Theorem 1. Let GZ,k(x) denote the distribution function of Zn+k, condi-

tional on {Z1, . . . , Zn}. Then, from the definition of the Mallows metric and applying

the Cauchy-Schwarz inequality, we obtain that

[d2(GŽ∗,k, GZ,k)]
2 ≤ inf

ε∗∼F
θ̂
, ε∼Fθ0

E[E∗{Ψ̌ ∗
n+k(φ̂

∗)ε∗ − Ψn+k(φ0)ε}2]

≤ E[E∗{Ψ̌ ∗
n+k(φ̂

∗)− Ψn+k(φ0)}2] + E{Ψ 2
n+k(φ0)} inf

ε∗∼F
θ̂
, ε∼Fθ0

E[E∗(ε∗ − ε)2]
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≤ E[E∗{Ψ̌ ∗
n+k(φ̂

∗)− Ψn+k(φ0)}2] + E{Ψ 2
n+k(φ0)}[d2(Fθ̂, Fθ0)]

2

= E[E∗{Ψ̌ ∗
n+k(φ̂

∗)− Ψn+k(φ0)}2] + op(1). (A.3)

Let Λ be a compact neighbourhood of φ0 that satisfy (13). By using C.1, C.2

and C.3 we obtain that n1/2(φ̂∗−φ0) = Op∗n(1), and hence, from (4) and Lemma 4, it

follows that |Ψn+k(φ̂
∗)−Ψn+k(φ0)| = op∗n(1). Therefore, E{E∗[|Ψn+k(φ̂

∗)−Ψn+k(φ0)|]} =

o(1), and hence,

E{E∗[|Ψ̌ ∗
n+k(φ̂

∗)− Ψn+k(φ0)|]}
≤ E{E∗[|Ψ̌ ∗

n+k(φ̂
∗)− Ψn+k(φ̂

∗)|]}+ E{E∗[|Ψn+k(φ̂
∗)− Ψn+k(φ0)|]}

≤ E{E∗[sup
φ∈Λ

|Ψ ∗∗
n (φ)− Ψn(φ)|]}+ o(1),

where the last inequality follows from (14). Because Ψ̌ ∗
n(·) = Ψ̃n(·), one obtains

from (13) that E{E∗[supφ∈Λ |Ψ ∗∗
n (φ) − Ψ̃n(φ)|]} = o(1). Further, it follows from (4)

that supφ∈Λ |Ψ̃n(φ)− Ψn(φ)| e.a.s.→ 0 as n → ∞. Therefore,

E{E∗[sup
φ∈Λ

|Ψ ∗∗
n (φ)− Ψn(φ)|]}

≤ E{E∗[sup
φ∈Λ

|Ψ ∗∗
n (φ)− Ψ̃n(φ)|]}+ E{sup

φ∈Λ
|Ψ̃n(φ)− Ψn(φ)|} = o(1).

Consequently,

E{E∗[|Ψ̌ ∗
n+k(φ̂

∗)− Ψn+k(φ0)|]} = o(1). (A.4)

Next, consider the event An = {|Ψ̌ ∗
n+k(φ̂

∗)− Ψn+k(φ0)| ≤ 1}. On the event An,

E[E∗{Ψ̌ ∗
n+k(φ̂

∗)− Ψn+k(φ0)}2] ≤ E[E∗{|Ψ̌ ∗
n+k(φ̂

∗)− Ψn+k(φ0)|}].

From (A.4) and applying Markov inequality, we obtain that

P ∗
n(|Ψ̌ ∗

n+k(φ̂
∗)− Ψn+k(φ0)| > 1) ≤ E

∗(|Ψ̌ ∗
n+k(φ̂

∗)− Ψn+k(φ0)| > 1) = op(1).

Therefore, P ∗
n(An) →p 1 as n → ∞. Hence, it follows from (A.4) that

E[E∗{Ψ̌ ∗
n+k(φ̂

∗)− Ψn+k(φ0)}2] = o(1). (A.5)

This together with (A.3) show that d2(GŽ∗,k, GZ,k) = op(1). Thus, the Part (a) of

Theorem 1 follows.

Now, to prove Part (b), let GΨ,k(x) be the distribution function of Ψn+k conditional

on {Z1, . . . , Zn}. By arguing as for (A.3), one obtains that

[d2(GΨ̌∗,k, GΨ,k)]
2 ≤ E[E∗{Ψ̌ ∗

n+k(φ̂
∗)− Ψn+k(φ0)}2] + op(1).

Further, as in (A.5), we have that E[E∗{Ψ̌ ∗
n+k(φ̂

∗) − Ψn+k(φ0)}2] → 0 as n → ∞.

Hence, Part (b) of Theorem 1 also follows.
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We will next provide the proof of Theorem 2.

Let {Fn} denote a sequence of cdf’s in D[0,∞) with each Fn having unit mean

and finite variance. The semi-parametric analogue of the data generating model (15)

at a non-random (φn, Fn), where (φn, Fn) → (φ0, F0) as n → ∞, is given by

Z
(φn,Fn)
i = Ψ

(φn,Fn)
i (φn)ε

Fn

i , (A.6)

Ψ
(φn,Fn)
i (φ) = gφ

(
Z

(φn,Fn)
i−1 , · · · , Z(φn,Fn)

i−p1
, Ψ

(φn,Fn)
i−1 (φ), · · · , Ψ (φn,Fn)

i−p2
(φ)

)
, i ∈ Z,

where εFn

i = F−1
n (Ui) := inf{x ≥ 0 : Ui ≤ Fn(x)}, for i ∈ Z. In what follows, for

brevity, we write (Z†
ni, Ψ

†
ni, ε

†
ni) for (Z

(φn,Fn)
i , Ψ

(φn,Fn)
i , εFn

i ), and continue to use Pn and

En for the corresponding probability and expectation operators.

The next lemma extends Lemmas 3 and 4 to the setting in (A.6). We relegate the

proof of this lemma to Appendix S.3 in the supplementary material.

Lemma 5. Suppose that B.6 is satisfied, and (φ, z, s) 7→ gφ(z, s) is twice continuously

differentiable. Further, assume that there exist a compact neighbourhood K1 of φ0 such

that analogues of C.1 and C.3 hold for the DGP in (A.6) and the QMLE (10). Then,

(a) max1≤i≤n ‖λ†
ni‖K1

= opn(n
1/2), where λ†

ni := Ψ̇ †
ni(φn)/Ψ

†
ni(φn).

(b) Let B ⊂ K1 be an open neighbourhood of φ0 such that E[‖Ψ̈0‖2+d
B ] < ∞, d > 0. Let

0 < M < ∞. Then, n1/2 sup |Ψ †
ni(t)−Ψ †

ni(s)− (t− s)⊤Ψ̇ †
ni(s)|/Ψ †

ni(φn) = opn(1), where

the supremum is taken over 1 ≤ i ≤ n, and over {(t, s) : t, s ∈ B,
√
n‖t− s‖ ≤ M}.

A key result required for the proof of Theorem 2 is to show that the empirical dis-

tribution function of the standardized residuals, say F̃n,qml, converges to the unknown

error distribution F0. Recall that ε̃
(std)
t = {n−1

∑n
i=1 ε̃

(qml)
i }−1ε̃

(qml)
t , t = 1, . . . , n, and

F̃n,qml(x) := n−1

n∑

i=1

I(ε̃
(std)
i ≤ x), x ≥ 0.

The next lemmas show that F̃n,qml converges in probability to F0 as n → ∞.

Lemma 6. Suppose that the assumptions of Theorem 2 are satisfied. Then, we have

that d2(F̃n,qml, F0) →p 0 as n → ∞.

Proof of Lemma 6. Let Gn(x) = n−1
∑n

i=1 I(εi ≤ x), be the empirical distribution

function of the unobserved errors {ε1, . . . , εn}. From the triangular inequality we have

d2(F̃n,qml, F0) ≤ d2(F̃n,qml, Gn) + d2(Gn, F0).

It can be shown that d2(Gn, F0)
a.s.→ 0 as n → ∞ (see, for example, Lemma 8.4 of

Bickel and Freedman, 1981).
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Thus, it suffices to show that d2(F̃n,qml, Gn) →p 0 as n → ∞. To this end, let J be

a random variable having Laplace distribution on {1, . . . , n}, with P (J = i) = 1/n

for each i = 1, . . . , n. Define two random variables X(1) and Y (1) by

X(1) = εJ and Y (1) = ε̃
(std)
J .

Then, X(1) and Y (1) have the marginal distributions Gn and F̂n respectively. Hence

{d2(F̃n,qml, Gn)}2 = inf{E|X − Y |2} ≤ E{X(1) − Y (1)}2

= n−1

n∑

i=1

(εi − ε̃
(std)
i )2 = (nµ̃2

n)
−1

n∑

i=1

{µ̃nεi − ε̃
(qml)
i }2, (A.7)

where µ̃n := n−1
∑n

i=1 ε̃
(qml)
i .

Let

E1i :=
Ψ̃i(φ̂qml)− Ψi(φ̂qml)

Ψ̃i(φ̂qml)Ψi(φ̂qml)
, E2i :=

Ψi(φ̂qml)− Ψi(φ0)

Ψi(φ̂qml)Ψi(φ0)
.

Then, we have that

ε̃
(qml)
i = Zi

(
1

Ψ̃i(φ̂qml)
− 1

Ψi(φ̂qml)

)
+ Zi

(
1

Ψi(φ̂qml)
− 1

Ψi(φ0)

)
+

Zi

Ψi(φ0)

= −ZiE1i − ZiE2i + εi. (A.8)

Let B be the compact neighbourhood of φ0 in condition L.3. Note that, by condi-

tion B.6, we have Ψi(φ), Ψ̃i(φ) > αL > 0. Hence, on the event {φ̂qml ∈ B},

| E1i | ≤ α−2
L | Ψ̃i(φ̂qml)− Ψi(φ̂qml) | ≤ α−2

L sup
φ∈B

| Ψ̃i(φ)− Ψi(φ) |e.a.s.−→ 0, as i → ∞.

Therefore, an application of Lemma 2.1 of Straumann and Mikosch (2006) yields that

ZiE1i e.a.s.−→ 0 as i → ∞, and hence, n−1
∑n

i=1 ZiE1i a.s.→ 0 as n → ∞.

Next, we study the limiting behaviour of n−1
∑n

i=1 ZiE2i. First, note that, from

Lemmas 3 and 4 we have

L.4. For every constant M > 0, sup
√
n | Ψi(t)−Ψi(s)−(t−s)⊤Ψ̇i(s) | /Ψi(φ0) = op(1),

where the supremum is taken over 1 ≤ i ≤ n and {(t, s) : t, s ∈ Φ,
√
n‖t− s‖ ≤ M}.

Furthermore, max1≤i≤n n
−1/2‖λi(φ0)‖ = op(1).

Let δ > 0 be fixed but arbitrary constant. Since n1/2(φ̂qml − φ0) = Op(1), there

exists a constantM > 0 such that P (n1/2‖φ̂qml−φ0‖ ≤ M) ≥ 1−δ for all n sufficiently

large. Hence, in view of L.4, on the event {n1/2‖φ̂qml − φ0‖ ≤ M}, we have that

n1/2 max
1≤i≤n

| E2i | ≤ n1/2α−1
L max

1≤i≤n

∣∣∣∣
Ψi(φ̂qml)− Ψi(φ0)

Ψi(φ0)

∣∣∣∣

≤ α−1
L max

1≤i≤n
‖n1/2(φ̂qml − φ0)

⊤λi(φ0)‖+ op(1)

≤ α−1
L M max

1≤i≤n
‖λi(φ0)‖+ op(1).
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Since max1≤i≤n n
−1/2‖λi(φ0)‖ = op(1), then it follows that max1≤i≤n | E2i |= op(1).

Therefore, with the aid of the Ergodic Theorem, we obtain that

∣∣∣∣n
−1

n∑

i=1

ZiE2i
∣∣∣∣ ≤ max

1≤i≤n
| E2i | n−1

n∑

i=1

Zi = op(1).

Since δ is arbitrary and P (φ̂qml ∈ B) → 1, in view of the above results and (A.8),

µ̃n = n−1

n∑

i=1

ε̃
(qml)
i = n−1

n∑

i=1

εi + op(1),

and hence µ̃n →p 1 as n → ∞; recall that n−1
∑n

i=1 εi
a.s.→ E(ε0) = 1 by the strong law

of large numbers. Therefore, in view of (A.7), for some constant K > 0,

{d2(F̃n,qml, Gn)}2 ≤ Kn−1

n∑

i=1

{εi − ε̃
(qml)
i }2 +Mn (A.9)

where Mn is a sequence of random variables that converges to zero in probability.

Since ZiE1i e.a.s.−→ 0, max1≤i≤n | E2i |= op(1), and {Zi; i ∈ Z} is strictly stationary

and ergodic with E(Z2
0) < ∞, in view of (A.8), we obtain

n−1

n∑

i=1

{εi − ε̃
(qml)
i }2 = n−1

n∑

i=1

{ZiE1i + ZiE2i}2 = op(1).

This result together with (A.9) yield that d2(F̃n,qml, Gn) = op(1).

Next, we provide the proof of Theorem 2.

Proof of Theorem 2. Let GZ,k(x) be the distribution function of Zn+k, conditional

on {Z1, . . . , Zn}. Then, from the definition of the Mallows metric and applying the

Cauchy-Schwarz inequality, we obtain

[d2(GŽ∗qml,k, GZ,k)]
2 ≤ inf

ε∗∼F̃n,qml, ε∼F
E[E∗{Ψ̌ ∗qml

n+k (φ̂∗
qml)ε

∗ − Ψn+k(φ0)ε}2]

≤ E[E∗{Ψ̌ ∗qml
n+k (φ̂∗

qml)− Ψn+k(φ0)}2] + E{Ψ 2
n+k(φ0)} inf

ε∗∼F̃n,qml, ε∼F0

E[E∗(ε∗ − ε)2]

≤ E[E∗{Ψ̌ ∗qml
n+k (φ̂∗

qml)− Ψn+k(φ0)}2] + E{Ψ 2
n+k(φ0)}[d2(F̃n,qml, F0)]

2.

Lemma 6 yields d2(F̃n,qml, F0) →p 0, and hence E{Ψ 2
n+k(φ0)}[d2(F̃n,qml, F0)]

2 = op(1).

Since an analogue of (13) holds for the current setup, by using the analogues of C.1,

C.2 and C.3 we also obtain that n1/2(φ̂∗
qml − φ0) = Op∗n(1). The rest of the proof

follows from Lemmas 3, 4 and 5, and a repetition of the arguments used in the proof

of Theorem 1.
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A.3 Proofs of the main results of Section 2.4

We relegate the proofs of Theorems 3 and 4 and Corollaries 1 and 2 stated in Sec-

tion 2.4 to Appendix S.3 in the supplementary material.
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