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Abstract

We present the new, free and open source, RepTate [Rheology of Entangled Polymers: Toolkit for

Analysis of Theory and Experiment] software package for viewing, exchanging and analyzing rhe-

ological and associated data. The main idea of RepTate is to propose a powerful and user-friendly

platform which can be installed on the same computer as, e.g., the rheometer, and which makes

comparing experiments with classical, or latest, theories easy – without the need of a theoretician.

The new RepTate software offers full compatibility with different operating systems (Windows,

Mac, and Linux). We demonstrate the use of RepTate by reproducing predictions of recently pub-

lished articles, from entangled, mono- and polydisperse, linear chains to branch-on-branch polymer

systems, in the linear and nonlinear rheology regimes.
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I. INTRODUCTION

In any scientific discipline, it is very common to desire to analyse experimental data and to

compare these against the latest theories: either to extract parameters representing the data,

or to test the theory against the reality of experiment. In many cases, parameters extracted

from one experiment might then be applied to the modelling of a different experiment on the

same system or material. The field of rheology is no different: we perform multiple different

types of experiments on the same material (linear viscoelasticity, nonlinear shear, extension,

MAOS, LAOS, etc.), often accompanied by structural probes such as scattering, hoping to

learn about the material and to describe all experiments with a consistent set of theories and

parameters. The purpose of this paper is to introduce a software tool, “RepTate”, designed

to facilitate this process of viewing and processing data from standard rheology experiments

and of comparing the latest rheology theories to the data.

The original Reptate software (“Old-RepTate”) was initially developed as a part of the

Microscale Polymer Processing 2 (µPP2) project funded by the UK Engineering and Phys-

ical Sciences Research Council, in 2006. The development of the software was instigated

by Alexei Likhtman, who was at the time a newly appointed lecturer with recent memories

of his postdoctoral work in the first µPP project. He observed that, as the postdoctoral

researcher in charge of theoretical developments, a substantial amount of his time was spent

performing relatively simple data fitting exercises for experimentalists who did not have

easy access to the codes for calculating theories. Keen to avoid a similar fate for his own

postdoctoral charges, he conceived the idea of a software tool which could be delivered to the

experimental groups, allowing them to use the theories for themselves (and to test multiple

theories against the same data set). The resulting original RepTate software was created us-

ing Borland Delphi (a Pascal based coding language) by Jorge Ramirez and Alexei Likhtman

with additional contributions from many collaborators at the University of Leeds, UK. Some

improvements and advanced features were added to the code while the authors were at the

University of Reading. Many members of the muPP2 project (Richard Graham, Dietmar

Auhl, Daniel Read, Kamakshi Jagannathan and Bart Vorselaars) added particular mod-

ules and theories to Old-RepTate. The name RepTate (“Rheology of Entangled Polymers:

Toolkit for Analysis of Theory & Experiment”) can be attributed to Sathish Sukumaran.

Beyond the muPP2 project, the Old-RepTate software acquired a small user community
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and gained use (for example) in education of postgraduate researchers in various doctoral

training programmes, allowing them to work with the state-of-the-art theories in learning

rheological concepts.

It may be noted that Alexei Likhtman’s idea was not completely unique. For example,

Winter and co-workers [1] created the IRIS “Rheo-Hub” rheology tool-kit, specifically for

addressing linear and nonlinear viscoelastic data, which includes theories such as Milner-

McLeish dynamic dilution [2, 3], Larson’s hierarchical model [4–6], Wagner’s MSF model

[7], and the NAPLES slip-link code [8]. The IRIS software, however, requires a licence to

access, with separate licences for each individual module or theory. Even so, Old-RepTate

was similar in its underlying philosophy to IRIS in that it provides a common framework

within which multiple theoretical tools can be applied to data. In a different vein, Doi and

co-workers created the OCTA suite of programmes [9], but there the specific focus was on

simulation methods rather than on analysing and fitting data.

More recently, Larson’s Hierarchical model [4–6] and the “Branch-on-Branch” (BoB)

model [10–12] have been released as freely-available software for predicting rheology of en-

tangled branched polymers, using tube model concepts. Despite powerful predictive capabil-

ity, these are command-line driven codes with no built-in capacity for viewing or analysing

experimental data. Furthermore, they are codes written to perform a single, albeit com-

plex, task (rheology prediction for branched polymers) using a single theory. As will be

seen below, RepTate aims at a much broader goal: it provides a framework within which

experimental data (of many different types) can be viewed and compared against multiple

candidate theories.

A substantial number of theories (including an implementation of BoB [10–12]) have

already been added to the code, but we hope and expect that more will be included. It should

be noted that in seeking to include many different theories within the same package, we have

not aimed to make all the theories in the package perfectly consistent with one another.

For example, the Rolie-Double-Poly [13] and BoB models do not make exactly the same

prediction for linear rheology of polydisperse linears, and both differ from the Likhtman-

McLeish theory [14] in prediction for monodisperse linear polymers. Such variations are

inevitable where different theories make different assumptions or approximations. Likewise,

some theories assume the dilution exponent α = 1 (e.g. theories based on double reptation,

such as Rolie-Double-Poly) while others are coded such that it is a parameter that can be
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varied (e.g. BoB or the Dynamic Tube Dilution theory for stars [2]). As more theories are

added, it is likely that such variety will increase. In our view, this approach allows the user

freedom to compare the different models in the most transparent way.

So, we consider that there remains strong potential for software such as RepTate to be

useful to the rheological community and beyond. However, in seeking to update and maintain

Old-RepTate, we faced two related problems with the original code: firstly it would only

run on Windows based machines (whilst a cross-platform solution would be preferable) and

secondly, due to changes in operating systems and software we could no longer compile the

original code, let alone update it. Therefore, we have rebuilt the whole code structure of

Old-RepTate into a modern and portable form. We use Python 3 programming language

[15], and PyQt5 for the graphical user interface [16], which guarantees full compatibility

and a “native” look on the different operating systems (Windows, Mac and Linux). For

the numerical operations, we use NumPy and SciPy libraries [17], and to speed-up the

calculations for the theories requiring heavy computations we use C or C++ code compiled

into shared libraries. In addition, we developed a command line interface that allows to

run calculations as batch processes. This is useful for theories that need long CPU times.

We use Matplotlib library [18] to achieve high quality, publishable, figures: all data figures

presented in this article are produced with RepTate.

Finally, we have made RepTate available in a free and open-source form, under a GPL v3

licence [19]. We believe that the software will be most useful if the whole community is able

to access and update the code, adding new functionality, modules and theories. Although

born within the rheology community, there is nothing that would prevent modules being

created for many other forms of data (indeed there are already modules for molecular weight

distribution, scattering and dielectric data).

In the remainder of this paper, we first outline the overall design and typical workflow

for the RepTate software. We then present examples illustrating the use of the software to

recreate results from several previously published works on entangled polymers.

II. DESIGN AND WORK FLOW

The online user manual for RepTate (http://reptate.readthedocs.io/) contains a

significant amount of detail on the installation and operation of the software. Here, our
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intention is to briefly summarise the main features and typical workflow.

A. Brief Description of RepTate’s main window

FIG. 1. RepTate window. Applications are found in the area “1”, datasets in area “2”, and the

theories in area “3”.

The upper part of the main RepTate window, zone 1 in Fig. 1, contains a toolbar giv-

ing access to several different Applications (such as Molecular Weight Distribution, Linear

Viscoelasticity (LVE), Start-up of Shear or Extension, etc.). See Table I for the full list

of Applications. The purpose of each Application is (i) to be able to display the typical

experimental data associated with an experimental technique, (ii) to be able to view the

data in different representations (e.g. LVE data can be viewed as storage and loss modulus,

or complex viscosity), and (iii) to model the data using theories. Each Application contains

three main panels: in the centre, a main plot panel in which the data are viewed; to the

upper right a panel for loading and manipulating the data from files which can be grouped

5



into Datasets (zone 2 in Fig. 1); and to the bottom right a panel for Theories (zone 3 in

Fig. 1). To the left, but hidden by default, a further panel can open up which allows the

user to inspect the contents of data files, as well as to apply different filters to the data

(called Tools in RepTate), and to access the Materials Database.

The internal modular data structure in RepTate reflects the underlying philosophy of the

software, which is based on the idea that theories are compared to experimental data. Hence,

Datasets are “contained” and viewed within Applications, and Theories are “contained”

within Datasets, i.e. a Theory is only ever calculated in the context of an associated Dataset,

to which it can be compared. Nevertheless, under some circumstances a user may wish to

explore the behaviour of a theory in the absence of data. For this we provide the facility of

“dummy files”, as described in more detail in Section IV.

TABLE I. List of Applications in the current version of RepTate

Name Description Theories

MWD Molecular weight distributions Discretization, GEX, LogNormal

TTS SAOS data and TTS Automatic, WLF

LVE SAOS master curves Maxwell modes, Likhtman-McLeish, Carreau-Yasuda

Rouse, Dynamic Tube Dilution (stars), BoB

Rolie-Double-Poly

NLVE Nonlinear flow Rolie-Poly, UCM, Giesekus, Pom-pom

Rolie-Double-Poly, BoB, PETS, GLaMM

Gt Stress relaxation Maxwell modes, Rouse, DTD (stars)

Creep Creep experiments Retardation modes

SANS Small-angle neutron scattering Debye

React Monte Carlo polymerisation Tobita batch, Tobita CSTR, Multi-Met CSTR

React Mix, BoB, Diene CSTR

Dielectric Dielectric spectroscopy Debye modes, Havriliak-Negami modes, KWW modes
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B. Typical workflow

Datasets are loaded into each Application from data files with a default file format speci-

fied for each application based on a columnar text data structure. At the header of each file

it is possible (and sometimes required) to specify parameter values (such as temperature,

molecular weight, chemistry) associated with the data. Alternatively, the user can load data

from Excel spreadsheets (.xls or .xlsx format).

A typical workflow in using RepTate, to address data for a given material, would then be

to open a series of Applications, and to load data files into each Application (thus creating

Datasets). The user may then examine the data, for example by zooming into different

regions of the data, or viewing the data with different representations: to facilitate this each

Application has a standard set of Views which manipulates the data from the input file to

produce a graph (e.g. in LVE, the input storage and loss moduli can be converted to many

representations such as loss angle, compliance or complex viscosity). The user may also

choose to represent the data in up to four simultaneous views, by changing the value at the

left of the Views menu. Work is in progress to extend the Views functionality so that users

can add their preferred Views to RepTate using simple algebraic expressions.

Following this the user might then apply Theories to those Datasets, perhaps determining

theory parameters which best fit the data. By default, a theory’s x-range is identical to the

x-range of the data file it is applied to, but sometimes it is visually appealing or instructive

to extend the theory prediction beyond the range of the data, and this option is available.

Having determined best fit parameters from one Theory, applied to a given Dataset in

one Application, it might be these parameters should then be transferred and be used in

evaluating another Theory in a different Application. RepTate facilitates this operation.

A simple example of this would be in transferring parameters from linear to nonlinear

viscoelasticity: in many nonlinear multimode models (e.g. multimode pom-pom [20, 21])

the standard procedure is to fit linear viscoelastic data using Maxwell modes (obtaining a

discrete spectrum {gi, τi} of modes). Following this, one would associate a nonlinear model

with each Maxwell mode (e.g. in the pom-pom model requiring two further parameters

{qi, τs,i} - the priority and stretch relaxation time) in a fit to nonlinear data. Within RepTate,

the {gi, τi} parameters from a multimode Maxwell fit in the LVE Application can either be

saved, and reloaded into a nonlinear viscoelastic theory, or (even more conveniently) passed

7



directly between Theories in the two different Applications within an open RepTate window.

C. How we deal with the fitting procedure

Some (but not all) Theories in RepTate are sufficiently fast to calculate that it is possible

to automatically fit data by adjusting parameters of the Theory. RepTate provides the

facility to do this, using a Trust Region Reflective algorithm [22], which is a generally

robust method for large problems with bounds. It is possible to select which parameters in

a Theory will be automatically adjusted to achieve the fit, i.e. the fit can be achieved by

adjusting a subset of the parameters in a given Theory. By double-clicking on a parameter

name, users can configure how each parameter is handled during the minimization procedure

(by setting bounds, a weight factor, or a set of discrete values that the parameter can take).

As with any fitting procedure, a function should be minimised in order to determine

the best fit. At present in RepTate we use a simple least-squares procedure, based on

minimising the sum of the squares of the deviation between theory and experiment. This

deviation is calculated based on the y-values of theory and experimental data as shown in

the current View of the Application (when multiple Views are displayed, only the first one

is used for fitting). For example, in the LVE application, if the current view is log(G′(ω)),

the deviation is calculated as (log(G′

exp − log(G′

theory))
2, whereas if the current view is G′ it

is calculated as (G′

exp − G′

theory)
2. It is also possible to set x and y ranges (with respect to

the current View) that will be considered in the calculation of the error by clicking on the

“Change limits for fit” button in the Theory region of the RepTate window (area 3 in Fig. 1).

Note that the best fit parameters for a theory do depend, to some extent, on the current

View and fitting range in RepTate. In the future, this may be improved by implementing

a method recently outlined by the Ewoldt group for carrying known measurement errors

between different representations of the same data [23], and invoking Bayesian inference to

decide which parameters, and which theory, best fits a given data set [24]. For the time

being, RepTate prints in the Theory text box (area 3 of Fig. 1) the Bayesian information

criterion (BIC), every time a theory is calculated. The BIC is defined by the number of data

points, n, the residual sum of squares (RSS), and the number of free fitting parameters, p,

as

BIC = n log(RSS/n) + p log(n). (1)
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In general, the model with the lowest BIC value is preferred.

D. Exporting publication quality figures

All the visual elements in the plot (axes, labels, symbols, legend, comments and lines) can

be customised in RepTate. Most of these features are accessible from a menu button. When

the user is satisfied with a certain View of the experimental data and the fitted theories, the

plot can be exported as a high resolution bitmap or a vector quality picture (e.g. eps or pdf

format), ready for publication. Also conveniently, the software allows to copy the current

graph to the clipboard, so it can be pasted in a word processing or presentation software.

All the data figures in the current paper were produced with RepTate.

E. Inspecting and manipulating the data

The experimental data loaded from files can be inspected and manipulated by opening

the data inspector panel. In the panel, the data of the currently selected file in the Dataset

is displayed in a spreadsheet-like table, where individual data points can be eliminated. The

complete data table, or a subset of it, can be selected, copied, and pasted into other software.

Within the data inspector panel, the user can activate a “data shift” operation, which

allows shifting the data of the selected file, as shown in the current view, vertically and/or

horizontally, by dragging the data points with the mouse. The resulting shift factor is shown

in a small table at the top of the data inspection panel. This feature can be very useful,

for example, to extract the shift factors of experimental data when none of the standard

time-temperature superposition methods (i.e. Arrhenius or WLF equations) work. The shift

factors can be exported, copied or saved to a separate file for later use.

F. Tools and Materials Database

In the data inspector panel, below the data table, there is a Tools panel that allows the

user to apply different filters to the data before it is represented or fitted in the current

View. There are several tools available ranging from a simple filter that allows to set upper

and lower bounds to the data (in both x and y axes) to more sophisticated ones, such as
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an integral or a peak finder. See Table II for a full list. The Tools can also be applied to

results of Theories. It is important to note that the tool filters affect the fit in RepTate.

For example, if we set a lower bound to the frequency in a plot of the complex modulus, the

experimental (and theoretical) data points whose frequencies are below the threshold will

not be shown in the plot and will be discarded during the fitting procedure.

A particular Tool, the Materials Database, deserves a more detailed description. This

tool stores the values of well established materials parameters so they can be used during

the fitting procedure. For example, in the Time-Temperature Superposition Application, if

we open a set of small-angle oscillatory shear data files of a polybutadiene sample measured

at different temperatures (the chemistry PBd can be specified in the header of each data

file), and then open the Williams-Landel Ferry theory to perform TTS and build the master

curve. Then the stored WLF parameters for polybutadyene will be loaded automatically

from the Materials Database. If the parameters for a particular material are not available

in the Materials Database, the user can manually introduce their values and save them for

later use.

TABLE II. List of Tools contained in the current version of RepTate

Tool Description

Bounds Remove points outside some prescribed boundaries.

Evaluate expression Calculate algebraic expressions of x and y.

Find Peaks Find maxima or minima in the current view.

Gradient Calculate the derivative of y with respect to x in the current view.

Integral Calculate the integral of y with respect to x in the current view.

Smooth Smooths the current view data by applying a Savitzky-Golay filter [25].

Materials Database Stored values of theory parameters for particular polymers.

G. Interlink between Theories

The current version of RepTate has 9 Applications, listed on Table I and depicted schemat-

ically in Fig. 2. Some applications can exchange data in the form of master curves, trans-

formed experimental data or theory parameters. For example, starting from experimental
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oscillatory shear data, and using the TTS module, one can build a master curve that can

be imported in the LVE module; then, Maxwell modes can be fitted to the moduli, G′ and

G′′, and the modes can be exported so they can be used in the NLVE module to predict, or

fit, start-up of shear flow. Another interesting example of data exchange between RepTate

Applications is the transformation from the time to the frequency domain (i.e. relaxation

modulus G(t) to complex moduli G′(ω) and G′′(ω)) using the i-Rheo algorithm [26], also im-

plemented in RepTate. The details about the contents and structure of the files that can be

read by each one of the applications can be found in the official documentation of RepTate

(http://reptate.readthedocs.io/), and the theories included in each application in the

current version of RepTate are listed in Table I.

6. Creep

9. Dielectric

5. Gt3. LVE

1. MWD

4. NLVE

7. SANS

2. TTS

8. React
Mw

Distribution

Discrete

Mw Distribution

Maxwell modes

Tube theory param.

i-Rheo

Master Curve

BoB

Maxwell

modes

FIG. 2. List of the applications included in the current version of RepTate, along with some of the

data that can be exchanged between them.

H. Project files

When working with RepTate, it is common to have several Applications open, each of

them containing one or more Datasets to which theories have been applied. It is sometimes

convenient to save the current workspace to a file so it can be reopened later or shared with

collaborators. This can be done by clicking the “Save project” button in the main RepTate

window, zone 1 of Fig. 1. The project file contains information to restore all the Applications,
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Datasets, data files, visualization options, Theories and theory parameters that are open in

the current RepTate session. Even though the project file is written in binary form, it can

be exchanged between different operating systems.

III. RESULTS

A. Linear and nonlinear rheology of polyisoprene melts from Auhl et al. [27]

As a way to explore the modules MWD, TTS, LVE, and NLVE of RepTate, we demon-

strate, in this section, reproduction of the results presented in Auhl et al., where the authors

studied nearly monodisperse, entangled linear polyisoprene (PI) polymers of various molec-

ular weights.

In particular we will present: (i) the determination of the number- and weight-average

molecular mass from size-exclusion chromatography (SEC) data; (ii) the application of the

time-temperature superposition (TTS) principle to small amplitude oscillatory shear (SAOS)

data to produce mastercurves; (iii) the fit of the Likhtman-McLeish theory [14] to the master-

curve, obtained in (ii), of all the PI samples, simultaneously, to get the material parameters

(entanglement modulus Ge, entanglement relaxation time τe, and average molecular weight

between entanglement Me), and (iv) the GLaMM model [28] predictions of the nonlinear

shear rheology using the entanglement parameters determined in (iii).

1. Molecular weight distribution

In Fig. 3a, we present the molecular weight distribution of twelve PI samples with

2 kg/mol < Mw < 103 kg/mol. In Fig. 3b, we exemplify the discretization of a molar

mass distributions using the 200 kg/mol PI sample with the “Discretize MWD” theory of

the “MWD” application in RepTate. The results of the discretization are shown as a bar

plot where

(i) We chose to have 10 molecular weight bins;

(ii) The bin edges (red triangles) have been adjusted manually to avoid unnecessary bins

at the distribution tails (by default, bins are equally spaced on log-scale);
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(a) (b)

FIG. 3. (a) Experimental differential molar mass distributions dW/d log10M from RALS signal

versus molar mass M from Ref. [27] for various PI samples, as indicated in the legend (in g/mol).

(b) Discretized molecular weight distribution (bar plot) of the SEC data (symbols) of the PI-200k

sample. The insert shows the information printed in the Theory text box.

(iii) The area of the ith bin (height times width in log-scale) is equal to the area under

the curve delimited by the bin edges. This defines the volume fraction, φi, of the ith

component.

(iv) The molecular mass, Mi, is the weight-averaged molecular mass calculated over the

bin width. It is represented by the thick tick-mark on the x-axis of Fig. 3b.

RepTate also displays additional information in the theory text-box, see insert of Fig. 3b:

the number- and weight- average molecular mass of the discretized and input data, as well

as the higher order moments of the molecular weight distribution, Mz and Mz+1, where

Mz+k ≡
∑

i φiM
k+2
i , which characterize the high molecular weight tail of the distribution.

2. Discussion of TTS

The classic Williams-Landel-Ferry (WLF) parameters [29], C1 and C2, are not constants

for a particular material but rather depend on the reference temperature to which the data

is shifted (i.e. shifting to a different temperature requires different C1 and C2). In RepTate,
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(a) (b) (c)

FIG. 4. Storage modulus G′ and loss modulus G′′ (full and open symbols, respectively) at different

temperatures from [27] and result of the “WLF shift” theory, using unique material parameters

B1 = 692 and B2 = 114 ◦C, to a reference temperature Tref = −35 ◦C (dashed and solid lines,

respectively). (a) PI88k sample, (b) PI1000k sample, and (c) all molecular weight PI samples

shifted simultaneously.

we have defined two new parameters

B1 = C1 × C2, (2)

B2 = C2 − Tref , (3)

where Tref is the reference temperature to which the experimental data is shifted. These

new parameters, B1 and B2, are independent of the reference temperature and, therefore,

can be considered as material parameters. We can rewrite the classic WLF equations using

the new temperature-independent parameters

ω(T ) = aTω(Tref), (4)

G(T ) = bTG(Tref), (5)

(6)

with

log10 aT =
−B1(T − Tref)

(B2 + Tref)(B2 + T )
, (7)

bT =
ρ(Tref)Tref

ρ(T )T
=

(1 + αT )(Tref + 273.15)

(1 + αTref)(T + 273.15)
, (8)

Tg = T∞

g −
CTg

Mw

, (9)

where α is the thermal expansion coefficient of the polymer at 0 ◦C, and CTg
is a material

parameter that describes the molecular weight dependence of the glass transition, Tg, and
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Mw is the weight average molecular weight. The molecular weight dependence of Tg must be

considered when shifting data of very short chains or very broad molecular weight distribu-

tions containing a significant fraction of short chains [27, 30]. This change is roughly related

to the amount of free ends present in the sample. In order to take the effect into account,

we use the following phenomenological expression, which was shown to fit the experimental

data:

log10 aT =
−B1(T − Tref + CTg

/Mw)

(B2 + Tref)(B2 + T + CTg
/Mw)

, (10)

In most cases, when shifting the data of well entangled, nearly-monodisperse polymers, this

effect can be discarded by setting CTg
= 0 in the theory box.

The “WLF shift” theory in RepTate shifts LVE data to a reference temperature using

the above WLF equations to determine the shifting factors aT and bT . This is in contrast

to other approaches in which data is first shifted via factors aT and bT chosen freely for

each experimental temperature so as to achieve the best data overlap, then the shift factors

are interpreted according to the WLF equations. In situations where the WLF theory is

expected to work (e.g. homopolymer melts) the “WLF shift” theory in RepTate provides a

more constrained and controlled shifting procedure with fewer fitting parameters, and this

would be our preferred choice in such cases (Likhtman insisted on this procedure in creating

the old-RepTate). Nevertheless, there are situations where WLF theory is not appropriate,

and RepTate also provides a theory that allows to find, either manually or automatically,

the temperature dependent shift factors aT and bT that provide the best data overlap. The

found values of the shift factors can be exported to a file for later use.

In Fig. 4, we present the linear rheology data (G′ and G′′ as full and open symbols,

respectively) at −40 ◦C < T < 50 ◦C of each of the PI samples, 2.4 kg/mol < Mw < 1131

kg/mol and the mastercurves (solid and dashed lines) resulting from the “WLF shift” theory

in RepTate, where we have used B1 = 692 and B2 = 114 ◦C, independently of the choice of

Tref . We can save these mastercurves and open them in the LVE application in RepTate.

3. LVE and LM theory

Once an LVE mastercurve has been constructed, a range of options already exist within

RepTate to compare the mastercurve with theory. These include fitting Maxwell modes to

the curve; Dynamic Tube Dilution theory for stars [2]; the linear rheology version of the
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FIG. 5. Linear viscoelasticity of various PI samples at a reference temperature Tref = −35 ◦C

(same as Fig. 4) [27] together with predictions of the Likhtman-McLeish theory [14] (lines) for all

entangled samples (Mw > 10 kg/mol) as indicated in the legend (in kg/mol).

Rolie-Double-Poly [13] model; the BoB model for polydisperse linear or branched polymers

[10–12]. Different theories may apply to different materials, and may involve different levels

of approximation. We hope that the range of available theories can be expanded by our-

selves and other contributors. In the present case, we use the mastercurves of Fig. 4 to

extract the entanglement parameters of PI using the Likhtman-McLeish (LM) theory [14].

This is considered to be the state-of-the-art tube theory for near monodisperse linear entan-

gled polymers, but we would not recommend its use for bidisperse or polydisperse materials,

which are beyond its regime of applicability. The LM theory includes contour length fluctua-

tion (CLF) and constraint release (CR) mechanisms and has four parameters: entanglement

modulus Ge, the average molecular weight between entanglements Me, the Rouse time of

one entanglement segment τe, and a dimensionless parameter cν which is related to the

effectiveness of the CR mechanism.

Figure 5 shows the best simultaneous fit (over all the PI samples) obtained in RepTate

with the LM theory [14], fixing the constraint release parameter cν = 0.1 and using three

fitting parameters: Ge, τe, and Me. The fitting procedure results in the following values (at

T = −35 ◦C): Ge = 0.485 MPa, τe = 0.0894 s, and Me = 4.92 kg/mol. It may be noted that
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here we have treated the parameters Ge and Me as separate fitting parameters, even though

they are expected to be related via Ge = ρRT/Me, with the plateau modulus defined as

G0
N = 4

5
Ge within the LM theory. In the literature, this relationship is not always rigorously

enforced: this approach may be supported by the argument that the 4
5
prefactor in the

plateau modulus is a result of a very specific model for the entanglement tube as a series

of affinely deforming but rigid tube segments (whilst other models give different prefactors)

and that the elasticity might not be fully entropic in origin. Nevertheless, we provide the

option in RepTate to fix the relation Ge = ρRT/Me exactly and so reduce the number of

fitting paramters by one; this of course results in a slightly poorer quality of fit.

4. NLVE and SCCR theory

Using the entanglement parameters produced by the LM theory fit in the linear rheology

regime previously (Ge = 0.485 MPa, τe = 0.0894 s, Me = 4.92 kg/mol and cν = 0.1; the

additional numerical prefactor RS, related to the strength of the retraction rate, is set to

2), it is possible to predict, with no free parameter, the nonlinear rheology, in shear and

elongation, of the entangled PI samples with the GLaMM model [28]. The GLaMM model

has the advantage of being consistent with the LM model: it includes the same relaxation

mechanisms (such as reptation, CLF and CR), it is based on similar approximations, and

uses the same set of parameters (Ge, τe, Me and cν).

In Fig. 6 we present the nonlinear shear rheology data (symbols) for the PI14k, PI30k,

PI90k, and PI200k samples, together with the “GLaMM” theory calculated in RepTate

(within a few minutes on a conventional laptop). Our intention here is to reproduce previ-

ously published results, and the predictions shown in Fig. 6 are identical to those presented

in Ref. [27]. Nevertheless, we note that the predictions do not match experiment in every

regard: there are deviations from the LVE for the lower molecular weight samples (GLaMM

does not perfectly reproduce the Likhtman-McLeish LVE) and the higher flow rate data

especially are typically overpredicted by the model.

17



(a) (b)

(c) (d)

FIG. 6. Logarithm of the transient shear stress growth coefficient, η+(t), as a function of logarithm

of time, t, at shear rates, γ̇, indicated in the legend (in s−1) for (a) PI14k, (b) PI30k, (c) PI90k,

and (d) PI200k samples at T = −35 ◦C (symbols) from Ref. [27], together with the predictions of

the GLaMM model [28] (lines) from RepTate.

B. LDPE structure and rheology predictions of Read et al. [31]

In Ref. [31], a number of low density polyethylene (LDPE) resins were characterised in

terms of structural parameters (molecular weight distribution and g-factor from light scat-

tering radius of gyration), LVE and nonlinear viscoelasticity (transient shear and extensional

flow). A predictive scheme was proposed in which a Monte-Carlo algorithm was used to sim-

ulate the creation of molecules in a tubular reactor, and then BoB rheology software [10–12]

was utilised to predict the linear and nonlinear rheology. Here, we recreate those predictions

for one of the materials (LDPE2 of [31]), making use of the React Application, and BoB

theory embedded within the LVE and NLVE Applications of RepTate.

The Monte Carlo simulation was performed using the algorithm due to Tobita [32] for
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batch synthesis of LDPE, as an approximation of industrial tubular reactors. The parameters

used in the algorithm are based on rates of free-radical reaction processes: polymerization

(rate Rp, rate constant kp); termination by disproportionation (rate Rtd) and combination

(rate Rtc); and chain transfer by long-chain branching (rate constant kb), to small molecules

(rate Rf ), and by scission (rate constant ks). Algorithm parameters are obtained from ratios

of these rates, or rate constants:

τ = (Rtd +Rf )/Rp, (11)

β = Rtc/Rp, (12)

Cb = kb/kp, (13)

Cs = ks/kp. (14)

A further parameter, the conversion xs, makes five parameters in total. The Supporting

Information in Ref. [31] gives two recipes for simulating the LDPE2 material, making use

of a weighted combination of Tobita batch simulations. The “alternative” parameterisation

uses two such simulations (“Sim 1” and “Sim 2”), with parameters given in Table III. The

last column of Table III gives the weight of each simulation in the combination.

TABLE III. Tobita simulation parameters for LDPE2 material.

τ β Cb Cs xs Weight

Sim 1 1.1× 10−3 1.6× 10−4 1.8× 10−2 0 3.2× 10−2 0.2

Sim 2 1.1× 10−3 1.6× 10−4 1.8× 10−2 0 1.85× 10−1 0.8

Within the React Application the “Tobita Batch” theory allows these simulations to

be performed. The simulation creates a requested number of molecules, evaluating the

contribution of all of them to the molecular weight distribution. However it “saves” only a

certain number of the molecules (evenly distributed across the molecular weight distribution)

and writes them into an input file for BoB rheology. It does this by splitting the molecular

weight axis into a number of “bins” and then saving molecules as they are created, up to a

maximum number per bin. By adjusting these binning settings, it is possible to control the

number of molecules saved into BoB input files. In the present exercise, the binning settings

were adjusted so that roughly 800 polymers from Sim 1 and 1500 polymers from Sim 2

were saved. The “React Mix” theory of RepTate then permits the outputs from the two
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simulations to be combined with the weights given in Table III, into a combined molecular

weight distribution, shown in Fig. 7. The saved molecules can be output into a polymer

configuration file for BoB software [10–12].
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FIG. 7. Molecular weight distribution (left) and radius of gyration contraction factor, g as a

function of molecular weight (right) for the LDPE2 material of Ref. [31] (symbols), together with

predictions using Tobita batch and Mixture theories within the React Application (lines).

The LVE and NLVE Applications contain an implementation of the BoB algorithm, for

prediction of linear and nonlinear viscoelasticity. Using the published material parameters

for polyethylene [31] (Me = 1.6 kg/mol, τe = 5.8 × 10−7 s at T = 150 ◦C, with density

800 kg/m3), we can use the BoB algorithm, together with the polymer configuration file

generated from the React Application, to predict the linear rheology (Fig. 8) and transient

extensional and shear stress growth coefficients (Fig. 9). For the polymer configuration file

used (containing roughly 2300 molecules, in which the larger LDPE molecules may contain

hundreds of branch points) calculation of the linear rheology is relatively fast, taking less

than 3 minutes on a conventional laptop. Calculation of the full set of NLVE curves is more

time consuming (roughly 2 hours on a laptop) since the nonlinear BoB code requires the

algorithm to be run twice for each flow rate. However, once the rheological parameters are

determined for linear rheology prediction, no further fitting is required for NLVE: the BoB

algorithm has no further free parameters to adjust.

In general, the BoB model is designed to be predictive of the linear and non-linear rheology

for entangled linear and branched polymers, both monodispese and polydisperse, and is often
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FIG. 8. Linear viscoleasticity at 150 ◦C for the LDPE2 material of Ref. [31] (symbols), together

with prediction using BoB theory within the LVE Application (lines).

successful in doing this. It is nevertheless an approximate scheme which makes assumptions

and approximations and is not universally applicable (one example of this is that the non-

linear theory does not include stretching of linear chains, and so it will never successfully

predict extension hardening in such materials - see the next section for an appropriate theory

in that case). Recent reviews detailing some of the limitations and approximations of BoB

and similar schemes can be found in Refs. [33, 34].

C. Polydisperse linear entangled polymers, Rolie-Double-Poly model [13]

In Ref [13], a range of experimental nonlinear shear and extensional rheology data of

bidisperse or polydisperse linear entangled polystyrene and polyisoprene material, together

with predictions using the proposed “Rolie-Double-Poly” (RDP) model, were discussed. In

particular, the molecular weight distribution of a polydisperse linear entangled polystyrene

“PSIV”, described in Ref. [35], was discretized using 20 bins equally distributed on log-

scale, as shown in Fig. 10. The discretization procedure of the “MWD theory” in RepTate

is described in Section IIIA.

The experimental data of transient stress growth coefficient, η+E , for the “PSIV” sample

of Ref. [35] at Hencky strain rates ε̇ = 0.00075, 0.0001, 0.0015, 0.07, 0.3 s−1 are then imported
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FIG. 9. Transient extensional stress growth coefficient (upper curves) and shear stress growth

coefficient (lower curves) at 150 ◦C for the LDPE2 material of Ref. [31] (symbols), together with

prediction using BoB theory within the NLVE Application (lines). Extension rates are ε̇ = 0.003,

0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30 s−1. Shear rates are γ̇ = 0.03, 0.1, 0.3, 1, 3, 10 s−1.
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FIG. 10. Molecular weight distribution of the “PSIV” sample of Ref [35]. Experimental data

and discretization, using 20 bins equally distributed on log-scale, are the symbols and bar plot,

respectively.
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to a “NLVE” Application in RepTate and a “Rolie-Double-Poly” Theory is opened. This

theory allows the user to import the discretised molecular weight distribution as input to

the calculation. This requires two tube parameter values for polystyrene: i) the average

molecular weight between entanglements, which we choose to be Me = 16.6 kg/mol, and ii)

the entanglement relaxation time, which we choose to be τe = 3.4× 10−3 s at 160 ◦C. These

parameters are as used in Ref. [13].

This allows the software to calculate the reptation and stretch relaxation times. This

calculation accounts for both static dilution (due to the unentangled chains) and dynamic

dilution (shorter entangled chains release their entanglements on longer chains, acting as

solvent for the longer chains) as described in [13]. We set the entanglement plateau mod-

ulus G0
N = 0.2 MPa. Clicking the “Modulus Correction” button ensures that the theory

includes contour length fluctuation corrections to this modulus (arising from primitive path

fluctuations which reduce the terminal modulus because of the shortened tube) [14, 36]. No

further input is required to perform the calculations.
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FIG. 11. Transient stress growth coefficient, η+E , as a function of time, t, for the “PSIV” sample of

Ref. [35] at Hencky strain rates ε̇ = 0.00075, 0.0001, 0.0015, 0.07, 0.3 s−1 at 160 ◦C. Experimental

data [35] and RDP [13] predictions are in symbols and lines, respectively

The results are shown in Fig. 11. Note that we extended the time range (“x-range” in

the plot) for the theory prediction beyond the range of the experimental data, as noted
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in Section II B. Having done this, the theory curves show more clearly the predicted onset

of extension hardening at the fastest two extension rates. Again, our intention here is to

reproduce previously published results, and the predictions shown in Fig. 11 are identical

to those presented in Ref. [13]. Nevertheless, we note that the predictions do not perfectly

match experiment. In particular, it was noted in Ref. [13] that the LVE was not perfectly

predicted by the theory: this may be due to the approximate calculation used to determine

reptation times within the model, or may be due to the chosen tube model parameters

Ge, τe or Me not being perfect for the material. Nevertheless, an important aspect of the

Rolie-Double-Poly theory, emphasised in Ref. [13], is its non-trivial prediction of the onset

of extension hardening rate in bidisperse and polydisperse materials, and the RDP model’s

success in doing this is illustrated in Fig. 11.

IV. USE OF DUMMY FILES IN THE ABSENCE OF EXPERIMENTAL DATA

Although the structure of RepTate is designed so that Theories are compared with ex-

perimental Datasets, we recognise that in some cases a user may wish to investigate the

behaviour of a theory without reference to experimental data. For such cases it is possible

to create “dummy files” within RepTate. Dummy files are empty files (they contain no real

data) in which the parameters (such as molecular weight, temperature, shear rate, etc.) can

be set to span a certain range, either in linear or logarithmic scale. Then, any theory can

be applied to the dummy files exactly in the same way as with real data files. Dummy files

allow the user to explore features of theories very easily.

For example, in Fig. 12, a set of 5 dummy files with molecular weights ranging from 5

to 500 in logarithmic scale has been created. Then, two instances of the Likhtman-McLeish

theory [14] have been applied to the dummy files, using parameters τe = 0.0001, Ge = 1000

and Me = 1. In one of the instances of the theory, the constraint release (CR) parameter cν

has been set to 0 (no CR at all) whereas in the other it has been set to 1 (very effective CR

mechanism). The whole procedure takes a couple of minutes in RepTate and allows the user

to gain an intuition about the effect of the CR parameter in the predictions of the theory.
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FIG. 12. Exploring the effect of the constraint release parameter cν of the Likhtman-McLeish

theory [14]. When cν = 0 (no CR) the terminal region is sharper and occurs later than in the case

of very effective CR (cν = 1).

V. CONCLUSIONS

In this paper we have presented the new RepTate software, and illustrated some of its

functions by recreating the predictions of a number of recent articles. These examples

should be considered illustrative rather than demonstrating the full range of Applications and

Theories presently available within the software. We might have included further examples

such as, viewing stress relaxation following small step strain or fitting LVE data using a

multi-mode Maxwell model, then using that as a basis for multi-mode pom-pom [21, 37] or

Rolie-Poly [14] fits to NLVE data. There are also developing Applications for viewing SANS

data, and dielectric relaxation data.

Furthermore, our hope is that this software will continue to develop. The design of the

software, and our open source model for distributing it, indicates our wish that other mem-

bers of the community might feel inspired to develop their own Applications and Theories

within the RepTate environment, or to improve upon aspects of what we have created. We

highlight that although the applications discussed in the paper are all related to rheology,
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there is nothing particularly unique to rheology in the structure of RepTate. It is coded

with enough flexibility so that users can add new Applications, Theories and Tools related

to any scientific area. What we have developed remains imperfect, both in some of the

implementation and documentation, and we are conscious of our own time constraints in

making further improvements. Nevertheless, we are presently developing further Applica-

tions and Theories (e.g. for LAOS, and flow accelerated crystallisation) which we expect to

release shortly. The GPL v3 licence permits users to freely use the software and make their

own private (and perhaps confidential) improvements, whilst committing users to an open

source model for distribution of any modified code.

The software is documented at https://reptate.readthedocs.io/. This gives detailed

instructions on installation, together with a user manual describing the main Applications

and Theories, and a limited number of tutorials. Importantly, a section “RepTate for Devel-

opers” gives detailed instructions and examples for creating new Applications and Theories

within RepTate. We are, of course, keen to hear of any use of the software, suggestions for

improvements, and especially to hear of modifications users have made and which they are

willing to make available to others.
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