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A simple-to-implement Real Options method for the energy sector 

 

 

Abstract 

Investment appraisal methods based on real options are gaining popularity in academia, while the 

adoption by practitioners is still infrequent. Having in mind practitioners, the method is designed to 

be: conceptually easy to understand, based on realistic hypotheses and data available, able to provide 

quantitative indications and strategic guidelines. The method is based on a systematic simulation of 

several scenarios generated according to exercise thresholds of relevant investment parameters. An 

exercise threshold gives to the investors the exercise right of taking some decision, for instance 

building a power plant. An exercise threshold is therefore a rule to decide whether to exercise or not 

a certain option on the basis of the values of one or more state variables. Consequently, the probability 

distribution of the Net Present Value (or analogous indicator) of the investment is a function of the 

state variables and the exercise threshold. Systematically changing the exercise thresholds allow to 

(A) establishing the “real option value” and (B) calculate relevant indications about when and on which 

type of plant to invest. The method is presented in detail and applied to a case study assessing the 

investment appraisal of: coal plant, gas plant, large nuclear reactor and small modular reactor. 

 

 

Keywords: Real Options; Decision-Making; Investment Appraisal; SMR; Large Reactors 
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1 Introduction 

 

The deregulation of electricity and gas markets, which happened in many countries in the last decades, 

added uncertainties (e.g. the long term electricity price) for decision-makers in the energy sector [1,2]. 

Nowadays, the utilities have the ownership of the major risks [3] as they are thought to be the best 

stakeholders to manage them [4,5]. Consequently, utilities need to adopt adequate investment 

appraisal methods to select the type of power plant to build [6]. In the literature, there are two main 

approaches to deal with investment appraisals, as follows: 

1. The Discounted Cash Flows (DCF). It is the largely the most used method for investment appraisal. 

2. The Real Options (RO). It is a family of methods particularly valuable in uncertain contexts [7]. RO 

methods are considered as an expansion of the DCF.  

Traditional methods for investment appraisal are based on the DCF, where cash flows are discounted 

to the current value, and the Net Present Value (NPV) is the sum of DCF over the investment life cycle 

[8]. The DCF analysis is mathematically easy to implement but has flaws presented in [9] and discussed 

here in section 2.1. These flaws are usually addressed by implementing different techniques, such as 

the sensitivity or scenario analysis. However, these techniques do not adequately consider the 

stochastic nature of the parameters that affect the analysis and implicitly assume a passive role of the 

investors once a certain decision is made. A RO method is an investment appraisal technique to take 

strategic decisions (e.g. investing or not and, if so, when) considering the evolution of specific variables 

(e.g. fuel and electricity price) in a given scenario. A RO method models the flexibility of the decision-

making process, with the aim of dealing with risks to ultimately mitigate adverse projects outcomes, 

or exploit favourable outcomes [10]. 

RO have been widely accepted by academics as a tool for capital budgeting and investment appraisal 

[11]. However, specific challenges prevent the wide application of RO for practitioners and despite the 

relevance of RO in the energy sector the application is still scarce. [12] surveyed the 1500 largest 

companies from Denmark, Norway and Sweden discovering that only 6% of the chief financial officers 

use real options. The key reasons for not using RO was “Require too much sophistication” as reported 

by 58% of not users.  Compared to the DCF analysis, RO appraisals are mathematically more complex, 

and often many of the academic hypotheses and assumptions (e.g. variable volatility constant over 

time,  price (development cost) behaving stochastically, returns for assets normally distributed [13]) 

are not satisfied in reality. Nevertheless, utilities are very keen to work on this framework as long as 

the results provide valuable indications supporting the decision-making process [14,15].  

A real options model can support energy utilities and stakeholders in the energy sectors in apprising 

a number of possible investment decisions. For instance real option can be used to decide:  



4 

 

- If building or not a power plant in a certain region,  

- which type of power plant to build (e.g. coal, natural gas, nuclear etc.) 

- if buying or not a larger plot of land to have space for future expansion 

- If refurbish a plant to extend its life or close it down 

- If it worth to build a more expensive plant but able to use more type of fuel or produce more 

types of outputs 

- … 

This paper aims to enable practitioners working in utilities and other relevant stakeholders to develop 

investment appraisal based on RO. The proposed RO method is:  

1. Conceptually easy to understand;  

2. Based on realistic hypotheses for the energy sector; 

3. Based on data available to utilities, policymakers and investors; and 

4. Able to provide quantitative indications and strategic guidelines to decide if, when and on which 

power plant to invest. 

 

The rest of the paper is organised as follows: Section 2 reviews the literature presenting the most 

relevant limitations of the DCF model (2.1) and the merit of using RO in an investment appraisal (2.2). 

A novel method is detailed in Section 3, firstly presenting the key idea (3.1) and later the details 

necessary for implementation by practitioners (3.2). The method is applied to a case study in Section 

4, while Section 5 brings together the main elements of this paper with the discussion and conclusions. 
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2 Literature review of investment appraisal in the energy sector 

2.1 The DCF methods 

In industrial practice, the most used project appraisal method is the DCF analysis [16]. Although the 

DCF analysis is mathematically simple and easy to implement, it has three substantial drawbacks, 

which fostered the development of the RO method. The drawbacks are described as follows: 

 

1st - The weak consideration of the stochastic nature of the cash flows [13]. 

Future cash flows cannot be assumed as certain. Therefore, in DCF methods, uncertainties and risks 

analyses are based on forecasts, that are often erroneous [17] or biased for a number of reasons [18]. 

For example, when considering a power plant’s life cycle of 30-60 years, the electricity price and fuel 

cost can vary considerably. The most popular techniques to cope with this issue are sensitivity 

analyses, scenarios analyses, and Monte Carlo simulations. Unfortunately, even the results of these 

techniques can be easily manipulated by arbitrary assumptions forced by contingent situations [19]. 

 

2nd - The choice of the discount rate to reflect the risks of the cash flows, which is unavoidably 

subject to estimation errors [20].  

In the DCF method, the risks associated with the project are modelled through discounting risky 

investments with a higher discount rate than less risky ones following the rule: Ceteris paribus higher 

the risk, higher the discount rate [21]. This approach has several drawbacks: firstly, the definition of 

the discount rate is arbitrary and difficult to establish because it requires assumptions about the 

appropriate asset-pricing model and data on returns of financial instruments, which should have 

broadly-comparable risk profiles. Secondly, tuning the discount rate might not be the optimal 

approach since highly profitable projects associated with high uncertainties could be rejected [9].  

 

3rd - The assumed passivity of the management, unable to improve the results after the resolution 

of specific uncertainties [22]. 

The DCF appraisal implicitly assumes that all future decisions are made today, while usually the 

investment decisions are continuously revised following market changes and/or the evolution of 

factors such as the regulatory system. Investments involve many contingent decisions, like expanding 

a project if it becomes very favourable or abandoning it in case of poor performance. There is an 

additional value associated with these decisions that is not considered by the DCF method. Indeed, 

using the DCF, assumptions are made on both the expected scenario of the operating cash flows and 

the commitment of the manager to a certain operating strategy [7]. 
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2.2 The Real Options method 

2.2.1 Introduction to Real Options 

The RO analysis is an expansion of the DCF analysis [7] pricing the value of managerial flexibility. From 

a practical perspective, a RO creates value and reduces the risk [23] by giving the risk & investment 

holder the right, but not the obligation, to undertake some business decisions. RO can include the 

decision to make and/or to abandon and/or to expand and/or to contract a capital investment within 

or at a specific time. The most common RO include [24,25]:  

 Option to invest, i.e. the decision if building or not a certain infrastructure and which type of 

infrastructure; 

 Option to defer, i.e. the possibility to wait before taking irreversible decisions; 

 Option to abandon, i.e. the possibility to abandon current projects permanently if market 

conditions became extremely unfavourable; 

 Option to expand, contract, or extend the life of the facility, i.e., for example, the possibility to 

increase the capacity of a power plant, when profitable; 

 Option to switch: the possibility to change products, processes or inputs [26]. 

RO are valuable when there is high uncertainty about the profitability of an investment, and the 

management can change the course of the project towards a more favourable direction. Conversely, 

when there are few uncertainties and no managerial flexibility, RO offers little value [9]. Figure 1 

exemplifies the main differences between DCF and RO, and Table 1 highlights the key differences 

between DCF and RO in a context such as the energy sector.  

In summary, using the RO to evaluate an investment, it is possible to recast the usual DCF discussion 

whether to invest or not, into the investigation on when it is more profitable to invest. In fact, [20] 

demonstrated that (1) waiting for new information to decide whether to invest or not in the future 

has a value and (2) investing is an irreversible decision killing this flexibility. When applying RO, the 

rule “invest if the investment’s NPV exceeds zero” becomes “invest if the investment’s NPV exceeds 

the value of the option to wait”. The method presented here focuses on the “option to invest”. 
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Figure 1: Classical approach (i.e. DCF) vs the RO approach 

 

 

Discounted Cash Flow Real Options 

In the DCF analysis, uncertainties and risks are not adequately 

considered. Monte Carlo simulation, sensitivity analysis or 

changes in the discount rate are techniques to enhance the DCF 

analysis, by considering uncertainties and risks. 

Uncertainty is the key factor that creates the option 

value. 

All decisions are taken at the beginning of the development of the 

project. 
Decisions can be made at different times. 

All decisions are fixed and independent of future events. DCF does 

not capture the value of managerial flexibility during the project 

life cycle. DCF does not capture the dynamic nature of 

uncertainties.  

Flexibility is implemented, as the management / 

decision-makers can do actions to alter the course of 

the project. 

The expected payoff is discounted at a rate adjusted for the risk. 

The level of risk is expressed through the increment of a discount 

rate. 

Risks are expressed through the probability 

distribution of the payoff. 

Table 1: Comparison of DCF and RO method, elaborated from [9,27] 

 

2.2.2 Choice of the Real Options appraisal method 

Mathematical models originally developed to evaluate financial options are usually implemented for 

the RO appraisal. However, RO face more uncertainties than financial options [28] and there are more 

complicated interactions between options [29]. Gamba [30] argues that many methods have been 

proposed for assessing RO, but the majority of them are extensions of well-known algorithms used for 
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financial options. RO models can be divided into analytical (based on exact equations – such as the 

Black–Scholes model) and numerical (based on approximation provided by computational 

simulations). Analytical methods are the best approach, when applicable [23], as they are extremely 

fast to compute and generate exact solutions. Analytical methods have been developed primarily for 

the financial world, consequently many of these methods are not suitable for the energy and utility 

sector, as they depend on very strict assumptions [31]. For example, unlike classical algorithms for the 

pricing of financial options, RO do not have a predetermined exercise date, the risk is not constant 

over time, returns for most real assets are not normally distributed, etc. In summary, these methods 

are applicable only to a few special cases, even if they are mathematically elegant [32]. 

When there is no analytical solution, numerical methods must be used [33]. Numerical methods 

approximate stochastic processes and divide the time horizon into a set of time-steps in which the 

options can be exercised. The most common numerical methods in the literature are: finite difference 

schemes to resolve partial differential equations, binomial (or multinomial) trees and lattices, Monte 

Carlo simulations. 

The finite difference method discretises the state variable [34]. In practice, this method is hardly 

applicable because (1) options interact with each other, and (2) due to the phenomenon called “curse 

of dimensionality” [35]. 

Binomial (or multinomial) trees and lattices are methods based on the assumption that the stochastic 

variables can assume only a finite number of values (two in binomial case, three in the trinomial case, 

etc.) at each time step. For instance, in binomial trees, the value of the state variable could move up 

or down by a specific factor with a certain probability. This method, firstly proposed by [36] is relatively 

easy to implement with only one variable/risk, e.g. the electricity price [37], but it is hardly applicable 

for more than one state variable, as the number of nodes grows exponentially with the number of 

state variables [38]. 

The Monte Carlo simulation is usually implemented as “least-squares Monte Carlo”, a method 

developed by [39], with the advantages of being able to cope with the complexity that remains fast 

and efficient. The inputs of this method are both deterministic (e.g. the size of the power plants) and 

stochastic (e.g. the electricity price) and the result of the method is the expanded NPV of the 

investment, which incorporates the value of the options [40]. An exemplary application of this 

methodology in the energy sector is presented in [41,42]. The main limitations of the least-squares 

Monte Carlo are: 

 It requires advanced programming skills to create the model defining the mathematical relations 

between inputs and outputs; 

 It does not provide guidelines to the managers about how to maximize the value of the 
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investment;  and 

 Implementing more than one option at a time escalates its complexity. 

This method is, therefore, ideal for academics and scientists but it is hardly applicable by practitioners.  

 

2.2.3 Real Options in the energy sector 

The RO approach is not necessary for each investment appraisal. On the one hand, a RO approach is 

less approximated than the classical DCF method because it properly values uncertainties and degrees 

of freedom, but on the other hand, it requires more complex analyses and algorithms. The RO 

approach is particularly valuable when: 

 The probability distribution of the NPV has a broad dispersion around zero, i.e. the profitability of 

the investment is uncertain. On the contrary, if it is “sure” that the investment’s NPV will be 

positive or negative the investor will do or not the investment; 

 The investor has flexibility (i.e. options) during the decision-making process. For example, RO 

enable to evaluate the “value of waiting” i.e. the flexibility of postponing investment to obtain 

more information. Keeping the option “alive”, i.e. to maintain the feasibility to invest or not to 

invest, has a value that can be calculated [24].  

[43] summarized that RO are more valuable in the energy sector as follows: 

 When there is a contingent investment decision; 

 When uncertainty is large enough that it is sensible to wait for more information; 

 When the value seems to be captured in possibilities for future growth options rather than current 

cash flows; 

 When uncertainty is large enough to make flexibility a relevant factor; and 

 When there will be projects updates and mid-course strategy corrections. 

 

More specifically, RO can support decision-makers in the energy sector in three important ways as 

follows:  

1. To make strategic investment decisions and to choose from various designs that differ in terms of 

flexibility and the marginal cost of production.  

2. During operation exercise rules resulting from RO models can be used to operate a power plant; 

3. Profit and loss distributions can be used to integrate physical production assets with financial 

contracts considering enterprise-wide risk management [44].  

Fernandez et al. [45] reviewed studies applying RO theory in the energy sector from 1987 to 2011. 

Locatelli et al. [46] update Fernandez’ list by highlighting 15 selected studies of RO in the energy sector 

with the focus on energy storage systems, i.e. analysing [47–49] in more details. Zhang et al. [50] 
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present 20 studies on renewable energy investment using the RO method, highlighting that in the 

majority of the cases, the solution method was either partial differential equations or dynamic 

programming. Nevertheless, these two methods are unable to deal with more than two variables [50]. 

The literature also presents models to deal with compound options (i.e. considering more than one 

options), but these methods are mostly academic and too complex to be implemented by practitioners 

[9,51–53]. 

Similarly to [54,55], this paper considers the application of RO in the nuclear sector. Building on the 

framework introduced by [9], Table 2 compares this paper with [54,55]. 

 

 This paper [54] [55] 

Aim of the paper To present an algorithm to 

enable practitioners working 

in utilities and other relevant 

stakeholders to develop 

investment appraisal based 

on RO. 

To assess the technical-

economic feasibility of load 

following coupling Small 

Modular Reactors (SMR) 

with two cogeneration 

technologies: algae-biofuel 

and desalination. 

To compare the investment 

in a single large nuclear 

reactor versus a series of 

SMRs built in the same site. 

Type of algorithm Exercise threshold Monte Carlo simulation Least Squares Method 

Options considered Option “to build” and option 

“to wait to build” one or 

more of the following four 

power plants: Large Nuclear 

Reactor, Combined Cycle Gas 

Turbines, SMR. 

 

Assuming that the SMR plant 

is surely built, the paper 

considered the “option to 

wait” and “option to build” 

the desalination plant. The 

paper also considered the 

“option to switch” between 

alternative generation 

models. 

With reference to the plan of 

building 4 SMRs in the same 

site the paper considered the 

“option to expand” and the 

option “to abandon”. 

Expiration time 20 years 10 years Variable (9- 12- 15 years 

deployment) 

Exercise price The cost of building the 

power plant considered 

The cost of building the 

desalination plant 

The cost of building a further 

SMR unit 

Option value The option has a positive 

value for all the plants 

considered 

The value depends mainly on 

the price of the plant, water 

and electricity 

The value is positive (tested 

in different scenarios) unless 

the project is heavily de-

risked with the support of 

the government 

Table 2: Comparison of this paper with [54,55] 

These and other numerous academic publications show that the RO method is suitable for the 

investment appraisal of different technologies (e.g., renewables [56,57], gas [58]), hydropower [59], 

but also to assess the effect of CO2 prices [60], to model political uncertainties over greenhouse gasses 

[34,61], and market & policy uncertainties [62]. However, RO have been implemented by practitioners 

by just in a few cases, more notably [15,63]. In summary, the RO models proved to be useful for the 

utilities and energy sector, but the vast majority of applications has been done by academics for 

academic studies.  
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3 The new method: simulation with optimized exercise thresholds  

3.1 Introduction – The key idea of thresholds 

The methods presented in this work build on the contributions of [23,30,57,64,65]. The main 

differences with these methods presented in the literature are their enhancement and tailoring for 

the application of practitioners using modern computers and software not available at the time.  

The key idea of the method proposed in this paper is to use an “exercise threshold”. An exercise 

threshold gives the investors the “exercise right of doing something” e.g. to build a power plant. Before 

defining how to optimize an exercise threshold, it is helpful to understand what it does (Figure 2). An 

exercise threshold (part (A) in Figure 2) is a rule to decide whether to exercise or not a certain option 

on the basis of the values of one or more state variables (B). For instance, an exercise threshold could 

be e.g. “to build the power plant if in the last year the average electricity price was above 50 $/MWh”. 

Consequently, the probability distribution of the NPV (C) is a function of the specific inputs, e.g. the 

construction cost, and the exercise threshold.  

 

Figure 2: Graphical representation of the key idea. (NPV = Net Present Value, IRR = Internal Rate of Return, LCOE = 

Levelised Cost of Electricity. Adapted from [66]) 

 

In general, exercise thresholds depend on the value(s) of stochastic processes, called “state variables” 

(e.g. the electricity price 𝑝𝑡). For instance, an exercise threshold can be the electricity price value 𝑝∗ 

that, when reached by the state variable 𝑝𝑡, triggers the option to invest. 

A high “electricity price” threshold will create a binomial like distribution with several iterations where 

the NPVs equal to zero and few iteration with high NPVs because the model will decide to invest only 

a few, very profitable iterations, when the electricity price reaches a very high value. Most times the 

EVALUATION MODEL
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model will decide not to invest, resulting in several iterations where the NPVs are equal to zero. The 

few times when the investment is triggered, there will be relevant profits for the utility since the 

electricity price is high and it enhances the NPV. Conversely, a low electricity price threshold generates 

a probability distribution similar to a DCF since the investment will always be triggered, and therefore 

the power plant will always be built.  

Since the exercise threshold influences the output distribution, the method determines which 

threshold optimizes the output distribution, i.e. which threshold maximizes the mean NPV while 

reducing the risk. The aim is therefore to compare different exercise thresholds (e.g. different prices 

of 𝑝∗to reach) to find the optimal threshold, i.e. the exercise threshold that maximizes the mean NPV 

and/or minimizes its risk, i.e. standard deviation of the NPV probability distribution. 

 

3.2 Implementation  

This methodology can be implemented in a spreadsheet (like Microsoft Excel) in two simple ways:  

1 - the discrete enumeration of all the possible thresholds (as in 3.2.1 and 3.2.2); 

2 - the discrete enumeration of all possible states (as in 3.2.3 and 3.2.4). 

The assumptions about the inputs are provided in section 3.31. 

 

3.2.1 Discrete enumeration of all the possible thresholds: Single variable  

The key idea is to consider a set of different exercise thresholds and calculate, for each of them, the 

different effects on the NPV probability distributions. This method starts from an interval of exercise 

thresholds and with a Monte Carlo simulation calculates for each threshold the NPV probability 

distributions with its mean and standard deviation. From all these NPV probability distributions it is 

possible to select the threshold that provides the best distribution in terms of mean NPV, minimum 

standard deviation, etc.  

As a case study let’s consider a large nuclear reactor, and only one state variable: the electricity price 

(for the list of inputs see Table 3 in section 4.1). With the DCF approach, it is possible to calculate the 

NPV probability distribution assuming that the electricity price follows a Geometric Brownian Motion 

process with an initial value 𝑃0 = 90 $/MWh and 𝜎 = 20%. The DCF Monte Carlo generates the 

stochastic distribution of the NPV as in Figure 3 [66].  

  

                                                           
1 Please remember that the primary goal of this paper is to present a novel methodology, not to discuss the 

economics of different types of power plants. Therefore, for the sake of simplicity and transparency, this paper 

uses, for the different technologies, generic publically available figures. Practitioners working utilities will use 

values specific for their scenario. 
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Values in Billions of $ 

Mean [M$] 1758 

Std. Dev [M$] 7901 

25th Percentile [M$] -3322 

50th Percentile [M$] -88 

75th Percentile [M$] 4478 

Probability (NPV<0) 51% 

Profitability Index 1,33 

Levelized cost of 

energy (LCOE) [M$] 
73 

Figure 3. NPV distribution with a DCF assessment 

 

With the RO evaluated with the “exercise threshold” method, the option to invest will be exercised 

when the value of the electricity price will exceed a threshold 𝑃∗ . The steps for this method are: 

1. Define an interval of 𝑃∗, defined by a lower and an upper bound. The lower bound must be lower 

than the initial electricity price 𝑃0 (so, for instance 𝑃∗ = 1 [$/MWh]) the upper bound might be a 

value of 𝑃∗ highly improbable to reach. (for instance, 𝑃∗ = 600 [$/MWh]) 

2. Obtain the NPV probability distributions using a Monte Carlo simulation2 starting from 𝑃∗ =1 [$/MWh] (construction starts with electricity price equal or superior to 1 [$/MWh]) then 𝑃∗ = 2 

[$/MWh] until 𝑃∗ = 600 [$/MWh]. In this case 600 “exercise thresholds” are assessed with 600 

Monte Carlo simulations. 

3. For each of the 600 Monte Carlo simulations compute and record relevant indicators such as NPV 

mean and the standard deviation. 

Figure 4 [66] shows the relationship between the 𝑃∗and mean value of the NPV probability 

distributions for the different thresholds (shortly “NPV mean”) Figure 5 [66] shows the relation 

between the 𝑃∗and the standard deviation of the NPV probability distributions for the different 

thresholds (shortly “standard deviation”). Figure 6 combines the NPV mean and standard deviation in 

a single graph. Figure 4 shows that: 

A. When 𝑃∗ < 𝑃0 = 90 [$/MWh] the option to invest is exercised at time 0, since 𝑃0 already exceeds 𝑃∗. All the values of the NPV mean are the same, as the NPV0 is the same than for the DCF (Area 

A). 

B. When 𝑃∗ is very high the NPV mean is almost zero (Area B), because of the probability of reaching 

                                                           
2 Several commercial user-friendly Microsoft Excel add-ons can do this. Most of them even check the 

convergence with rigours statistical tests. 
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a very high value of 𝑃∗is very low, and not investing (that is most of the cases) equals to have a 

NPV mean for the probability distributions equal to zero. 

C. Between these two extreme conditions, there is a value of 𝑃∗ with the maximum NPV mean. This 

value is the “expanded NPV” (value C in Figure 4) and the difference between this value and the NPV0 (the mean of the NPV probability distribution obtained from investing at time 0) is the value 

of the option to invest. 

D. There is a gap after 𝑃∗ = 𝑃0. In fact, waiting for a value greater than 𝑃0 implies not to invest at 

time zero, leading to a probability greater than 50% not to invest in the next time period, and to 

a probability of about 17.75% to never invest in the interval considered. The gap is originated by 

the time discretisation that, in this case, is one year. This is consistent with the unit of measure of 

the inputs and the practice of having DCF model based on annual cost and revenue; moreover all 

the discount factor are commonly presented with an annual unit of measure. 

 

 

Figure 4: How the value of P* impacts on the mean of the NPV distribution 
 

 

Figure 5: How the value of P* impacts on the standard deviation of the NPV distribution 
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Figure 6 presents the NPV standard deviation against the NPV mean by combining the value in Figure 

4 and 5. In Figure 6 [66] each point is the NPV mean and the standard deviation of a probability 

distribution, obtained with a different value of 𝑃∗.  

The left tail of this curve is an optimal frontier since the investor could decide to accept a lower NPV 

mean (i.e. the return of the investment), reducing the NPV standard deviation (i.e. the investment 

risk).  Therefore all the points on the left tail of a curve in Figure 6 are reasonable choices. For each 

investor/utility the most appropriated point (i.e. investment strategy) can be selected following both 

quantitative and qualitative criteria. As an example of quantitative criterion, [67] described a 

parameter, called “Sharpe ratio”,  that lets an investor compare the investment strategies in terms of 

their expected return for a unit of risk. Sharpe ratio is, therefore, a measure for calculating the risk-

adjusted return, and this ratio is popular in the industry [66]. Qualitative considerations might involve 

the risk attitude of the investors. For example, some investors, e.g. pension funds, look for low risk/low 

return investments while other investors, e.g. venture capitals, are focused on high risk/high return. 

Moreover mixed qualitative and quantitative evaluations can be included using metrics such as the 

value of the project respect to the total value of the company investing and the effect of an investment 

default. Indeed, the failure of a USD 100 Million project can be an “unfortunate investment” for a USD 

100 Billion utility, while could lead to a tragic bankruptcy a USD 150 Million utility. Therefore a large 

utility might have a higher risk appetite.  

The right tail of the curve in Figure 6 is not efficient since, for the same value of NPV mean and 

standard deviation, a point on the left side of the curve has a lower standard deviation. Therefore: 

1. Investing now (the isolated blue point on the right) is less profitable (the NPV mean is lower) and 

riskier (the standard deviation is greater) than waiting for a 𝑃∗ = 115 [$/MWh] maximizing the 

NPV distribution. 

2. The distribution obtained from waiting for 𝑃∗ = 115 [$/MWh] has the highest NPV mean, but 

there are other distributions with lower NPV mean and lower standard deviation. 
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Figure 6: How different values of P* change the mean and the standard deviation 
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B. When 𝑃∗ is very high and 𝐺∗ is low, the NPV mean converges to zero. That is because there is a 

very low probability to reach a state where “𝑃∗ is very high” AND “𝐺∗ is very low”.  

C. Between these two extreme conditions, there is a trade-off in which the NPV mean  reaches a 

maximum. 

It is possible to extend the method to 3 or more parameters. This will increase the computational cost, 

but the algorithm is exactly the same. 

 

3.2.3 The discrete enumeration of all possible states – single variable 

The second possible implementation of the method is the discrete enumeration of all possible states. 

It requires some programming literacy, but it provides more precise solutions with less computational 

effort (particularly relevant if the number state variables increase). A single variable example is 

described to illustrate the model in its simplest form. The method (illustrated in Figure 7) aims to 

simulate every possible “situation,” i.e. every possible combination of the state variables. Then, for 

every possible “situation”, this method answers to the question “in this situation, is it better to invest 

or to wait to invest?” 

 

Figure 7: The scheme of the discrete enumeration of all possible state variable values 

 

The method calculates for each possible value of the state variable(s) the difference between investing 

immediately and waiting. Continuing the example of paragraph 3.2.2: for values of 𝑃0 lower than the 𝑃max (𝑚𝑒𝑎𝑛)∗  (the value of 𝑃∗ maximizing the NPV mean), the difference (𝑃max (𝑚𝑒𝑎𝑛)∗ -𝑃0) will be positive 
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(since it is better to wait). With P0 values greater than the 𝑃max (𝑚𝑒𝑎𝑛)∗  the difference (𝑃max (𝑚𝑒𝑎𝑛)∗ -𝑃0) 

will be negative (since it is better to invest) and with 𝑃0 = 𝑃max (𝑚𝑒𝑎𝑛)∗  it will be zero. Therefore, finding 𝑃max (𝑚𝑒𝑎𝑛)∗  is equivalent to testing all these possible values of 𝑃0: when the difference between 

investing now and waiting for a “slightly” greater value is equal to zero, the value 𝑃max (𝑚𝑒𝑎𝑛)∗  is found.  

This occurs for two reasons: 

1. Independently from the value of 𝑃0, the value 𝑃max (𝑚𝑒𝑎𝑛)∗  remains the same; 

2. There is a gap between investing now and waiting for a price slightly higher next year (Figure 4). 

 

The steps of this method are: 

1. Consider an interval of all possible discrete values of the state variable, defined by a lower and an 

upper bound. In this case, the lower bound is 𝑃𝑙 = 2 [$/MWh] and the upper bound is 𝑃𝑢 = 600 

[$/MWh]. 

2. Then the interval is divided into m/2 values. In the example, these values would be {2, 4…598,600}. 

Then, m = 600 simulations are made, two for each possible value of the state variable considered. 

In other words, the first value 𝑃0 = 2 [$/MWh] is considered, and it is computed using a MCS in 

which the initial electricity price is 𝑃0 = 2 [$/MWh] and the investment is made immediately. A 

second simulation is then performed in which the value of 𝑃∗ is incremented by a small amount, 

for instance to 2.01 [$/MWh]. This means that for each iteration, the investment is made at time 

t when 𝑃𝑡 > 𝑃∗ and it is not made at time zero. 

3. For each value {2; 4…598; 600}, there are two NPV probability distributions, and consequently two 

NPV means. If the first NPV mean is lower than the second, then it is better to wait.  

4. Identify the two consecutive 𝑃0 values where the difference of the NPV mean shifts from positive 

to negative.  

This method validates the discrete enumeration of all possible thresholds because of the value of 𝑃max (𝑚𝑒𝑎𝑛)∗  is the same.  

 

3.2.4 Extension with multiple state variables 

This method is designed to be extended to multiple state variables (e.g. electricity and gas as in 3.2.2). 

Considering the case in section 3.2.2, the first step is to perform Monte Carlo simulation for the 

discrete combinations of 𝑃0 and 𝐺0 (𝑃0,𝐺0=({2,2};{2,4};{2,8}…{4,2};{4,4}…{60,600})). Each combination 

is valued calculating the NPV mean and comparing the scenarios “invest now” vs “wait to invest” for 

a more favourable situation (an increase of the electricity price or a decrease of the cost of gas) as 

illustrated in Figure 8. For example, if 𝑃0, 𝐺0= (2, 4), the NPV mean of investing immediately and the 

NPV mean of waiting to invest is calculated. An investment would only be made if, 𝑃𝑡 > 2.01 [$/MWh] 
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or 𝐺𝑡 < 3.99[$/MWh]. The difference between the NPV means is calculated and when it is positive it 

is better to wait. When the difference becomes close to zero it is the optimal moment to invest. Figure 

8 shows the logic of this extension. Also in this case the reader should not be misled by the rectangular 

shape in the second Cartesian graph. The rectangular shape only implies that the algorithm can move 

“up and down” all along the space represented by the point in the first Cartesian axes. Indeed the 

“frontier zone” can have any form, e.g. a straight line as in the third Cartesian graph. 

 

 

Figure 8: The steps of the discrete enumeration of all possible states with multiple state variables 
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4 Case study: application for the selection of baseload power plants 

4.1 Definition of inputs and assumptions 

The goal of this paper is to show a novel methodology, its application, and typical results, not to 

perform an actual investment appraisal. Therefore, even if the inputs for the case study presented in 

this section are from reliable organisations, this analysis mainly explains the implementation process.  

In RO investment appraisal, the modelling of stochastic processes is fundamental. The options 

analysed in this case study are  the “option to build” and the “option to wait”. In this case, the utility 

can decide if building the power plant or not (so, there is an option to build) and this decision can be 

postponed for a certain number of years (so, there is an option to wait).  

The first step is to divide the inputs into deterministic and stochastic, as below.  

 

Electricity price 

In most countries, the electricity price in the market has these characteristics: 

 High variance: reflecting the variability of the electricity price; 

 Mean reversion: the electricity price fluctuates around its average: 

 Seasonality: changes that periodically occur every year (e.g. summer or winter price); 

 Jumps: the combined effect of high price variance and quick mean reversion [11]. 

In the literature, there are different methods to simulate the electricity price; a complete survey is 

provided in [11]. The Geometric Brownian Motion process is the most common because:  

1. it needs only three parameters to be modelled, or two if the drift is removed; 

2. it is easy to model in a spreadsheet; 

3. it is suitable to model long-term decisions, such as building a power plant, as the Geometric 

Brownian Motion is usually chosen to reflect longer-term uncertainty and is suitable for the energy 

sector [68]. 

 

Since the evaluation method is discrete-time based, this stochastic process is modelled as in equation 

(1): 

 

 𝑃𝑡+1 = 𝑃𝑡 + 𝜎𝑃𝑡𝑊𝑡 (1)  

 

Where 𝑃𝑡 is the electricity price at time 𝑡, 𝜎 is the standard deviation and 𝑊𝑡 is a standard normal 

variable. While the initial value of the electricity price is country-specific, the standard deviation 
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presents a pattern that is independent of the country. This work assumes 𝜎 = 0,3; the average 

between [69] and [70].  

 

Capital investment costs 

The Total Capital Investment Cost (TCIC) includes principally three components: the overnight cost, 

the interests during construction and the escalation cost.  

The construction of power plants takes years, and the TCIC uncertainties can be divided into two types 

[71] : 

 Market uncertainties, due to the fluctuation of prices for labour and materials. Numerous indexes 

deal with market uncertainty, like the CEPCI (Chemical Engineering Plant Cost Index), the M&S 

(Marshall & Swift index) and the PCCI (power Capital Costs Index) [72]. 

 The project uncertainties, including aspects such as scope/design changes that are difficult to 

quantify during the planning phase. Project uncertainties are addressed during construction; the 

actual cost unfolds as the project proceeds.  

TCIC can be therefore modelled using the method described in [73] and the data from [72]. 

 

Fuel price 

Fuel costs behave similarly to electricity prices (in terms of mean reversion, jumps, etc.), therefore can 

be modelled as a Geometric Brownian Motion. Gas and coal price are modelled with an annual 

standard deviation of ±7.75% and ±1.8% respectively [74]. The initial prices are 47.39 [$/MWh] for gas 

and 22.27 [$/MWh] for coal. 

 

Greenhouse gases cost 

Greenhouse gases cost (either carbon tax or carbon sequestration) are uncertain and impact on 

profitability. Different technologies emit different amounts of greenhouse gases per unit of electricity 

generated and therefore this cost must be included in the analysis. Similar to the electricity and fuel 

prices, Greenhouse gases costs can be modelled as Geometric Brownian Motion process. The long-

term average carbon cost is 30 [$/t] and the standard deviation is 10% [75]. 

 

Deterministic inputs 

Representative discount rates can be found in [75,76]; the model considers 5% for all the technologies.  

The option is modelled to expire in 20 years, and decisions to invest can be taken once a year. The 

utility can decide to never invest. The 20 years constraint implies that the utility can start the 

construction in any of these 20 years. Regardless of the start date of the project, the duration of 

construction will be the number of years named “Construction time” in Table 3, and also operational 

life will be the number of “Operating years” in Table 3. These are realistic hypotheses because power 
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plants (especially nuclear) have an operating life that is predetermined by their licences. Such licences 

are issued for a specified number of years which start from the successful commissioning of the plant.  

The “operation Table 3 summarizes the most relevant inputs. 
 

Large 

Nuclear Reactor 

Gas - Combined Cycle 

Gas Turbines (CCGT) 

Coal Small Modular 

Nuclear Reactor 

(SMR) 

Capacity [MW] 1500 500 750 335 

Capacity factor [%] 85% 85% 85% 95% 

Overnight cost [$/KW] 5335 1003 3220 6362 

O&M [$/MWh] 13.96 15,03 13,43 21.28 

Fuel [$/MWh] 8.26 47.4 22.27 8.26 

Carbon Intensity [t/MWh] 0 0.35 0,8 0 

Greenhouse gases cost [$/MWh] 0 10.54 23.96 0 

Construction time [Years] 6 3 4 5 

Operating years [Years] 60 30 40 60 
Table 3: The deterministic inputs used in this work. For Nuclear Reactors the fuel cost includes front-end and back-end. 

Values from [3,75,77,78] 

 

4.2 Results 

The goal of this section is to show representative results produced by this novel RO approach. The first 

result is the NPV probability distribution using a DCF method. Figure 9 illustrates the NPV mean and 

NPV standard deviation (per MW installed) of the four different power plants. Gas power plants seem 

the best choice since gas power plants have the highest NPV mean and lowest standard deviation. 

Large nuclear is also an attractive investment because of high returns. Investments in Small Modular 

Nuclear Reactors (SMR) and coal present a risk comparable or higher than gas and large nuclear, but 

the return is lower making these investments less attractive.  

 

 

Figure 9: The NPV and standard deviation of different power plants 
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Figure 10 shows how a utility can improve its investment performance by using an electricity price 𝑃∗ 

as a decision variable. For all the four power plants the option to weight has a value. All the NPV means 

increase and the standard deviation decreases, confirming that the exercise thresholds have a relevant 

positive effect on the NPV probability distributions. 

The method also provides information about the investment strategy. The 𝑃𝑚𝑎𝑥∗  and the expected 

investment time are outputs available for the decision-makers, along with the probability to reach 

these electricity prices. The 𝑃𝑚𝑎𝑥∗  of different technologies are (not surprisingly) different and, other 

variables being equal, the rational investor will always wait for at least the first 𝑃𝑚𝑎𝑥∗  to invest. These 

results are summarized in Table 4 and are relevant both for investors and policymakers. For instance 𝑃∗ can be used to calculate the fair value of a power purchase agreement, which is a very relevant 

topic in the energy market [79,80]. Using this criterion, the gas plant, having a P* of $110/MWh, 

results to be the first to build. Quite remarkably the value of investing in coal plants increases shifting 

from negative NPV mean to positive NPV mean. The value to wait for favourable scenarios unveil a 

value for this technology. Remarkably the investment is recommended only for 48% of the times but 

in such cases the investment will be very likely profitable since the probability of having a negative 

NPV mean will only be 11%  

 

 

Figure 10: Effects on the NPV/capacity of the option to wait to invest.  

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

0 1 2 3 4 5 6 7

N
P

V
/C

a
p

a
ci

ty
 m

e
a

n
 [

M
LN

$
/M

W
]

NPV/Capacity standard deviation [MLN$/MW]

SMR

Large nuclear

Coal

Gas



24 

 

The blue diamonds are the results of the DCF; the orange squares are the optimised results 
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LR  705 7967 7% 1.1 58% 2128 6174 12% 49% 2 14% 125 5 

SMR  2.9 2357 5% 1 60% 601 1853 11% 49% 2.1 17% 120 4 

Gas  251 2318 9% 1,3 49% 689 1928 20.5% 27% 6.1 18% 110 3 

Coal  -69 3754 4% 0.9 59% 961 2773 15% 48% 3.2 11% 135 8 

Table 4: The overall results of the option to invest in one state variable. “% invest (%)” is how many times the algorithm 
decided that it was worth to invest in the project 
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5 Discussion and Conclusions 

There is relevant merit for using RO in the appraisal of investments in the energy sector. RO can be 

applied to decisions of investing in power plants (like in this case) or for the construction of other 

energy infrastructure such as pipelines or Oil & Gas facilities. RO can also be used as criteria for 

investment decisions on infrastructure using relevant amount of energy. RO can be used during the 

appraisal stage of novel technologies that might need substantial investment to be brought to the 

market [9].  

In the literature, there are several methods for the appraisal of RO but are generally cumbersome to 

implement by practitioners, use unrealistic assumptions and most importantly are suitable (or 

applicable by practitioners) only for problems with one state variable. Often the most used analytical 

methods are Closed-form models.  These are the best approaches when they are available [23] since 

they are extremely fast to compute and generate precise solutions, but although mathematically 

elegant, are applicable in a few cases [32]. The most famous example of these methods  is the Black 

& Scholes equation [81] that derives the price of a European option written on a single underlying 

asset. This specific formula cannot be used in most of the practical cases because [13]:  

 The options are not European with a determinate exercise date, on the contrary; usually there 

is not a definite expiration date; 

 Project volatility is not constant over time; 

 Strike price (development cost) behaves stochastically; 

 Returns for real assets are not normally distributed. 

The method introduced in this paper leverages the computational power of modern business 

computers and software to develop an algorithm easy to implement by practitioners. Moreover, the 

method is able to cope with several options and state variables described by stochastic processes. 

The advantages of this method respect to other RO methods available in the literature are: 

 It is simple to implement and can be applied by practicioners in the energy sector. 

 It is fast, and with one option and one state variable, it needs less than one minute to find the 

exercise thresholds that maximizes the objective function.  

 It allows the practitioners to model each variable stochastically without increasing the complexity 

of the problem but only the computational effort. 

 It produces several valuable outputs, including the exercise thresholds used to maximize this 

value, the optimal frontier maximizing the NPV mean and minimising the NPV standard deviation. 

 It gives information about the pattern of the problems showing what a utility should do to improve 

their investments. 
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 It gives the possibility to compare different solutions (expressed by the exercise thresholds), 

allowing utilities to choose between alternatives to achieve their strategic objectives. 

 It is possible to customize the objective function, making considerations about the risk profile of 

the investments. 

Indeed, other methods described in the literature can provide one or more of the results or have these 

characteristics (e.g. [82] presents an approach to compare different solutions). However, the key 

novelty of this RO method is to provide all these outputs together with a single simple algorithm.  

Remarkably, if the computational time is a matter of minutes the time to implement the model is 

surely longer. As order of magnitude, the time required to build the RO model presented in this paper 

is comparable to the time to create a DCF model. For a DCF model, the time to build the excel 

spreadsheet is only a fraction of the total time required. In general, most of the time is spent on: 

- Establishing which are the inputs and outputs to model and their level of details 

- Collecting information about the inputs. For example, to calculate the “construction cost” (and 

its probability distribution) of a power plant is a process that can take days if not months.  

Remarkably, while academics are usually concerned with “presenting an algorithm” and test it using 

generic data from the literature (like in this case), this is not the case for practitioners and investors 

that use real money in the investment. Consequently, for practitioners and investors, the data 

collection is the most crucial and time-consuming activity that might involve the co-operation with 

subcontractor and payments to consultants. In summary, the computational time to execute the 

model is “much shorter” than the time to build a model (DCF model or this RO model), that is itself 

“much shorter” than the time to collect the real data about the inputs. 

More specifically, for the aim of this paper, the time to build the RO model depends on the experience 

of the practitioners, the number of plants and scenarios that they intend to analyse etc. However, 

given all the time required to work on inputs and outputs the actual time to build this RO model is just 

a fraction of this time. For the sake of the reader, the construction of a RO model like the one 

presented in this paper is, for someone if a good literacy in excel, a matter of 1-2 days.  

By increasing the number of state variables the computational cost increases exponentially, however 

the computational cost is also a function of many other aspects such as the size of the intervals and 

the discretisation of the interval. For instance, section 3.2.1 considered for the price of electricity an 

interval 1- 600  [$/MWh] with incremental steps of 1 [$/MWh] leading to 600 Monte Carlo simulations. 

If the interval is reduced to 1- 300  [$/MWh] with incremental steps of 2 [$/MWh] the number of 

Monte Carlo simulations drops to 150. In this situation, the common practice is to proceed with a trial-

error process assessing the trade-off between the influence of different state variables, intervals and 

precision. This allows identifying the key elements of the investment, along with the most reasonable 
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scenarios and precision required. Also, in this case, it is impossible to provide a precise number since 

data availability, number of variables, accuracy required, literacy with spreadsheet (e.g. MS Excel), 

number of outputs investigated (NPV, IRR, LCOE etc.) affect the time required to build and execute 

the model in the different scenarios. In conclusion, the only relative disadvantage of this method is 

the computational cost, but nowadays ordinary business laptops with a commercial Monte Carlo 

simulation software can apply the method described in this paper in real scenarios within a 

computational time of minutes.  

This paper paves the way to the opportunity to further develop the model presented here. Further 

modelling work will have to be conducted to assess more complex and realistic scenarios. In particular, 

the authors recommend the following two research streams 

 The combination of simulations and thresholds still imposes relevant simplification of the 

uncertainties encountered when decisions are contingent on changing and interacting variables. 

In particular the “risk orthogonality issue” (i.e. that all risk are assumed independent) needs to be 

properly modelled. Aspects like inflations and contextual factors, stakeholder’s skills and 

competence etc. Underpin several risks that therefore cannot be assumed independent. Further 

research is required to investigate and model cases where risk orthogonality is not a valid 

hypothesis. 

 The modern portfolio theory states that one investment dominates another if the return is equal 

or larger and the risk is equal or smaller (as in the case of gas). In other situations, it will depend 

upon the utility of the investor, as to how much additional reward they require for undertaking 

additional risk. The interaction between the investments, including the impact on the electricity 

price, is an area that needs further research. Further research is required to model and optimise 

the balance of risk/return at the portfolio level.  
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