

This is a repository copy of *Late Quaternary reptile extinctions : size matters, insularity dominates.*

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/158007/

Version: Accepted Version

Article:

Slavenko, A. orcid.org/0000-0002-3265-7715, Tallowin, O.J.S., Itescu, Y. et al. (2 more authors) (2016) Late Quaternary reptile extinctions : size matters, insularity dominates. Global Ecology and Biogeography, 25 (11). pp. 1308-1320. ISSN 1466-822X

https://doi.org/10.1111/geb.12491

This is the peer reviewed version of the following article: Slavenko, A., Tallowin, O.J.S., Itescu, Y., Raia, P. and Meiri, S. (2016), Late Quaternary reptile extinctions: size matters, insularity dominates. Global Ecol. Biogeogr., 25: 1308-1320., which has been published in final form at https://doi.org/10.1111/geb.12491. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Late Quaternary reptile extinctions: size matters, insularity dominates

Journal:	Global Ecology and Biogeography
Manuscript ID	GEB-2015-0476.R3
Manuscript Type:	Research Papers
Date Submitted by the Author:	n/a
Complete List of Authors:	Slavenko, Alex; Tel Aviv University, Zoology Tallowin, Oliver; Tel Aviv University, Department of Zoology Itescu, Yuval; Tel Aviv University, Zoology Raia, Pasquale; Università Federico II, 2. Dipartimento di Scienzedella Terra, dell'Ambiente e delle Risorse Meiri, Shai; Tel Aviv University, Zoology
Keywords:	Body size, conservation, Holocene extinction, global, megafaunal extinctions, Quaternary, reptiles

1	Late Quaternary reptile extinctions: size matters, insularity dominates
2	Alex Slavenko ^{1,*, †} , Oliver J.S. Tallowin ^{1, †} , Yuval Itescu ¹ , Pasquale Raia ² , Shai Meiri ¹
3	Correspondence
4	1. Department of Zoology, Tel Aviv University, 6997801, Tel Aviv, Israel,
5	+97236409811
6	2. Dipartimento di Scienze della Terra, dell'Ambiente e delle Risorse, Università
7	Federico II, Naples, Italy
8	
9	*Corresponding author, slavenko@mail.tau.ac.il
10	†These authors contributed equally to this work as first authors.
11	
12	KEYWORDS
13	Body size; conservation; Holocene extinction; global; megafaunal extinctions;
14	Quaternary; reptiles
15	
16	Short running-title: Size-biases in reptile extinctions
17	Number of words in the Abstract: 298
18	Number of words in main body of paper: 4417
19	Number of references: 66
20	

21 ABSTRACT

Aim A major Late Quaternary vertebrate extinction event affected mostly large-sized
 'megafauna'. This is well documented in both mammals and birds, but evidence of a
 similar trend in reptiles is scant. We assess the relationship between body size and
 Late Quaternary extinction in reptiles at the global level.

Location Global.

Methods We compile a body size database for all 82 reptile species that are known to have gone extinct during the last 50,000 years and compare them to the sizes of 10,090 extant reptile species (97% of known extant diversity). We assess the body size distributions in the major reptile groups: crocodiles, lizards, snakes, and turtles, while testing and correcting for a size-bias in the fossil record. We examine geographical biases in extinction by contrasting mainland and insular reptile assemblages, and testing for biases within regions and then globally by using geographically weighted models.

Results Extinct reptiles were larger than extant ones, but there was considerable variation in extinction size-biases among groups. Extinct lizards and turtles were large, extinct crocodiles were small, and there was no trend in snakes. Lizard lineages vary in the way their extinction is related to size. Extinctions were particularly prevalent on islands, with 73 of the 82 extinct species being island endemics. Four others occurred in Australia. The fossil record is biased towards large-bodied reptiles, but extinct lizards were larger than extant ones even after we account for this.

Main conclusions Body size played a complex role in the extinction of Late 44 Quaternary reptiles. Larger lizard and turtle species were clearly more affected by 45 extinction mechanisms such as over exploitation and invasive species, resulting in a 46 prevalence of large-bodied species among extinct taxa. Insularity was by far the 47 strongest correlate of recent reptile extinctions, suggesting size-biased extinction 48 mechanisms are amplified in insular environments.

INTRODUCTION

Body size represents one of the most identifiable traits of an organism and is closely tied to its functional ecology, life-history, morphology and physiology (Peters, 1983). Size has also been strongly implicated in species' extinction risk (Diamond, 1984; Case et al., 1998; Dirzo et al., 2014). As evidence is accumulating that the planet is experiencing a mass extinction event, rivalling those of the geological past (Barnosky et al., 2011; Maclean & Wilson, 2011; Barnosky et al., 2012; Ceballos et al., 2015), increasing attention is being paid to the factors responsible for this decline in biodiversity (e.g., Purvis et al., 2000; Cardillo et al., 2005; Brook et al., 2008). Traits associated with increased vulnerability to extinction include habitat specialisation, small geographic range, insularity, and those associated with slow life-histories such as low reproduction rates, late maturity, low population densities and large body size (Owens & Bennett, 2000; Cardillo et al., 2006; Tingley et al., 2013). During the last 50,000 years anthropogenic pressure is purported to have elevated vertebrate extinction rates far beyond the normal background level (Ceballos et al., 2015).

Evidence from the Late Quaternary fossil record has revealed the extinction of a considerable array of vertebrates across the globe, particularly among the largebodied species (Martin & Klein, 1984; Brook & Bowman, 2002; Sandom et al., 2014). During this period Eurasia and North America lost c. 36% and 72% of their large-bodied mammalian genera, respectively (Barnosky et al., 2004). Twenty-three mammalian species > 10 kg, distributed across 15 genera, also vanished from the Australian fauna during the same time (Sandom et al., 2014). This period further coincides with the extinction of the world's largest birds, the Madagascan elephant birds and New Zealand moas (~7 spp. and ~10 spp. respectively, Mitchell et al., 2014). While the extinction wave was not exclusively restricted to megafauna (Owens & Bennett, 2000), and taphonomic size-biases in the fossil record may be partially obscuring the exact trend (Damuth, 1982), most extinct species were indeed large. Large body size is correlated with slow life-history traits, and is strongly implicated in current species extinction risk (Cardillo et al., 2005; Fritz et al., 2009). The Late Quaternary reptile fossil record is poorly known compared to birds and mammals, perhaps because there are few late-Cenozoic reptile paleontologists,

especially in tropical countries where reptiles tend to occur high in numbers. Yet,
several of the extinct reptile species, such as the Australian *Wonambi naracoortensis*(snake), *Meiolania* sp. (tortoise), and *Varanus priscus* (lizard) were huge by current
standards (Wroe, 2002; Conrad *et al.*, 2012; Rhodin *et al.*, 2015).

The loss of a considerable portion of the planet's megafauna during the Late Quaternary has sparked intense debate over the possible extinction mechanisms (Martin & Klein, 1984; Flannery, 1999; Johnson, 2006; Koch & Barnosky, 2006; Wroe, 2006; Johnson et al., 2016). Many studies have focused on contrasting the biological traits between extinct and extant species (e.g., Johnson, 2002; Lorenzen et al., 2011), and body size has often emerged as a key factor. Size-biased extinction has predominantly been identified in mammals, with the global loss of over 150 large mammalian species (\geq 44 kg in body size) since the last interglacial (Sandom *et al.*, 2014). The bird fossil record is not as well known, but nonetheless over 1,000 mostly large bodied species are estimated to have gone extinct during this time, many of them flightless, insular endemics (Duncan et al., 2013). The proximate causes of extinction among birds and mammals have been attributed to direct and indirect anthropogenic pressure and climate change (Ceballos et al., 2015; Johnson et al., 2016). Few studies have investigated size-bias trends and extinction mechanisms in Quaternary reptiles (but see Pregill, 1986; Kemp & Hadly, 2015). As current trends suggest that the reptile extinction rate is much higher than expected (Alroy, 2015), studies focusing on their extinction mechanisms are both timely and important.

Reptiles are one of the most species-rich land vertebrate groups (~10,400 species; Uetz & Hosek, 2016), and are the most poorly represented in conservation prioritization (Böhm et al., 2016). Reptile traits associated with increased extinction risk include restricted geographic range, habitat specificity and large body size (Tingley et al., 2013; Kemp & Hadley, 2015). Although extant large bodied reptiles are purportedly more prone to extinction, this may have arisen due to a size-bias in reptile assessments (Meiri, 2008). The shear paucity of data on reptile distributions, population trends, life-history, and fossil record has thus far precluded a comprehensive, taxon-wide assessment of their extinction risk correlates (Böhm et *al.,* 2016).

To better understand the threats faced by current extant reptiles, elucidating the past trends and processes responsible for recent extinction events is of crucial importance (Barnosky et al., 2004). Paleontological and archaeological records of Holocene reptile extinctions, although incomplete, provide an invaluable resource for identifying these factors (Pregill & Dye, 1989). Fossil evidence has revealed recent extinctions among several reptile lineages across the globe, and their disappearance is invariably attributed to human impact (e.g. Pregill, 1991; Hedges & Conn, 2012; Rhodin et al., 2015). Estimations of body size also indicate that many of these reptiles, particularly from insular assemblages, were unusually large compared to their extant kin (Pregill, 1986; Kemp & Hadly, 2015).

To determine whether reptiles exhibit size-biased extinction, we assess body size distributions among extinct and extant assemblages across the globe. Body size of reptiles (and indeed, all animals) is shaped by many factors including phylogeny, geography and different adaptive regimes. Where feasible, we therefore assess the size-bias trend across multiple taxonomic levels and geographic regions.

METHODS

127 DATA COLLECTION

We collected data on the maximum body size of all 82 reptile species that went extinct since humans colonized their range (Table S1 in Supporting Information). These include four crocodile, 45 lizard, 9 snake and 24 turtle ('turtles' here refers to all members of the order Testudines) species. We scoured published sources including books, assessments by the International Union for the Conservation of Nature (IUCN) and the primary literature to determine the identities and body sizes of extinct reptile species. We considered species to be extinct if they are known only from fossils, or were declared extinct by the IUCN or in the primary literature, and if their extinction happened following human occupation of their range (~50,000 years for Australia, ~14,000 years for the Americas, ~3,000 years for Oceania, and ~2,000 years for Madagascar; Barnosky et al., 2004; Burney et al., 2004; Anderson, 2009). We compare these to the body sizes of 10,090 extant species we collected from published accounts (189 amphisbaenians, 24 crocodiles, 6045 lizards, 3513 snakes,

141 318 turtles and the one species of tuatara; Table S2 in Supporting Information). We 142 converted all length data to masses using family and clade-specific length-mass 143 allometric equations (Table S1). This is crucial as length is an inadequate measure of 144 body size to compare across taxa with highly variable body shapes (Feldman & Meiri, 145 2013). A list of all data sources is found in Appendix 1.

We also collected distribution data on all extant and extinct species in order to take into account geographical patterns in extinctions of reptiles. Data on extant species were obtained from GARD (Global Assessment of Reptile Distributions; 2015), whereas data on extinct species were collected from the same sources as the body size data (listed in Table S1).

We classified each species as either an insular endemic or not, and assigned each species to a biogeographical realm. We used ArcGIS 10.0 (ESRI) to project shapefiles of reptile species distributions onto a map of biogeographical realms (Wallace, 1876). A species was assigned to a realm if all or the largest part of its distribution area fell inside that realm. A species was designated insular endemic if no part of its range overlapped with a continental landmass (therefore, we considered islands as any landmass smaller than Australia, the largest island with reptiles being New Guinea).

We also collected data on occurrence of extant species of reptiles in the fossil record to test for size-biases in the fossil record. We searched in FossilWorks (http://www.fossilworks.org) and Google Scholar using the keywords "Holocene", "Late Pleistocene", "Squamata", and "Reptilia", as well as in two books on the Pleistocene herpetofaunas of North America and Europe (Holman, 1995; 1998), and collected data on the occurrence of 261 extant species of reptiles in the fossil record (4 amphisbaenians, 9 crocodiles, 94 lizards, 105 snakes, 48 turtles and the one species of tuatara; Table S2).

PERMUTATION TESTS

168 Reptile size distributions are strongly right skewed (Feldman *et al.*, 2016), breaking 169 the assumption of normality required for parametric statistical tests. Thus, we

170 conducted permutation tests to compare body sizes of extant and extinct species. 171 This was done (for all reptiles and separately for lizards, snakes, turtles and 172 crocodiles) by pooling all extant and extinct species of each group, randomly 173 selecting *n* species from the pool without replacement (where *n* is the observed 174 number of extinct species within the examined taxon e.g., n = 45 for lizards), and 175 computing the t-statistic for the random selection using the formula:

$$t_i = \frac{\mu_{extinct} - \mu_{extant}}{SE_{extinct}}$$

177 Where $\mu_{extinct}$ is the mean body size of the random selection (simulated extinct 178 species), $SE_{extinct}$ is the standard error of the random selection, and μ_{extant} is the mean 179 body size of the remaining, non-selected species in the pool (simulated extant 180 species). This process was repeated for 100,000 iterations. Using the same formula 181 we computed a t-statistic for the observed extinct and extant groups, and computed 182 two sided p-values as the fraction of iterations with t-statistics at least as extreme as 183 the observed value (with $\alpha = 0.05$).

184 FOSSIL RECORD BIASES

Due to the incompleteness of the fossil record, the results of our analyses might be biased if the sample size of extinct species is too low. This is of special concern as large-bodied taxa are more likely to be preserved (Damuth, 1982). To account for this, we performed rarefaction analyses. We randomly sampled 80%, 60%, 30% and 10% of the total extinct species (in each taxon) and ran the permutation tests (with only 10,000 iterations to reduce computational time) on these subsets. This sampling process was repeated 1,000 times to generate rarefaction curves. We then examined, for each curve, at which sampling effort do the results of the permutation tests become non-significant, i.e. the minimum sampling required to achieve significance. This test informed us of the robustness of our analyses to low sample sizes due to missing data in the fossil record.

196 The fossil record itself may also be size-biased due to taphonomic issues, because 197 larger bones have a higher chance to be preserved due of their low surface area to 198 volume ratio (Damuth, 1982). We tested for this size-bias by comparing the body sizes of extant reptile species that occur in the fossil record to all extant species. We performed permutation tests as described above for all reptiles, and separately for lizards, snakes, crocodiles, and turtles. Furthermore, we repeated our analyses of size-bias in extinct lizards after excluding all extinct species that are known only from fossils or sub-fossils (e.g., Varanus priscus). As this analysis only included a subset of species that went extinct after living specimens had been collected and scientifically described (28 species; e.g. Ameiva cineracea), rather than preserved remains, it should not be affected by a size-bias in the fossil record.

GEOGRAPHICAL BIASES

Late Quaternary reptile extinctions are heavily biased towards islands (Fig. 1). If insular species differ in body size from mainland species, observed size-biases in extinct taxa may simply reflect insular size-biases (i.e. if island reptiles are unusually large, then extinct reptiles would be larger than extant ones simply because insular species went extinct more often). To test whether extinction rates are indeed higher on islands, we performed Fisher exact tests with a null hypothesis of identical extinction frequencies for both mainland species and insular endemics. We then tested exclusively among extant species whether insular endemics are larger than mainland species using permutation tests as described above (with n representing the number of insular species). Furthermore, we examined whether an extinction size-bias existed among insular endemic species only. This could not be performed for mainland species due to the extreme scarcity of extinct mainland reptiles we have data for (see Results).

Reptile extinctions are also clearly geographically biased (Fig. 1). To account for different geographical patterns in reptile extinctions, we used two approaches. First, we performed geographically weighted permutation analyses. This was carried out using the permutation analyses as described above, but with a species selection probability from the pool dependent upon its biogeographical realm (i.e. the probability of selecting a species was proportional to the number of extinct species in its realm divided by the global number of extinct species). This ensured that each simulated extinct selection had the same distribution of realms as the observed

distribution of extinct species. We conducted these analyses for all reptiles and for lizards, snakes, and turtles separately. Crocodiles were omitted because, of the three realms in which there were extinct crocodiles, Oceania and Madagascar have no extant species.

Second, we ran permutation tests on three regional assemblages to determine whether the global patterns are comparable across varying spatial scale. As only a few regions contained a sufficient number of extinct reptiles we only ran three such analyses: Caribbean lizards (31 extinct and 377 extant species), Mascarene lizards (5 extinct and 19 extant species), and Galapagos tortoises (*Chelonoidis* spp., 3 extinct and 7 extant species).

239 PHYLOGENETIC BIASES

Finally, we examined whether the size-biases in extinct reptilian taxa were phylogenetically skewed. We ran permutation tests on all reptile families (Dipsadide, Gekkonidae, Iguanidae, Lacertidae, Leiocephalidae, Scincidae, Teiidae, and Testudinidae) and genera (*Alinea, Ameiva, Chelonoidis, Hypsirhynchus, Leiocephalus, Leiolopisma, Mabuya, Phelsuma, Spondylurus*) that include more than one extinct and one extant species.

All statistical analyses were performed in R v3.2.0 (R Development Core Team,247 2015).

RESULTS

Most of the extinct reptile species were insular endemics (Fig. 1), with a remarkably large concentration of extinct species in the Caribbean. Notable extinctions also occurred on the Mascarene, Galapagos, Melanesian, and Polynesian islands. Relatively few reptiles (mostly turtles) went extinct in mainland regions, mostly in Australia. Eurasia is the only continental landmass from which no extinct reptiles from the Late Pleistocene to Holocene are known, while Africa and South America had one extinction each. Results of the permutation analyses are presented in Table 1. Across all reptiles there was a significant extinction size-bias. The vast majority of extant reptiles are small, whereas extinct species were disproportionally large (Fig. 2). A similar pattern is also evident in the most species-rich reptilian taxon (co-incidentally the one suffering most extinctions): the lizards. Extinct lizards were nine times larger than extant lizards (Fig. 3a). This was also true for the Caribbean lizard assemblage, but it was not significant in the Mascarene lizard assemblage, despite extinct species being twice as large as extant ones (Table 1). Extinct turtles were 16-times larger than extant turtles (Fig. 3c). Interestingly, this was not true for the Galapagos tortoise assemblage. Surprisingly, extinct Galapagos tortoises were similar in size to extant ones. Unlike lizards and turtles, extinct crocodiles were significantly smaller than extant crocodiles (Fig. 3d). Finally, while extinct snakes were twice as large as extant snakes (Fig. 3b), this difference is not statistically significant (Table 1). All the observed differences between extinct and extant species held when our analyses were geographically weighted (Table 1).

The reptile fossil record is size-biased (Fig. 2). Size-biases are evident in the fossil records of lizards and snakes, with the species present in the fossil record representing a large-bodied subset of extant species. No such bias was detected in the fossil records of either turtles or crocodiles (Table 1). When we omitted extinct species known only from the fossil record from our analysis, we still detected a sizebias: extinct lizards were four times larger than extant ones (Table 1).

The results of the rarefaction analyses on lizards and turtles (snakes and crocodiles were not analysed because their low sample size prohibited reduced sampling) indicate that our permutation analyses are robust despite the incompleteness of the fossil record. In both lizards and turtles, the median minimum sampling effort required to achieve significance, out of 1,000 repetitions, was 60%. This means that we would get an equivalent pattern with little more than half the sampling effort we actually achieved.

284 Reptile extinction events were remarkably prevalent on islands. Seventy three of the
285 82 extinct species (89%) were insular endemics (p < 0.01 for lizards, snakes and

turtles, p = 0.02 for crocodiles; Fig. 4) while only 26% of extant species are insular. When mainland species are excluded from the analyses, removing the confounding effects of size differences between island and mainland species, all the observed size-biases still appear (Table 1). Even the inclusion of mainland species does not change the pattern. Furthermore, the body size differences between insular endemics and mainland species do not reflect the size differences between extinct and extant species (Table 1). Extant insular endemic lizards and snakes are significantly smaller than mainland species. Insular crocodilians are similar in size to mainland ones. Only in turtles are insular species larger than mainland species (see also Itescu *et al.*, 2014), but the difference is not nearly as large as between extinct and extant species. Therefore, large lizards and turtles, and small crocodiles, went extinct regardless of whether they were on islands or on the mainland.

The global patterns were not always reflected at the family and genus levels. Extinct Dipsadid snakes, Leiocephalid and Scincid lizards, and Testudinid turtles were larger than extant ones (Table 1; Fig. 5a). Four families (Gekkonidae, Iguanidae, Lacertidae, and Teiidae) showed no significant trends. Of nine genera tested only *Leiocephalus* (the sole genus in Leiocephalidae) showed a significant size-bias (Fig. 5b), although in some genera and families there may be an issue of statistical power due to low sample sizes (Table 1).

DISCUSSION

The global extinction of the Late Quaternary vertebrate megafauna indicates body size may have played a pivotal role in recent extinction events. We find that recently extinct reptiles were much larger than extant ones. Size-biases, however, differ across the four major reptile groups. Extinctions were biased towards large lizards and turtles, and small crocodiles, while there was no significant size-bias in snakes. Our results also suggest that the observed size-bias in extinct lizards is not general across clades, but is phylogenetically skewed and driven by the largest members of only a few clades that have gone extinct (e.g., Leiocephalus spp., a large skink, Chioninia coctei, and the largest gecko, Hoplodactylus delcourti, and lizard, Varanus priscus, to have ever lived). Our analyses may have been conservative, as we used

the maximum size reported for each species, regardless of whether it was measured in extant populations or estimated from sizes of subfossil conspecifics. In many extant taxa (e.g., *Gallotia stehlini, G. bravoana, Chioninia vaillantii, Diploglossus pleii, Anolis cuvieri,* see e.g., Pregill, 1986) these maximum sizes were estimated for recently extinct populations, and living members are much smaller. Small sample sizes of extinct taxa may also mask their true size maxima, making them appear smaller than they really were (Meiri, 2007).

Comprehensive assessments of the reptile fossil record remain sparse, and worse; most reptiles are and were small-bodied (Feldman et al., 2016). Hence, their bones are often badly preserved or missed altogether, making species-level identification impossible in many cases. This may cause a possible bias in favour of large-bodied species in the fossil record (Damuth, 1982). Indeed, we found evidence of such a bias extant species that are represented in the fossil record are roughly seven times larger than the mean size of all extant species. However, extinct is not the same as fossil, and many extinct species are known from intact, well-preserved museum specimens for which no taphonomic effect is imaginable. When we omitted extinct species only known from fossils or sub-fossils from our analyses, and only examined species that were collected alive prior to their extinction (and therefore suffer from no taphonomic biases), we still managed to detect a size-bias towards larger extinct lizard species. Furthermore, some of our uncovered patterns (e.g., small extinct crocodiles, similarly sized extinct snakes) cannot be explained by such a bias. Despite the apparent robustness of our results to taphonomic bias, we advise caution whenever analyses of body sizes of extinct species are attempted, and a size-bias in the fossil record must be tested and corrected for.

Both intrinsic life-history traits and extrinsic factors such as climate change and anthropogenic pressure are linked to species survival (Brook *et al.*, 2008). Cardillo *et al.* (2005) found that small mammals' (< 3 kg) are threatened by environmental factors, while larger mammals are threatened by a combination of extrinsic environmental factors and intrinsic biological traits. These factors are purported to act in synergy, whereby the simultaneous action of separate processes have a stronger effect than the sum of individual effects (Brook *et al.*, 2008). In lizards, we

find evidence that larger species may indeed have been more susceptible to extinction, as 38 of the 45 extinct lizards were larger than the extant mean of 9.5 g, 19 of them being over an order of magnitude larger. Kemp & Hadly (2015) recently reported a size-bias in Caribbean lizard species with extinction probability increasing with body size. They concluded that larger sized lizards with 'slower' life-histories were more prone to extinction due to environmental change and anthropogenic pressure, factors purported to increase in intensity on islands. Further research is required to elucidate whether a precise mass threshold exists, and if present, identify the underlying extinction mechanisms. Such extinction mechanisms may be particularly insightful considering large lizards typically lay larger, rather than smaller clutches (Bauwens & Diaz-Uriarte 1997; Meiri et al., 2012), thus low fecundities are unlikely to have triggered extinctions.

While it is evident that recent extinction events can rarely be attributed to a single cause (Didham, 2005), emergent trends implicate the fundamental role of both direct and indirect anthropogenic pressure (Davies et al., 2006; Koch & Barnosky, 2006; Dirzo et al., 2014; Johnson et al., 2016). Direct evidence of human-mediated extinction among reptiles is documented in the over-harvesting of giant iguanas on Southwest Pacific islands (Pregill & Steadman, 2004) and giant tortoises in the Caribbean, Indian Ocean and Pacific Ocean islands (Rhodin et al., 2015). It is evident that humans targeted these large bodied reptiles precisely because their size represented a substantial source of nutrition, whilst their lack of defence mechanisms reduced the risk taken during their capture. Interestingly, our study indicates that among the Galapagos giant tortoises, the extinct species were not the largest members of the assemblage, and in fact many larger species (Chelonoidis becki, mass = 154 kg; C. vicina, mass = 249 kg; and C. nigra, mass = 277 kg) still survive to this day. Similarly, the sole remaining extant giant tortoise in the Western Indian Ocean (Aldabrachelys gigantea, mass = 217 kg) is the second largest species within this assemblage following the extinct Cylindraspis indica (mass = 222 kg). It may be that these smaller giant tortoise species may have been preferentially targeted by 18th century sailors due to ease of transport, resulting in their eventual

extinction (Hansen *et al.*, 2010), while the larger species proved to be more of a handful.

For crocodiles and snakes, the extinction mechanisms and role of body size are harder to pinpoint. Two of the four extinct crocodiles (Mekosuchus inexpectatus and Volia athollandersoni) were confined to Pacific islands (Molnar et al., 2002). While this undoubtedly increased their extinction vulnerability, evidence for direct hunting by humans, as in the case of the Pacific meiolaniid tortoises, is lacking (Molnar et al., 2002). In the case of the Madagascan crocodile (Voay robustus, mass = 97 kg) competitive displacement by the larger Crocodilus niloticus (mass = 591 kg) and human colonization have been proposed as possible extinction mechanisms (Brochu, 2007). In Australia, human impact is implicated in the extinction of a suite of vertebrates including a small crocodile (Quinkana fortirostrum), a giant snake (Wonambi naracoortensis) and the huge Megalania (Varanus priscus; Prideaux et al., 2010; Johnson et al., 2016).

Almost all extinct reptiles were island endemics, with insularity highlighted as a key factor increasing a species' extinction risk. Indirect human impact, such as the introduction of invasive carnivores (e.g. Herpestes auropunctatus, Felis catus) and rats (Rattus spp.) is directly linked to the extinction of a wide variety of insular reptile species (e.g. Hedges & Conn, 2012). The introduced Indian mongoose (Herpestes auropunctatus) had a devastating effect on the Caribbean fauna, being a factor in the extinction of sixteen skink and three snake species (Henderson & Powell, 2009; Hedges & Conn 2012). Interestingly, the only extinct mainland lizard species, the South African *Tetradactylus eastwoodae*, is also the smallest extinct lizard (1.8g).

In conclusion, although the current fossil record undoubtedly represents a subset of species that actually went extinct during the Late Quaternary, emergent trends reveal reptile extinction rate was much higher on islands, while a large body represents a further, less straightforward cause for extinction (and only in some reptile groups, but not all). It is clear that relatively recent historical threats were particularly pronounced on insular environments. Some exceptionally large-bodied reptiles were also particularly prone to extinction through human-mediated rapid

407	and prolonged harmful conditions, combined with slow life-histories inhibiting their
408	ability to recover. Recent extinction processes have evidently varied across the
409	reptile phylogeny, geographic area and time, yet body size has often played a role,
410	whether direct or indirect, in the persistence or disappearance of species.
411	ACKNOWLEDGMENTS
412	We would like to extend our gratitude to Anat Feldman for providing us with
413	distribution and size data on extant snakes. We are grateful to two anonymous
414	referees for providing valuable comments on earlier versions of this manuscript. AS
415	is funded by a special grant for students in the fast-track PhD programme from the
416	George S. Wise Faculty of Life Sciences, OT is funded by a Binational Science
417	Foundation grant #2012143 to SM.
418	SUPPORTING INFORMATION
419	Table S1. Body sizes of extinct reptiles, with references for length-mass conversion
420	equations of lizards, snakes and turtles.
421	Table S2. Body sizes of extant reptiles.
422	BIOSKETCH
423	Alex Slavenko is a PhD student interested in biogeographical patterns of body size
424	and life-history traits and the distribution of species, as well as the general biology of
425	reptiles and amphibians. He is particularly interested in the patterns and evolution of
426	such traits in insular environments.
427	Oliver Tallowin is a PhD student interested in biogeographical diversity gradients and
428	ecological trends, with a particular focus on how these factors influence reptile and
429	amphibian species extinction risk.
430	REFERENCES
431	Alroy, J. (2001) A multispecies overkill simulation of the end-Pleistocene megafaunal
432	mass extinction. Science, 292, 1893-1896.

433	Alroy, J. (2015) Current extinction rates of reptiles and amphibians. Proceedings of
434	the National Academy of Sciences, 112 , 13003-13008.
435	Anderson, A. (2009) The rat and the octopus: initial human colonization and the
436	prehistoric introduction of domestic animals to Remote Oceania. <i>Biological</i>
437	Invasions, 11 , 1503-1519.
438	Barnosky, A.D., Hadly, E.A., Bascompte, J., Berlow, E.L., Brown, J.H., Fortelius, M.,
439	Getz, W.M., Harte, J., Hastings, A., Marquet, P.A., Martinez, N.D., Mooers, A.,
440	Roopnarine, P., Vermeij, G., Williams, J.W., Gillespie, R., Kitzes, J., Marshall, C.,
441	Matzke, N., Mindell, D.P., Revilla, E. & Smith, A.B. (2012) Approaching a state shift in
442	Earth's biosphere. <i>Nature, 486,</i> 52-58.
443	Barnosky, A.D., Koch, P.L., Feranec, R.S., Wing, S.L. & Shabel, A.B. (2004) Assessing
444	the causes of Late Pleistocene extinctions on the continents. <i>Science</i> , 306 , 70-75.
445	Barnosky, A.D., Matzke, N., Tomiya, S., Wogan, G.O., Swartz, B., Quental, T.B.,
446	Marshall, C., McGuire, J.L., Lindsey, E.L. & Maguire, K.C. (2011) Has the Earth's sixth
447	mass extinction already arrived? <i>Nature</i> , 471 , 51-57.
448	Bauwens, D. & Diaz-Uriarte, R. (1997) Covariation of life-history traits in lacertid
449	lizards: a comparative study. American Naturalist, 91-111.
450	Böhm, M., Williams, R., Bramhall, H.R., McMillan, K.M., Davidson, A.D., Garcia, A.,
451	Bland, L.M., Bielby, J. & Collen, B. (2016) Correlates of extinction risk in squamate
452	reptiles: the relative importance of biology, geography, threat and range size. <i>Global</i>
453	Ecology and Biogeography, DOI: 10.1111/geb.12419.
100	
454	Brook, B.W. & Bowman, D.M. (2002) Explaining the Pleistocene megafaunal
455	extinctions: models, chronologies, and assumptions. Proceedings of the National
456	Academy of Sciences, 99 , 14624-14627.
457	Brook, B. W., Sodhi, N. S., & Bradshaw, C. J. (2008) Synergies among extinction
458	drivers under global change. <i>Trends in Ecology & Evolution</i> , 23 , 453-460.
-50	

459	Burney, D.A., Burney, L.P., Godfrey, L.R., Jungers, W.L., Goodman, S.M., Wright, H.T.
460	& Jull, A.J.T. (2004) A chronology for late prehistoric Madagascar. Journal of Human
461	Evolution, 47 , 25-63.
462	Cardillo, M. & Bromham, L. (2001) Body size and risk of extinction in Australian
463	mammals. Conservation Biology, 15, 1435-1440.
464	Cardillo, M., Mace, G.M., Gittleman, J.L. & Purvis, A. (2006) Latent extinction risk and
465	the future battlegrounds of mammal conservation. Proceedings of the National
466	Academy of Sciences of the United States of America, 103 , 4157-4161.
467	Cardillo, M., Mace, G.M., Jones, K.E., Bielby, J., Bininda-Emonds, O.R., Sechrest, W.,
468	Orme, C.D.L. & Purvis, A. (2005) Multiple causes of high extinction risk in large
469	mammal species. Science, 309, 1239-1241.
470	Case, T.J., Bolger, D.T. & Richman, A.D. (1998) Reptilian extinctions over the last ten
471	thousand years. Conservation biology for the coming decade (ed. by P.L. Fielder and
472	P.M. Kareiva), pp. 157-186. Chapman and Hall, New York, New York, USA.
473	Ceballos, G., Ehrlich, P.R., Barnosky, A.D., García, A., Pringle, R.M. & Palmer, T.M.
474	(2015) Accelerated modern human-induced species losses: Entering the sixth mass
475	extinction. <i>Science Advances</i> , 1 , e1400253.
476	Conrad, J.L., Balcarcel, A.M. & Mehling, C.M. (2012) Earliest example of a giant
477	monitor lizard (<i>Varanus,</i> Varanidae, Squamata). <i>PloS ONE</i> , 7 , e41767-e41767.
478	Damuth, J. (1982) Analysis of the preservation of community structure in
479	assemblages of fossil mammals. <i>Paleobiology</i> , 8 , 434-446.
480	Davies, R.G., Orme, C.D.L., Olson, V., Thomas, G.H., Ross, S.G., Ding, TS.,
481	Rasmussen, P.C., Stattersfield, A.J., Bennett, P.M. & Blackburn, T.M. (2006) Human
482	impacts and the global distribution of extinction risk. Proceedings of the Royal
483	Society of London B: Biological Sciences, 273 , 2127-2133.
484	Diamond, J. (1984) "Normal" extinctions of isolated populations. <i>Extinctions</i> (ed. by
485	M.H. Nitecki), pp. 191-246. Chicago University Press, Chicago, Illinois, USA.

486	Didham, R.K., Ewers, R.M. & Gemmell, N.J. (2005) Comment on "avian extinction and
487	mammalian introductions on oceanic islands". Science, 307 , 1412-1412.
488	Dirzo, R., Young, H. S., Galetti, M., Ceballos, G., Isaac, N. J., & Collen, B. (2014)
489	Defaunation in the Anthropocene. Science, 345 , 401-406.
490	Donlan, C.J. & Wilcox, C. (2008) Diversity, invasive species and extinctions in insular
490	ecosystems. Journal of Applied Ecology, 45 , 1114-1123.
492	Duncan, R.P., Blackburn, T.M. & Worthy, T.H. (2002) Prehistoric bird extinctions and
493	human hunting. Proceedings of the Royal Society of London B: Biological Sciences,
494	269 , 517-521.
495	Duncan, R.P., Boyer, A.G. & Blackburn, T.M. (2013) Magnitude and variation of
496	prehistoric bird extinctions in the Pacific. Proceedings of the National Academy of
497	Sciences, 110 , 6436-6441.
498	Feldman, A. & Meiri, S. (2013) Length-mass allometry in snakes. Biological Journal of
499	the Linnean Society, 108 , 161-172.
500	Feldman, A., Pyron, R. A., Sabath, N., Mayrose, I. & Meiri, S. (2016) Body-sizes and
501	diversification rates of lizards, snakes, amphisbaenians and the tuatara. Global
502	Ecology and Biogeography, 25 , 187-197.
503	Fisher, D. O., & Owens, I. P. (2004) The comparative method in conservation biology.
504	Trends in Ecology & Evolution, 19 , 391-398.
505	Flannery, T.F. (1999) Debating extinction. <i>Science</i> , 283 , 182-183.
506	Fritz, S.A., Bininda-Emonds, O.R.P. & Purvis, A. (2009) Geographical variation in
507	predictors of mammalian extinction risk: big is bad, but only in the tropics. <i>Ecology</i>
508	Letters, 12 , 538-549.
509	Gaston, K.J. & Blackburn, T.M. (1995) Birds, body size and the threat of extinction.
510	Philosophical Transactions of the Royal Society B: Biological Sciences, 347 , 205-212.

511	Hansen, D.M., Donlan, C.J., Griffiths, C.J. & Campbell, K.J. (2010) Ecological history
512	and latent conservation potential: large and giant tortoises as a model for taxon
513	substitutions. <i>Ecography</i> , 33 , 272-284.
514	Hedges, S.B. & Conn, C.E. (2012) A new skink fauna from Caribbean islands
515	(Squamata, Mabuyidae, Mabuyinae). Zootaxa, 3288 , 1-244.
516	Holman, J.A. (1995) Pleistocene amphibians and reptiles in North America. Oxford
517	University Press, New York, New York, USA.
518	Holman, J.A. (1998) Pleistocene amphibians and reptiles in Britain and Europe.
519	Oxford University Press, New York, New York, USA.
520	Itescu, Y., Karraker, N.E., Raia, P., Pritchard, P.C. & Meiri, S. (2014) Is the island rule
521	general? Turtles disagree. <i>Global Ecology and Biogeography</i> , 23 , 689-700.
522	Johnson, C.N. (2002) Determinants of loss of mammal species during the Late
523	Quaternary 'megafauna' extinctions: life history and ecology, but not body size.
524	Proceedings of the Royal Society of London B: Biological Sciences, 269 , 2221-2227.
525	Johnson, C.N., Alroy, J., Beeton, N.J., Bird, M.I., Brook, B.W., Cooper, A., Gillespie, R.,
526	Herrando-Pérez, S., Jacobs, Z., Miller, G.H., Prideaux, G.J., Roberts, R.G., Rodríguez-
527	Rey, M., Saltré, F., Turney, C.S.M. & Bradshaw, C.J.A. (2016) What caused extinction
528	of the Pleistocene megafauna of Sahul? Proceedings of the Royal Society B: Biological
529	Sciences, 283 , 20152399.
530	Kemp, M.E. & Hadly, E.A. (2015) Extinction biases in Quaternary Caribbean lizards.
531	Global Ecology and Biogeography, 24 , 1281-1289.
532	Koch, P.L. & Barnosky, A.D. (2006) Late Quaternary extinctions: state of the debate.
533	Annual Review of Ecology, Evolution, and Systematics, 215-250.
534	Lawton, J.H., Daily, G. & Newton, I. (1994) Population dynamic principles [and
535	discussion]. Philosophical Transactions of the Royal Society B: Biological Sciences,
536	344 , 61-68.

537	Lorenzen, E.D., Nogués-Bravo, D., Orlando, L., Weinstock, J., Binladen, J., Marske,
538	K.A., Ugan, A., Borregaard, M.K., Gilbert, M.T.P., Nielsen, R., Ho, S.Y.W., Goebel, T.,
539	Graf, K.E., Byers, D., Stenderup, J.T., Rasmussen, M., Campos, P.F., Leonard, J.A.,
540	Koepfli, KP., Froese, D., Zazula, G., Stafford, T.W., Aaris-Sørensen, K., Batra, P.,
541	Haywood, A.M., Singarayer, J.S., Valdes, P.J., Boeskorov, G., Burns, J.A., Davydov,
542	S.P., Haile, J., Jenkins, D.L., Kosintsev, P., Kuznetsova, T., Lai, X., Martin, L.D.,
543	McDonald, H.G., Mol, D., Meldgaard, M., Munch, K., Stephan, E., Sablin, M., Sommer,
544	R.S., Sipko, T., Scott, E., Suchard, M.A., Tikhonov, A., Willerslev, R., Wayne, R.K.,
545	Cooper, A., Hofreiter, M., Sher, A., Shapiro, B., Rahbek, C. & Willerslev, E. (2011)
546	Species-specific responses of Late Quaternary megafauna to climate and humans.
547	Nature, 479 , 359-364.
548	Maclean, I.M. & Wilson, R.J. (2011) Recent ecological responses to climate change
549	support predictions of high extinction risk. <i>Proceedings of the National Academy of</i>
550	Sciences, 108 , 12337-12342.
330	
551	Martin, P. & Klein, R. (1984) <i>Quaternary extinctions</i> . The University of Arizona Press,
552	Tuscon, Arizona, USA.
553	McKinney, M. L. (1997) Extinction vulnerability and selectivity: combining ecological
554	and paleontological views. Annual Review of Ecology and Systematics, 28, 495-516.
555	Meiri, S. (2007) Size evolution in island lizards. <i>Global Ecology and Biogeography</i> , 16 ,
556	702-708.
557	Meiri, S. (2008) Evolution and ecology of lizard body sizes. <i>Global Ecology and</i>
558	Biogeography, 17 , 724-734.
559	Meiri, S., Brown, J.H. & Sibly, R.M. (2012) The ecology of lizard reproductive output.
560	Global Ecology and Biogeography, 21 , 592-602.
561	Miller, G.H., Magee, J.W., Johnson, B.J., Fogel, M.L., Spooner, N.A., McCulloch, M.T.
562	& Ayliffe, L.K. (1999) Pleistocene extinction of <i>Genyornis newtoni</i> : human impact on
563	Australian megafauna. <i>Science</i> , 283 , 205-208.

564	Mitchell, K.J., Llamas, B., Soubrier, J., Rawlence, N.J., Worthy, T.H., Wood, J., Lee,
565	M.S. & Cooper, A. (2014) Ancient DNA reveals elephant birds and kiwi are sister taxa
566	and clarifies ratite bird evolution. Science, 344, 898-900.
567	Owens, I.P. & Bennett, P.M. (2000) Ecological basis of extinction risk in birds: habitat
568	
	loss versus human persecution and introduced predators. <i>Proceedings of the</i>
569	National Academy of Sciences, 97 , 12144-12148.
570	Peters, R. H. (1983). The ecological implications of body size. Cambridge University
571	Press, Cambridge, UK.
572	Pregill, G. (1986) Body size of insular lizards: a pattern of Holocene dwarfism.
573	Evolution, 40 , 997-1008.
574	Pregill, G.K., Crombie, R.I., Steadman, D.W., Gordon, L.K., Davis, F.W. & Hilgartner,
575	W.B. (1991) Living and late Holocene fossil vertebrates, and the vegetation of the
576	Cockpit Country, Jamaica. Atoll Research Bulletin, 353 , 1-19.
577	Pregill, G.K. & Dye, T. (1989) Prehistoric extinction of giant iguanas in Tonga. <i>Copeia</i> ,
578	1989 , 505-508.
579	Prideaux, G.J., Gully, G.A., Couzens, A.M., Ayliffe, L.K., Jankowski, N.R., Jacobs, Z.,
580	Roberts, R.G., Hellstrom, J.C., Gagan, M.K. & Hatcher, L.M. (2010) Timing and
581	dynamics of Late Pleistocene mammal extinctions in southwestern Australia.
582	Proceedings of the National Academy of Sciences, 107 , 22157-22162.
583	Purvis, A., Gittleman, J. L., Cowlishaw, G., & Mace, G. M. (2000) Predicting extinction
584	risk in declining species. <i>Proceedings of the Royal Society of London B: Biological</i>
585	Sciences, 267 , 1947-1952.
586	R Development Core Team (2015) R: A language and environment for statistical
587	computing. The R Foundation for Statistical Computing, Vienna, Austria.
588	Reynolds, J.D. (2003) Life histories and extinction risk. <i>Macroecology</i> (ed. by T.M.
589	Blackburn and K.J. Gaston), pp. 195-217. Blackwell Publishing, Oxford, UK.

Rhodin, A.G.J., Thomson, S., Georgalis, G.L., Karl, H.-V., Danilov, I.G., Takahashi, A., de la Fuente, M.S., Bourque, J.R., Delfino, M., Bour, R., Iverson, J.B., Shaffer, H.B. & van Dijk, P.P. (2015) Turtles and tortoises of the world during the rise and global spread of humanity: first checklist and review of extinct Pleistocene and Holocene chelonians. Chelonian Research Monographs, 5, 1-66. Sandom, C., Faurby, S., Sandel, B. & Svenning, J.-C. (2014) Global late Quaternary megafauna extinctions linked to humans, not climate change. Proceedings of the Royal Society of London B: Biological Sciences, **281**, 20133254. Tingley, R., Hitchmough, R.A. & Chapple, D.G. (2013) Life-history traits and extrinsic threats determine extinction risk in New Zealand lizards. Biological Conservation, , 62-68. Uetz, P. & Hošek, J. (2016) The Reptile Database. Available at: http://www.reptile-database.org (accessed 17 April 2016). Wallace, A.R. (1876) The geographical distribution of animals, with a study of the relation of living and extinct faunas as elucidating the past changes of the earth's surface. Macmillan and Co., London, UK. Wroe, S. (2002) A review of terrestrial mammalian and reptilian carnivore ecology in Australian fossil faunas, and factors influencing their diversity: the myth of reptilian domination and its broader ramifications. Australian Journal of Zoology, 50, 1-24.

- 609 Wroe, S., Field, J., Fullagar, R. & Jermin, L.S. (2004) Megafaunal extinction in the late
- 610 Quaternary and the global overkill hypothesis. *Alcheringa*, **28**, 291-331.

	611	APPENDIX 1 – DATA SOURCES
	612	Albino, A.M. & Brizuela, S. (2009) Los reptiles escamosos de la provincia de Buenos
	613	Aires: la perspectiva paleontológica. Boletín del Centro, 6, 1-21.
	614	Albino, A.M. & Kligmann, D.M. (2007) An accumulation of bone remains of two
	615	Liolaemus species (Iguanidae) in an Holocene archaeological site of the Argentine
	616	Puna. Amphibia-Reptilia, 28 , 154-158.
	617	Andreone, F. & Guarino, F.M. (2003) Giant and long-lived? Age structure in
1	618	Macroscincus coctei, an extinct skink from Cape Verde. Amphibia-Reptilia, 24, 459-
	619	470.
	620	Arnold, E.N. & Bour, R. (2008) A new <i>Nactus</i> gecko (Gekkonidae) and a new
	621	Leiolopisma skink (Scincidae) from La Réunion, Indian Ocean, based on recent fossil
1	622	remains and ancient DNA sequence. Zootaxa, 1705, 40-50.
	623	Auffenberg, W. (1955) Glass lizards (<i>Ophisaurus</i>) in the Pleistocene and Pliocene of
	624	Florida. Herpetologica, 11 , 133-136.
	625	Auffenberg, W. (1956) Additional records of Pleistocene lizards from Florida.
	626	Quarterly Journal of the Florida Academy of Sciences, 19 , 157-167.
	627	Auffenberg, W. (1958) Fossil turtles of the genus Terrapene in Florida. Bulletin of the
	628	Florida State Museum, Biological Sciences, 3 , 53-92.
	629	Auffenberg, W. (1959) A small fossil herpetofauna from Barbuda, Leeward Islands,
	630	with the description of a new species of Hyla. Quarterly Journal of the Florida
I	631	Academy of Sciences, 21 , 248-54.
	632	Auffenberg, W. (1963) The fossil snakes of Florida. Tulane Studies in Zoology, 10,
1	633	131-216.
	634	Australian Heritage Commission (1986) Tropical rainforests of north Queensland.
	635	Their conservation significance. Special Australian Heritage Publication Series No. 3.
	636	Australian Government Publishing Service, Canberra, Australia.

0
2
3
4
÷
5
6
7
<i>'</i>
8
9
10
4.4
11
12
13
14
14
15
16
17
17
18
19
20
20
21
22
22
20
24
2 3 4 5 6 7 8 9 10 1 12 3 14 5 16 7 8 9 10 1 12 3 14 5 16 7 8 9 21 22 3 4 5 6 7 8 9 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
26
20
27
28
20
29
30
31
30
02
33
34
35
00
36
37
28
00
39
40
41
10
42 43
43
44
45
40
46
47
48
40
49
50
51
52
53
54
55
56
57
58
59
60
00

637	Avery, G. & Klein, R.G. (2011) Review of fossil phocid and otariid seals from the
638	southern and western coasts of South Africa. Transactions of the Royal Society of
639	South Africa, 66 , 14-24.
640	Balouet, JC. & Buffetaut, E. (1987) <i>Mekosuchus inexpectatus</i> , ng, n. sp., crocodilien
641	nouveau de l'Holocene de Nouvelle Calédonie. Comptes rendus de l'Académie des
642	sciences. Série 2, Mécanique, Physique, Chimie, Sciences de l'univers, Sciences de la
643	<i>Terre</i> , 304 , 853-856.
644	Bauer, A.M. & Günther, R. (2004) On a newly identified specimen of the extinct
645	bolyeriid snake <i>Bolyeria multocarinata</i> (Boie, 1827). <i>Herpetozoa</i> , 17 , 179-181.
045	
646	Bauer, A.M. & Russell, A.P. (1986) Hoplodactylus delcourti n. sp.(Reptilia:
647	Gekkonidae), the largest known gecko. New Zealand Journal of Zoology, 13 , 141-148.
648	Black, C.C. & Kowalski, K. (1974) The Pliocene and Pleistocene Sciuridae (Mammalia,
649	Rodentia) from Poland. <i>Acta Zoologica Cracoviensia</i> , 19 , 461-486.
650	Blain, HA., Bailon, S. & Agusti, J. (2007) Anurans and squamate reptiles from the
651	latest early Pleistocene of Almenara-Casablanca-3 (Castellón, East of Spain).
652	Systematic, climatic and environmental considerations. <i>Geodiversitas</i> , 29 , 269-295.
653	Bochaton, C., Grouard, S., Cornette, R., Ineich, I., Lenoble, A., Tresset, A. & Bailon, S.
654	(2015) Fossil and subfossil herpetofauna from Cadet 2 Cave (Marie-Galante,
655	Guadeloupe Islands, FWI): Evolution of an insular herpetofauna since the Late
656	Pleistocene. Comptes Rendus Palevol, 14, 101-110.
657	Bonin, F., Devaux, B. & Dupré, A. (2006) <i>Turtles of the world</i> . Johns Hopkins
658	University Press, Baltimore, USA.
659	Brattstrom, B.H. (1954) Amphibians and reptiles from Gypsum Cave, Nevada. Bulletin
660	of the Southern California Academy of Sciences, 53, 8-12.
CC4	Drottetrom D.H. (1067) A succession of Discours and Disistensing state former from
661	Brattstrom, B.H. (1967) A succession of Pliocene and Pleistocene snake faunas from
662	the High Plains of the United States. <i>Copeia</i> , 1967 , 188-202.

663	Brochu, C.A. (2007) Morphology, relationships, and biogeographical significance of
664	an extinct horned crocodile (Crocodylia, Crocodylidae) from the Quaternary of
665	Madagascar. Zoological Journal of the Linnean Society, 150 , 835-863.
666	Burney, D.A., Vasey, N., Godfrey, L.R., Jungers, W.L., Ramarolahy, M. & Raharivony,
667	L. (2008) New findings at Andrahomana Cave, southeastern Madagascar. Journal of
668	Cave and Karst Studies, 70 , 13-24.
669	Carder, N. (1989) Faunal remains from Mixon's Hammock, Okefenokee Swamp.
670	Southeastern Archaeology, 8 , 19-30.
671	Caut, S. & Jowers, M.J. (2015) Is the Martinique ground snake <i>Erythrolamprus cursor</i>
672	extinct? <i>Oryx</i> , 1-4.
673	Chang, C.H. (1996) The first fossil record of a short-finned pilot whale (<i>Globicephala</i>
674	macrorhynchus) from the Penghu Channel. Bulletin of the National Museum of
675	Natural Science, 8 , 73-80.
676	Cheke, A.S. (2009) La faune vertébrée terrestre de l'ile Maurice en 1803: données
677	inédites provenant des manuscrits de Péron et Lesueur. <i>Bulletin de la Société</i>
678	géologique de Normandie et des amis du Muséum du Havre, 96 , 61-77.
679	Conrad, J.L., Balcarcel, A.M. & Mehling, C.M. (2012) Earliest example of a giant
680	monitor lizard (Varanus, Varanidae, Squamata). <i>PloS ONE</i> , 7 , e41767-e41767.
681	Dalquest, W.W. & Roth, E. (1970) Late Pleistocene mammals from a cave in
682	Tamaulipas, Mexico. The Southwestern Naturalist, 15, 217-230.
683	Ehret, D.J. & Atkinson, B.K. (2012) The fossil record of the diamond-backed terrapin,
684	Malaclemys terrapin (Testudines: Emydidae). Journal of Herpetology, 46, 351-355.
685	Emslie, S.D. (1986) Late Pleistocene vertebrates from Gunnison County, Colorado.
686	Journal of Paleontology, 60 , 170-176.
687	Etheridge, R. (1961) Late Cenozoic glass lizards (Ophisaurus) from the southern Great
688	Plains. <i>Herpetologica</i> , 17 , 179-186.

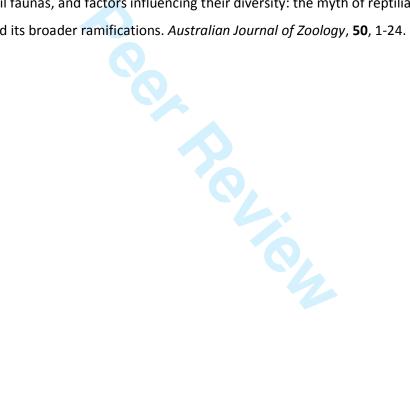
689	Feldman, A. & Meiri, S. (2013) Length-mass allometry in snakes. Biological Journal of
690	the Linnean Society, 108 , 161-172.
691	Feldman, A., Sabath, N., Pyron, A.R., Mayrose, I. & Meiri, S. (2016) Body-sizes and
692	diversification rates of lizards, snakes, amphisbaenians and the tuatara. Global
693	Ecology and Biogeography, 25 , 187-197.
694	GARD [Global Assessment of Reptile Distributions] (2015) Global Assessment of
695	Reptile Distributions. Available at: http://www.gardinitiative.org
696	Gerlach, J. (2004) Giant tortoises of the Indian Ocean: the genus Dipsochelys
697	inhabiting the Seychelles Islands and the extinct giants of Madagascar and the
698	Mascarenes. Edition Chimaira, Frankfurt am Main, Germany.
699	Greer, A.E. (2001) Distribution of maximum snout-vent length among species of
700	scincid lizards. Journal of Herpetology, 35 , 383-395.
701	Guilday, J.E. (1977) Sabertooth cat, Smilodon floridanus (Leidy), and associated fauna
702	from a Tennessee Cave (40DV40) - the first American bank site. Journal of the
703	Tennessee Academy of Science, 52 , 84-94.
704	Guilday, J.E., Parmalee, P.W. & Hamilton, H.W. (1977) The Clark's Cave bone deposit
705	and the late Pleistocene paleoecology of the central Appalachian Mountains of
706	Virginia. Bulletin of the Carnegie Museum of Natural History, 2 , 1-87.
707	Hailey, A., Wilson, B. & Horrocks, J. (2011) Conservation of Caribbean Island
708	Herpetofaunas Volume 1: Conservation Biology and the Wider Caribbean. Brill,
709	Leiden, Netherlands.
710	Harris, A.H. (1987) Reconstruction of mid Wisconsinan environments in southern
711	New Mexico. National Geographic Research, 3 , 142-151.
712	Harris, A.H. & Findley, J.S. (1964) Pleistocene-Recent fauna of the Isleta Caves,
713	Bernalillo County, New Mexico. American Journal of Science, 262, 114-120.
714	Harris, A.H., Smartt, R.A. & Smartt, W.R. (1973) Cryptotis parva from the Pleistocene
715	of New Mexico. Journal of Mammalogy, 54, 512-513.

716	Hay, O.P. (1917) Vertebrata mostly from stratum no. 3, at Vero, Florida: together
717	with descriptions of new species. Florida State Geological Survey Annual Report, 9,
718	43-68.
710	Hadros C. D. (2002) Marphalagical variation and the definition of energies in the
719	Hedges, S.B. (2002) Morphological variation and the definition of species in the
720	snake genus Tropidophis (Serpentes, Tropidophiidae). Bulletin of the Natural History
721	Museum: Zoology, 68 , 83-90.
722	Hedges, S.B. & Conn, C.E. (2012) A new skink fauna from Caribbean islands
723	(Squamata, Mabuyidae, Mabuyinae). Zootaxa, 3288 , 1-244.
724	Henderson, R.W. & Powell, R. (2009) Natural history of West Indian reptiles and
725	amphibians. University Press of Florida, Gainesville, Florida, USA.
726	Holman, J.A. (1974) A late Pleistocene herpetofauna from southwestern Missouri.
727	Journal of Herpetology, 8, 343-346.
728	Holman, J.A. (1976) Paleoclimatic implications of "ecologically incompatible"
729	herpetological species (late Pleistocene: southeastern United States). Herpetologica,
730	32 , 290-295.
731	Holman, J.A. (1995) Pleistocene amphibians and reptiles in North America. Oxford
732	University Press, New York, New York, USA.
733	Holman, J.A. (1998) Pleistocene amphibians and reptiles in Britain and Europe.
734	Oxford University Press, New York, New York, USA.
735	Holman, J.A., Bell, G. & Lamb, J. (1990) A late Pleistocene herpetofauna from Bell
736	cave, Alabama. Herpetological Journal, 1, 521-529.
737	Hulbert Jr, R.C., Morgan, G.S. & Kerner, A. (2009) Collared peccary (Mammalia,
738	Artiodactyla, Tayassuidae, Pecari) from the late Pleistocene of Florida. In: Papers on
739	Geology, Vertebrate Paleontology, Biostratigraphy in Honor of Michael O.
740	Woodburne (ed. by L.B. Albright III). Museum of Northern Arizona Bulltin, 65, 531-
741	544.

742	Hulbert Jr, R.C. & Pratt, A.E. (1998) New Pleistocene (Rancholabrean) vertebrate
743	faunas from coastal Georgia. Journal of Vertebrate Paleontology, 18, 412-429.
744	Itescu, Y. (2012) A biogeographic perspective on turtle evolution. Tel Aviv University,
745	Tel Aviv, Israel.
746	Itescu, Y., Karraker, N.E., Raia, P., Pritchard, P.C.H. & Meiri, S. (2014) Is the island rule
747	general? Turtles disagree. Global Ecology and Biogeography, 23, 689-700.
748	Jefferson, G.T. (1991) A catalogue of Late Quaternary vertebrates from California.
749	Part two, mammals. Natural History Museum of Los Angeles County Technical
750	Report, 7 , 1-129.
751	Kessler, A.G.O. (2010) Status of the Culebra Island Giant Anole (Anolis roosevelti).
752	Herpetological Conservation and Biology, 5 , 223-232.
753	Köhler, G. (2008) Reptiles of Central America. Herpeton Verlag, Offenbach, Germany.
754	Loveridge, A. (1942) Revision of the Afro-Oriental geckos of the genus Phelsuma.
755	Bulletin of the Museum of Comparative Zoology, 89 , 439-482.
756	Lynch, J.D. (1965) The Pleistocene amphibians of Pit II, Arredondo, Florida. Copeia,
757	1965 , 72-77.
758	Markert, D. (1975) Schlüssel zur Bestimmung der Wirbel süddeutscher Ophidier und
759	dessen Andwendung auf pleistozän/holozänes Reptilmaterial aus dem Euerwanger
760	Bühl (Franken). Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 149,
761	211-226.
762	Marks, A.E. & Mohammed-Ali, A. (1991) The late prehistory of the Eastern Sahel.
763	Southern Methodist University Press, Dallas, Texas, USA.
764	Marshall, L.G. & Sempéré, T. (1991) The Eocene to Pleistocene vertebrates of Bolivia
765	and their stratigraphic context: a review. Revista Técnica de Yacimientos Petrolíferos
766	Fiscales Bolivianos, 12 , 631-652.

Global Ecology and Biogeography

767	Mateo, J.A. (2009) Lagarto gigante de La Palma - Gallotia auaritae. Enciclopedia
768	Virtual de los Vertebrados Españoles (ed. by L.M. Carrascal and A. Salvador). Museo
769	Nacional de Ciencias Naturales, Madrid, Spain.
770	Mead, J.I., Roth, E.L., Van Devender, T.R. & Steadman, D.W. (1984) The late
771	Wisconsinan vertebrate fauna from Deadman Cave, southern Arizona. Transactions
772	of the San Diego Society of Natural History, 20 , 247-276.
773	Meiri, S. (2010) Length–weight allometries in lizards. Journal of Zoology, 281, 218-
774	226.
775	Milstead, W.W. (1956) Fossil turtles of Friesenhahn Cave, Texas, with the description
776	of a new species of <i>Testudo</i> . <i>Copeia</i> , 1956 , 162-171.
777	Molnar, R.E., Worthy, T. & Willis, P.M.A. (2002) An extinct Pleistocene endemic
778	mekosuchine crocodylian from Fiji. <i>Journal of Vertebrate Paleontology</i> , 22 , 612-628.
779	Mook, C.C. (1959) A new Pleistocene crocodilian from Guatemala. American
780	Museum Novitates, 1975 , 1-6.
781	Morgan, G.S., Franz, R. & Crombie, R.I. (1993) The Cuban crocodile, Crocodylus
782	rhombifer, from late Quaternary fossil deposits on Grand Cayman. Caribbean Journal
783	of Science, 29 , 153-164.
784	Noriega, J.I., Carlini, A.A. & Tonni, E.P. (2004) Vertebrados del Pleistoceno tardío de
785	la cuenca del Arroyo Ensenada (Departamento Diamante, provincia de Entre Ríos).
786	Temas de la Biodiversidad del Litoral fluvial argentino. INSUGEO, Miscelánea, 12 , 71-
787	76.
788	Novosolov, M., Raia, P. & Meiri, S. (2013) The island syndrome in lizards. Global
789	Ecology and Biogeography, 22 , 184-191.
790	Otsuka, H. & Takahashi, A. (2000) Pleistocene vertebrate faunas in the Ryukyu
791	Islands: their migration and extinction. Tropics, 10, 25-40.


792	Parmalee, P.W. & Klippel, W.E. (1981) Remains of the wood turtle Clemmys insculpta
793	(Le Conte) from a late Pleistocene deposit in middle Tennessee. American Midland
794	Naturalist, 105 , 413-416.
795	Parmley, D. (1986) Herpetofauna of the Rancholabrean Schulze Cave local fauna of
796	Texas. Journal of Herpetology, 20, 1-10.
797	Patterson, B. (1936) Caiman latirostris from the Pleistocene of Argentina, and a
798	summary of South American Cenozoic Crocodilia. <i>Herpetologica</i> , 1 , 43-54.
799	Porta, J. (1965) Nota preliminar sobre la fauna de vertebrados hallada en Curití
800	(Departamento de Santander, Colombia). Boletín Geológico, 19, 112-115.
801	Pregill, G.K. (1986) Body size of insular lizards: a pattern of Holocene dwarfism.
802	Evolution, 40 , 997-1008.
803	Pregill, G.K. (1992) Systematics of the West Indian lizard genus Leiocephalus
804	(Squamata: Iguania: Tropiduridae). Museum of Natural History, The University of
805	Kansas, LAwrence, Kansas, USA.
806	Pregill, G.K. & Steadman, D.W. (2004) South Pacific iguanas: human impacts and a
000	riegii, G.K. & Steadman, D.W. (2004) South racine iguanas. human impacts and a
807	new species. Journal of Herpetology, 38 , 15-21.
807	new species. Journal of Herpetology, 38 , 15-21.
807 808	new species. <i>Journal of Herpetology</i> , 38 , 15-21. Pregill, G.K. & Worthy, T.H. (2003) A new iguanid lizard (Squamata, Iguanidae) from
807 808 809	new species. <i>Journal of Herpetology</i> , 38 , 15-21. Pregill, G.K. & Worthy, T.H. (2003) A new iguanid lizard (Squamata, Iguanidae) from the late Quaternary of Fiji, Southwest Pacific. <i>Herpetologica</i> , 59 , 57-67.
807 808 809 810	new species. <i>Journal of Herpetology</i> , 38 , 15-21. Pregill, G.K. & Worthy, T.H. (2003) A new iguanid lizard (Squamata, Iguanidae) from the late Quaternary of Fiji, Southwest Pacific. <i>Herpetologica</i> , 59 , 57-67. Prideaux, G. (2004) Systematics and evolution of the sthenurine kangaroos.
807 808 809 810 811	new species. <i>Journal of Herpetology</i> , 38 , 15-21. Pregill, G.K. & Worthy, T.H. (2003) A new iguanid lizard (Squamata, Iguanidae) from the late Quaternary of Fiji, Southwest Pacific. <i>Herpetologica</i> , 59 , 57-67. Prideaux, G. (2004) Systematics and evolution of the sthenurine kangaroos. <i>University of California Publications in Geological Sciences</i> , 146 , 1-623.
807 808 809 810 811 812	new species. <i>Journal of Herpetology</i> , 38 , 15-21. Pregill, G.K. & Worthy, T.H. (2003) A new iguanid lizard (Squamata, Iguanidae) from the late Quaternary of Fiji, Southwest Pacific. <i>Herpetologica</i> , 59 , 57-67. Prideaux, G. (2004) Systematics and evolution of the sthenurine kangaroos. <i>University of California Publications in Geological Sciences</i> , 146 , 1-623. Reed, E.H. & Bourne, S.J. (2000) Pleistocene fossil vertebrate sites of the south east
807 808 809 810 811 812 813	new species. <i>Journal of Herpetology</i> , 38 , 15-21. Pregill, G.K. & Worthy, T.H. (2003) A new iguanid lizard (Squamata, Iguanidae) from the late Quaternary of Fiji, Southwest Pacific. <i>Herpetologica</i> , 59 , 57-67. Prideaux, G. (2004) Systematics and evolution of the sthenurine kangaroos. <i>University of California Publications in Geological Sciences</i> , 146 , 1-623. Reed, E.H. & Bourne, S.J. (2000) Pleistocene fossil vertebrate sites of the south east region of South Australia. <i>Transactions of the Royal Society of South Australia</i> , 142 ,
807 808 809 810 811 812 813 814	new species. <i>Journal of Herpetology</i> , 38 , 15-21. Pregill, G.K. & Worthy, T.H. (2003) A new iguanid lizard (Squamata, Iguanidae) from the late Quaternary of Fiji, Southwest Pacific. <i>Herpetologica</i> , 59 , 57-67. Prideaux, G. (2004) Systematics and evolution of the sthenurine kangaroos. <i>University of California Publications in Geological Sciences</i> , 146 , 1-623. Reed, E.H. & Bourne, S.J. (2000) Pleistocene fossil vertebrate sites of the south east region of South Australia. <i>Transactions of the Royal Society of South Australia</i> , 142 , 61-90.

818	Rhodin, A.G.J., Thomson, S., Georgalis, G.L., Karl, HV., Danilov, I.G., Takahashi, A.,
819	de la Fuente, M.S., Bourque, J.R., Delfino, M., Bour, R., Iverson, J.B., Shaffer, H.B. &
820	van Dijk, P.P. (2015) Turtles and tortoises of the world during the rise and global
821	spread of humanity: first checklist and review of extinct Pleistocene and Holocene
822	chelonians. Chelonian Reaserch Monographs, 5, 000e.1-66.
823	Scanferla, C.A., Agnolin, F. & Voglino, D. (2009) Boiruna cf. B. maculata (Ophidia:
824	Colubroides) from the Early to Middle Pleistocene of Argentina, and the effects of
825	Pleistocene extinctions on South American reptiles. South American Journal of
826	Herpetology, 4 , 259-267.
827	Scanferla, C.A., Montero, R. & Agnolin, F.L. (2006) The first fossil record of
828	Amphisbaena heterozonata from the Late Pleistocene of Buenos Aires Province,
829	Argentina. South American Journal of Herpetology, 1, 138-142.
830	Schwartz, A. & Carey, M. (1977) Systematics and evolution in the West Indian iguanid
004	
831	genus Cyclura. Studies on the fauna of Curaçao and other Caribbean Islands, 53 , 15-
831	genus Cyclura. Studies on the fauna of Curação and other Caribbean Islands, 53 , 15- 97.
832	97.
832 833	97. Schwartz, A. & Henderson, R.W. (1991) <i>Amphibians and reptiles of the West Indies:</i>
832 833 834	97. Schwartz, A. & Henderson, R.W. (1991) <i>Amphibians and reptiles of the West Indies:</i> <i>descriptions, distributions, and natural history</i> . University of Florida Press,
832 833 834 835	97. Schwartz, A. & Henderson, R.W. (1991) <i>Amphibians and reptiles of the West Indies:</i> <i>descriptions, distributions, and natural history</i> . University of Florida Press, Gainesville, Florida, USA.
832 833 834 835 836	97. Schwartz, A. & Henderson, R.W. (1991) <i>Amphibians and reptiles of the West Indies:</i> <i>descriptions, distributions, and natural history</i> . University of Florida Press, Gainesville, Florida, USA. Sereno, P.C., Garcea, E.A.A., Jousse, H., Stojanowski, C.M., Saliège, JF., Maga, A.,
832 833 834 835 836 837	97. Schwartz, A. & Henderson, R.W. (1991) <i>Amphibians and reptiles of the West Indies:</i> <i>descriptions, distributions, and natural history</i> . University of Florida Press, Gainesville, Florida, USA. Sereno, P.C., Garcea, E.A.A., Jousse, H., Stojanowski, C.M., Saliège, JF., Maga, A., Ide, O.A., Knudson, K.J., Mercuri, A.M. & Stafford Jr, T.W. (2008) Lakeside cemeteries
832 833 834 835 836 837 838	 97. Schwartz, A. & Henderson, R.W. (1991) <i>Amphibians and reptiles of the West Indies: descriptions, distributions, and natural history</i>. University of Florida Press, Gainesville, Florida, USA. Sereno, P.C., Garcea, E.A.A., Jousse, H., Stojanowski, C.M., Saliège, JF., Maga, A., Ide, O.A., Knudson, K.J., Mercuri, A.M. & Stafford Jr, T.W. (2008) Lakeside cemeteries in the Sahara: 5000 years of Holocene population and environmental change. <i>PLoS</i>
832 833 834 835 836 837 838 839	 97. Schwartz, A. & Henderson, R.W. (1991) <i>Amphibians and reptiles of the West Indies: descriptions, distributions, and natural history</i>. University of Florida Press, Gainesville, Florida, USA. Sereno, P.C., Garcea, E.A.A., Jousse, H., Stojanowski, C.M., Saliège, JF., Maga, A., Ide, O.A., Knudson, K.J., Mercuri, A.M. & Stafford Jr, T.W. (2008) Lakeside cemeteries in the Sahara: 5000 years of Holocene population and environmental change. <i>PLoS One</i>, 3, e2995.
832 833 834 835 836 837 838 839 840	 97. Schwartz, A. & Henderson, R.W. (1991) <i>Amphibians and reptiles of the West Indies: descriptions, distributions, and natural history</i>. University of Florida Press, Gainesville, Florida, USA. Sereno, P.C., Garcea, E.A.A., Jousse, H., Stojanowski, C.M., Saliège, JF., Maga, A., Ide, O.A., Knudson, K.J., Mercuri, A.M. & Stafford Jr, T.W. (2008) Lakeside cemeteries in the Sahara: 5000 years of Holocene population and environmental change. <i>PLoS One</i>, 3, e2995. Shankar, K. & Rao, C.V.N.K. (1994) First report of a fossil marsh crocodile <i>Crocodylus</i>
832 833 834 835 836 837 838 839 840 841	 97. Schwartz, A. & Henderson, R.W. (1991) <i>Amphibians and reptiles of the West Indies: descriptions, distributions, and natural history</i>. University of Florida Press, Gainesville, Florida, USA. Sereno, P.C., Garcea, E.A.A., Jousse, H., Stojanowski, C.M., Saliège, JF., Maga, A., Ide, O.A., Knudson, K.J., Mercuri, A.M. & Stafford Jr, T.W. (2008) Lakeside cemeteries in the Sahara: 5000 years of Holocene population and environmental change. <i>PLoS One</i>, 3, e2995. Shankar, K. & Rao, C.V.N.K. (1994) First report of a fossil marsh crocodile <i>Crocodylus palustris</i> from the Manneru Valley, Andhra Pradesh. <i>Current Science</i>, 67, 687-689.
 832 833 834 835 836 837 838 839 840 841 842 	97. Schwartz, A. & Henderson, R.W. (1991) <i>Amphibians and reptiles of the West Indies:</i> <i>descriptions, distributions, and natural history</i> . University of Florida Press, Gainesville, Florida, USA. Sereno, P.C., Garcea, E.A.A., Jousse, H., Stojanowski, C.M., Saliège, JF., Maga, A., Ide, O.A., Knudson, K.J., Mercuri, A.M. & Stafford Jr, T.W. (2008) Lakeside cemeteries in the Sahara: 5000 years of Holocene population and environmental change. <i>PLoS</i> <i>One</i> , 3 , e2995. Shankar, K. & Rao, C.V.N.K. (1994) First report of a fossil marsh crocodile <i>Crocodylus</i> <i>palustris</i> from the Manneru Valley, Andhra Pradesh. <i>Current Science</i> , 67 , 687-689. Shufeldt, R.W. (1917) Fossil birds found at Vero, Florida. <i>Florida State Geological</i>

- 846 Quaternary plant and vertebrate fossils from a blue hole on Abaco, The Bahamas.
- *Proceedings of the National Academy of Sciences*, **104**, 19897-19902.
- 848 Steadman, D.W., Pregill, G.K. & Olson, S.L. (1984) Fossil vertebrates from Antigua,
- 849 Lesser Antilles: evidence for late Holocene human-caused extinctions in the West
- 850 Indies. *Proceedings of the National Academy of Sciences*, **81**, 4448-4451.
- 851 Szyndlar, Z. (1984) Fossil snakes from Poland. Acta Zoologica Cracoviensia, 28, 1-156.
- 852 Takahashi, A. & Ota, H. (2014) Notes on the chelonian bones included in an old
- 853 collection of vertebrate remains from the Ogido Shell Mound on Okinawajima Island,
- 354 Japan, with special reference to the soft-shell turtle *Pelodiscus sinensis* reported for
- that collection. *Current Herpetology*, **33**, 154-160.
- Thomas, R. (1966) A reassessment of the herpetofauna of Navassa Island. *Journal of the Ohio Herpetological Society*, 5, 73-89.
- Thorbjarnarson, J.B. (1996) Reproductive characteristics of the order Crocodylia. *Herpetologica*, **52**, 8-24.
- 860 Towns, D.R. & Daugherty, C.H. (1994) Patterns of range contractions and extinctions
- 861 in the New Zealand herpetofauna following human colonisation. *New Zealand*
- *Journal of Zoology*, **21**, 325-339.
- 863 Trutnau, L. & Sommerlad, R. (2006) *Crocodilians: their natural history & captive*
- *husbandry*. Edition Chimaira, Frankfurt am Main, Germany.
- 865 Van Den Bergh, G.D., Meijer, H.J.M., Awe, R.D., Morwood, M.J., Szabó, K., van den
- 866 Hoek Ostende, L.W., Sutikna, T., Saptomo, E.W., Piper, P.J. & Dobney, K.M. (2009)
- 867 The Liang Bua faunal remains: a 95k. yr. sequence from Flores, East Indonesia.
- *Journal of Human Evolution*, **57**, 527-537.
- 869 Van Neer, W. (1983) The use of fish remains in African archaeozoology. *CRA-CNRS*
- *Notes et Monographies Techniques*, **16**, 155-167.

871	Webb, S.D. (1974) Chronology of Florida Pleistocene mammals. Pleistocene
872	mammals of Florida (ed. by S.D. Webb), pp. 5-31. University Presses of Florida,
873	Gainsville, Florida, USA.
874	Wilson, L.D. & Mata-Silva, V. (2015) A checklist and key to the snakes of the Tantilla
875	clade (Squamata: Colubridae), with comments on taxonomy, distribution, and
876	conservation. Mesoamerican Herpetology, 2, 418-498.
877	Worthy, T.H. & Grant-Mackie, J.A. (2003) Late-Pleistocene avifaunas from Cape
878	Wanbrow, Otago, South Island, New Zealand. Journal of the Royal Society of New
879	Zealand, 33 , 427-485.
880	Wroe, S. (2002) A review of terrestrial mammalian and reptilian carnivore ecology in
881	Australian fossil faunas, and factors influencing their diversity: the myth of reptilian

domination and its broader ramifications. Australian Journal of Zoology, 50, 1-24.

TABLES:

Table 1. Results of the permutation analyses. For each examined group (e.g., Turtles,885Caribbean Lizards, Dipsadidae, etc.) are listed the means and sample sizes of the886examined groups, as well as the corresponding p-values. The larger value of each887two compared means and significant p-values (with $\alpha = 0.05$) are in bold. p-values of8880 mean that none of the 100,000 iterations had a t-statistic as extreme as the889observed.

	Extine	Extinct		nt	p-value
	Mean	n	Mean	n	p-value
Reptiles	867 g	82	22.5 g	10090	0
Lizards	88.9 g	45	9.5 g	6045	0
Lizards (no fossils)	38.6 g	29	9.5 g	6045	0.0002
Snakes	126.9 g	9	61.7 g	3513	0.51
Turtles	61.6 kg	24	3.8 kg	318	0
Crocodiles	68 kg	4	191.9 kg	24	0.04
Caribbean Lizards	43.3 g	31	6.8 g	377	0
Mascarene Lizards	15.2 g	5	7.3 g	19	0.19
Galapagos Tortoises	113.5 kg	3	134.9 kg	7	0.29

Size-bias in the fossil record of extant species

	Fossils		All	All	
	Mean	n	Mean	n	p-value
Reptiles	350.6 g	261	22.5 g	10090	0
Lizards	69.5 g	94	9.5 g	6045	0
Snakes	297.7 g	105	61.7 g	3513	0
Turtles	4.2 kg	48	3.8 kg	318	0.72
Crocodiles	228.3 kg	9	191.9 kg	24	0.6
	Extin	Extinct		Extinct	
	Mean	n	Mean	n	p-value
Reptiles	867 g	82	22.5 g	10090	0

Global Ecology and Biogeography

Lizards	88.9 g	45	9.5 g	6045	0
Lizards (no fossils)	38.6 g	29	9.5 g	6045	0.0006
Snakes	126.9 g	9	61.7 g	3513	0.54
Turtles	61.6 kg	24	3.8 kg	318	0
	Insular E	ndemics	Only		
	Extin	ct	Exta	nt	
	Mean	n	Mean	n	_ p-value
Reptiles	589.3 g	73	14.5 g	2627	0
Lizards	80.7 g	43	8.4 g	1832	0
Snakes	56.6 g	8	40.9 g	741	0.68
Turtles	68.7 kg	19	8.6 kg	34	0
Crocodiles	59 kg	3	166 kg	3	0.05
	Ext	ant Only			
	Insular Er	demic	Mainl	Mainland	
	Mean	n	Mean	n	_ p-value
Reptiles	14.5 g	2627	26.2 g	7463	0
Lizards	8.4 g	1832	10 g	4213	0
Snakes	40.9 g	741	68.8 g	2782	0.001
Turtles	8.6 kg	34	3.1 kg	284	0.01
Crocodiles	166 kg		195.9 kg	• • •	0.67
	100 Kg	3	193.9 Kg	21	0.07
	5	3 amilies	199.9 kg	21	0.07
	5	amilies	Exta	0.	
	Fa	amilies		0.	
Dipsadidae	Fa Extin	amilies ct	Exta	nt	
Dipsadidae Gekkonidae	Fa Extin Mean	amilies ct n	Exta Mean	nt n	p-value
	Fa Extin Mean 153.6 g	amilies ct n 4	Exta Mean 39 g	nt n 745	p-value 0.02
Gekkonidae	Fa Extin Mean 153.6 g 20.1 g	amilies ct n 4 3	Exta Mean 39 g 4.8 g	nt n 745 1034	p -value 0.02 0.37
Gekkonidae Iguanidae	Fa Extin Mean 153.6 g 20.1 g 3 kg	amilies ct n 4 3 3	Exta Mean 39 g 4.8 g 1.6 kg	nt n 745 1034 41	p-value 0.02 0.37 0.21
Gekkonidae Iguanidae Lacertidae	Fa Extin Mean 153.6 g 20.1 g 3 kg 3.8 kg	amilies ct 4 3 3 2	Exta Mean 39 g 4.8 g 1.6 kg 8.5 g	nt 745 1034 41 319	 p-value 0.02 0.37 0.21 0.08 0.05
Gekkonidae Iguanidae Lacertidae Leiocephalidae	Fa Extin Mean 153.6 g 20.1 g 3 kg 3.8 kg 61.3 g	amilies ct 4 3 3 2 9	Exta Mean 39 g 4.8 g 1.6 kg 8.5 g 18.3 g	nt 745 1034 41 319 20	 p-value 0.02 0.37 0.21 0.08

Genera								
	Extinct		Extant		_ p-value			
	Mean	n	Mean	n				
Alinea	22.3 g	2	18.5 g	2	0.83			
Ameiva	160.2 g	2	63.7 g	30	0.24			
Chelonoidis	48.8 kg	10	98.6 kg	11	0.12			
Hypsirhynchus	130.8 g	2	72 g	7	0.44			
Leiocephalus	61.3 g	9	18.3 g	20	0.05			
Leiolopisma	383.2 g	2	25.5 g	2	0.33			
Mabuya	23.4 g	5	20.9 g	3	0.63			
Phelsuma	62.2 g	2	4.5 g	50	0.19			
Spondylurus	11.9 g	4	13.3 g	13	0.79			

2	
3	
3 4 5 6 7	
5	
5	
6	
7	
8	
9	
10	
10	
11	
12	
13	
1/	
45	
15	
16	
17	
18	
10	
19	
20	
21	
$\begin{array}{c} 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 19\\ 20\\ 22\\ 23\\ 24\\ 25\\ 27\\ 28\\ 20\\ 31\\ 23\\ 34\\ 35\\ 36\\ 37\\ 89\\ 20\\ 23\\ 31\\ 23\\ 34\\ 35\\ 36\\ 37\\ 89\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20$	
23	
20	
24	
25	
26	
27	
20	
20	
29	
30	
31	
32	
02	
33	
34	
35	
36	
00	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	

892 FIGURE LEGENDS:

893 Figure 1. (a) Map showing the distribution of extinct reptile species, where yellow 894 circles represent lizards, red diamonds represent snakes, blue squares represent 895 turtles, and green stars represent crocodiles. Also presented are close-ups of the 896 map in (b) the Caribbean and (c) the Mascarenes and Madgascar.

897 Figure 2. Density plot of reptile body sizes, with extant species in white, extant 898 species represented in the fossil record in light grey, and extinct species in dark grey. 899 The two peaks in extinct species body sizes correspond to the smaller-sized

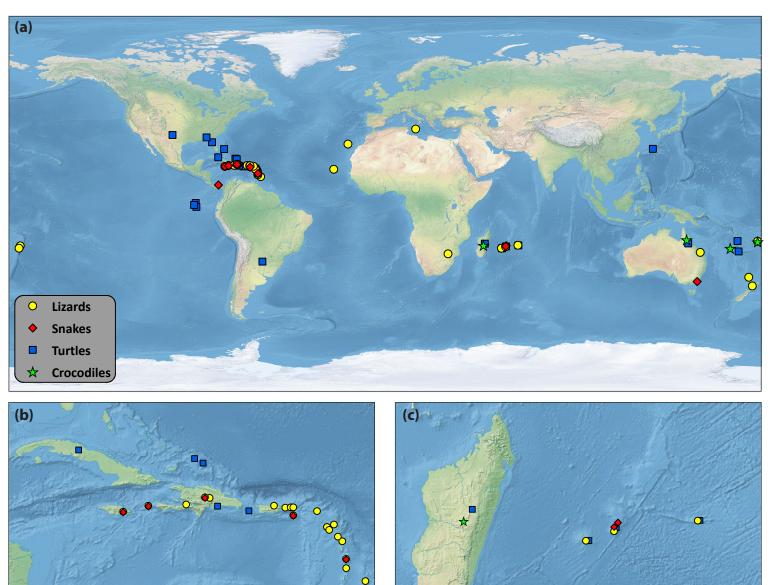
900 squamates (lizards and snakes) and to the larger-bodied turtles and crocodiles.

901 Figure 3. Body size distributions of extant (white) and extinct (black) species of (a)

902 lizards, (b) snakes, (c) turtles and (d) crocodiles. Mean body sizes of each group are

903 represented by triangles.

904 Figure 4. Plots showing the ratio between insular endemics (black) and mainland


905 species (white) are presented for (a) lizards, (b) snakes, (c) turtles, and (d) crocodiles.

906 The dashed red line represents, in each taxon, the predicted ratio between insular

907 endemics and mainland species for both extinct and extant species under a null

908 hypothesis of equal extinction frequencies on islands and mainlands.

909 Figure 5. Body sizes of extant and extinct species of reptiles in each (a) family and (b) genus examined. Body sizes were compared using permutation tests: *p < 0.05; **p 910 < 0.01; ***p < 0.001. 911

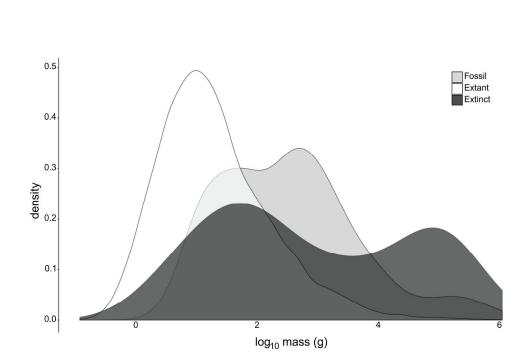


Figure 2. Density plot of reptile body sizes, with extant species in white, extant species represented in the fossil record in light grey, and extinct species in dark grey. The two peaks in extinct species body sizes correspond to the smaller-sized squamates (lizards and snakes) and to the larger-bodied turtles and crocodiles.

216x128mm (300 x 300 DPI)

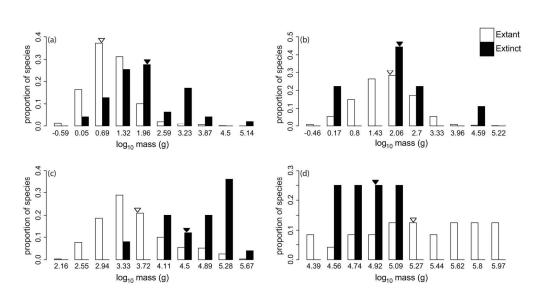
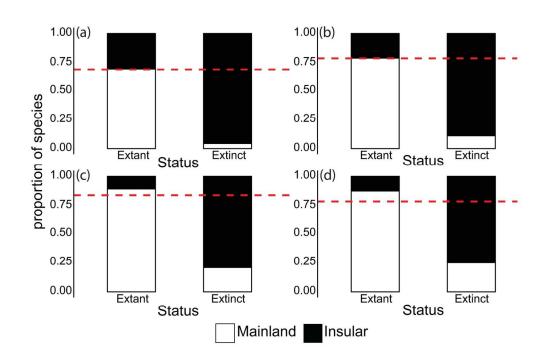
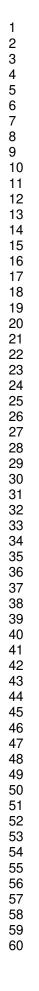




Figure 3. Body size distributions of extant (white) and extinct (black) species of (a) lizards, (b) snakes, (c) turtles and (d) crocodiles. Mean body sizes of each group are represented by triangles. 156x83mm (300 x 300 DPI)

Figure 4. Plots showing the ratio between insular endemics (black) and mainland species (white) are presented for (a) lizards, (b) snakes, (c) turtles, and (d) crocodiles. The dashed red line represents, in each taxon, the predicted ratio between insular endemics and mainland species for both extinct and extant species under a null hypothesis of equal extinction frequencies on islands and mainlands. 143x94mm (300 x 300 DPI)

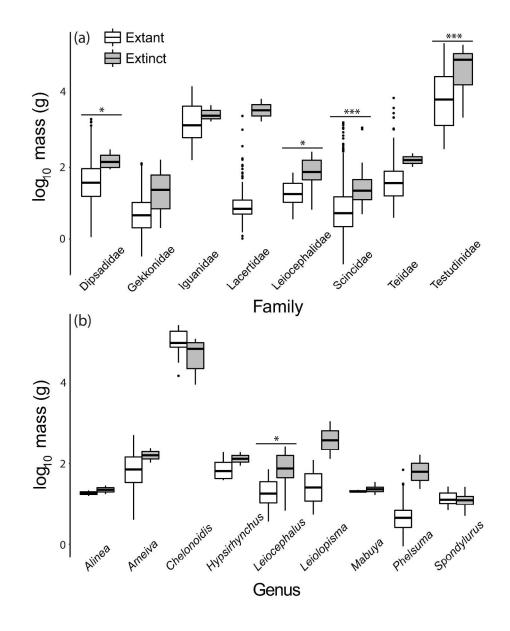


Figure 5. Body sizes of extant and extinct species of reptiles in each (a) family and (b) genus examined. Body sizes were compared using permutation tests: *p < 0.05; **p < 0.01; ***p < 0.001. $217x285mm (300 \times 300 DPI)$