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Most viable modern chromatic adaptation transforms (CATs), such as CAT16 and CAT02, can trace their roots both 

conceptually and mathematically to a simple model formulated from the hypotheses of Johannes von Kries in 1902, known as 

von Kries transform/model. However, while the von Kries transform satisfies the properties of symmetry and transitivity, most 

modern CATs do not satisfy these two important properties. In this paper, we propose a generalized von Kries transform which 

satisfies the symmetry and transitivity properties in addition to improving the fit to most available experimental visual datasets 

on corresponding colors.  
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Our visual system attracts many researchers including 
medical, vision, optical, psychological and color scientists. 
For clinical applications[1,2], medical, vision and optical 
scientists investigated image formation by our eye to 
correct dysfunctions such as astigmatism, presbyopia, and 
myopia. On a functional level, vision and color scientists 
try to understand how we generate color sensations from 
received images, and try to model phenomena such as color 
difference[3], chromatic adaptation [4-6] and color 
appearance[7-9]. In this Letter we model chromatic 
adaptation in order to predict corresponding colors when 
the predominant viewing environment is changed. 

A chromatic adaptation transform (CAT) is capable of 
predicting corresponding colors. A pair of corresponding 
colors consists of a color observed under one illuminant 
(say, D65) and another color that has the same appearance 
when observed under a different illuminant (say, A). CATs 
are part of color appearance models (CAMs)[7-9], which are 
important for many industrial applications. These 
transforms have been extensively studied over several 
decades ever since Johannes von Kries[10] in 1902 laid 
down the foundation for modeling chromatic adaptation. 
Rather than give a specific set of equations for the 
modeling, he instead simply outlined his hypothesis in 
words and described the potential impact of his ideas. 
Based on his hypothesis, chromatic adaptation in the 
visual system is considered the independent change in 
responsivity of the three types of cone photoreceptors. To 
present the von Kries hypothesis in terms of a chromatic 
adaptation model, we need a 3 by 3 matrix M , which 
transforms the tristimulus values (TSVs) 𝑋β , 𝑌β, 𝑍β under 

an illuminant called β into the cone-like or sharper sensor 
spaces (𝑅, 𝐺, 𝐵  or 𝐿, 𝑀, 𝑆  spaces). Here, we will use the 𝑅, 𝐺, 𝐵 notation. Thus, we have 

  

      (𝑅β𝐺β𝐵β) = M (𝑋β𝑌β𝑍β),                              (1) 

 
where the matrix M can be the well-known HPE 

matrix[7], the CAT02 matrix[8], or the CAT16 matrix[9]. The 
entire chromatic adaptation is completed in the 𝑅, 𝐺, 𝐵 
space. The signals 𝑅β, 𝐺β, 𝐵β  are considered to be the 
initial cone responses. According to the von Kries 
proportionality law, the von Kries post-adaptation signals 𝑅a,β, 𝐺a,β , 𝐵a,β are given by 

  

(𝑅a,β𝐺a,β𝐵a,β) = (𝑘R,β𝑅β𝑘G,β𝐺β𝑘B,β𝐵β),                          (2) 

 
where the subscript a signifies adaptation, β 

represents the illuminant, and R, G, B indicate different 
channels. The von Kries adaptation factors or coefficients 𝑘R,β, 𝑘G,β, 𝑘B,β are independent of each other and are given 
by 

 𝑘R,β = 1𝑅w,β , 𝑘G,β = 1𝐺w,β , 𝑘B,β = 1𝐵w,β  ,      (3) 



 
where, the subscript w signifies the sensor space 

signals transformed from the TSV of the illuminant β 
white point, 

  

(𝑅w,β𝐺w,β𝐵w,β) = M (𝑋w,β𝑌w,β𝑍w,β),                         (4) 

 
and 𝑋w,β, 𝑌w,β, 𝑍w,β  are the TSV of the illuminant β 

white point. Thus, if two stimuli sβ  and  sδ  are viewed 
under illuminants β and δ, respectively, and they are 
perceived with the same appearance, then we must have 

 

(𝑅a,β𝐺a,β𝐵a,β) = (𝑅a,δ𝐺a,δ𝐵a,δ)    or   (𝑘R,β𝑅β𝑘G,β𝐺β𝑘B,β𝐵β) = (𝑘R,δ𝑅δ𝑘G,δ𝐺δ𝑘B,δ𝐵δ).      (5) 

 
When Eq. (5) holds, the two stimuli are called 

corresponding colors.  
Note that when we say stimulus sβ in TSV space, we 

mean that sβ is a column vector formed by TSVs 𝑋β , 𝑌β, 𝑍β. 
In this case, sβ can be written as sXYZ,β. And when we say 
stimulus sβ  in cone-like space, we mean that sβ  is a 

column vector formed by cone response signals 𝑅β, 𝐺β, 𝐵β 
obtained using Eq. 1. Similarly, in this case, sβ  can be 
written as sRGB,β. If we let diag(𝑎, 𝑏, 𝑐) be a 3 by 3 diagonal 
matrix, the von Kries transform in cone-like space, 
denoted by Γδ,β, can be simply defined by Γδ,β = diag (𝑘R,β𝑘R,δ 𝑘G,β𝑘G,δ 𝑘B,β𝑘B,δ),                 (6) 

and the real von Kries transformation from stimulus sβ to 

stimulus  sδ, is a simple matrix and vector multiplication: 
  sRGB,δ = Γδ,βsRGB,β    or   sXYZ,δ = M−1Γδ,βMsXYZ,β .      (7) 

 
Note that the order of the symbols δ, β in the subscript 

of the von Kries transform Γδ,β  is important. Here, δ, β 
mean that the von Kries transform maps stimulus sβ 
under illuminant β to stimulus  sδ  under illuminant δ. 
Similarly, transform Γβ,δ  maps stimulus  sδ  under 
illuminant δ to stimulus sβ under illuminant β. Note also 
that, if two stimuli sβ  and  sδ  are corresponding colors, 
then  sδ and sβ are also corresponding colors, this property 
being called symmetry. Thus, we expect the von Kries 
transform to satisfy this property. In fact, it can be verified 
that Γδ,βΓβ,δ = I3 ,                                    (8) 

where I3 is the 3x3 identity matrix. Eq. 8 shows that the 
von Kries transform has the property of symmetry, as 
desired. Also, if sβ and sδ are corresponding colors, and sγ 

and  sδ are corresponding colors too, then  sγ and sβ must 

be corresponding colors, and this property is known as 
transitivity. Similarly, we also expect the von Kries 
transform to have transitivity. Fortunately, it is indeed the 
case, since 

 Γγ,δΓδ,β =  Γγ,β .                                   (9) 

 
The von Kries transform can be further modified by 

introducing the modified von Kries adaptation factors: 
 𝑘′R,β = 𝑘R,β𝑞R,β  , 𝑘′G,β = 𝑘G,β𝑞G,β  , 𝑘′B,β = 𝑘B,β𝑞B,β.   (10) 

 
Based on the above new von Kries adaptation factors, 

we can have the modified von Kries transform, Γ′δ,β, which 
is defined by Γ′δ,β = diag (𝑘′R,β𝑘′R,δ 𝑘′G,β𝑘′G,δ 𝑘′B,β𝑘′B,δ).                (11) 

It can be shown that the modified von Kries transform 
also satisfies the symmetry and transitivity.  

Note that If the scaling factors 𝑞𝑅,𝛽 , 𝑞𝐺,𝛽 , 𝑞𝐵,𝛽 in Eq. 
10 are all equal to 1, the modified von Kries transform 
becomes the classical von Kries transform, i.e., Γ′δ,β = Γδ,β.  
In fact, by different choices of the scaling factors 𝑞𝑅,𝛽 , 𝑞𝐺,𝛽 , 𝑞𝐵,𝛽  , the modified von Kries adaptation factors become 
some available adaptation factors in the literatures such 
as Fairchild factors (see page 177 in reference [11]) with 𝑞𝑅,𝛽 = 𝑝𝑅,𝛽                                     (12)  𝑝𝑅,𝛽 = 1 + (𝐿𝛽)1/3 + 𝑟𝐸,𝛽1 + (𝐿𝛽)1/3 + 1/𝑟𝐸,𝛽                    (13) 

𝑟𝐸,𝛽 = 3𝑅𝑤,𝛽/𝑅𝐸𝑅𝑤,𝛽/𝑅𝐸 + 𝐺𝑤,𝛽/𝐺𝐸 + 𝐵𝑤,𝛽/𝐵𝐸   ;         (14) 

CMCCAT2000[12], CAT02[13] and CAT16[4,9] factors 
with 𝑞𝑅,𝛽 =  𝑞𝐺,𝛽 =  𝑞𝐵,𝛽 = 𝑌𝑤,𝛽    ;                   (15)  

or Smet et al[5,6] factors with  𝑞𝑅,𝛽 = 𝑅𝐸   , 𝑞𝐺,𝛽 = 𝐺𝐸   , 𝑞𝐵,𝛽 = 𝐵𝐸 .            (16)  

Here, 𝑅𝐸, 𝐺𝐸 , 𝐵𝐸  obtained using Eq. 1 with the TSVs 
of the equal energy illuminant white point. 𝐿𝛽  is the 
luminance of adapting field and is about 20% of the 
absolute luminance of the illuminant β.  Thus, it can be 
seen the modified von Kries adaptation factors (Eq. 10) are 
more general. We will discuss next how to choose the 
factors 𝑞𝑅,𝛽 , 𝑞𝐺,𝛽 , 𝑞𝐵,𝛽.  Firstly, they should satisfy: 𝑞R,β𝑞R,δ = 𝑞G,β𝑞G,δ = 𝑞B,β𝑞B,δ = c                          (17) 

in this case, it can be shown from Eq. 11 that 



Γ′δ,β = c ∗ diag (𝑅w,δ𝑅w,β 𝐺w,δ𝐺w,β 𝐵w,δ𝐵w,β) = c ∗ Γδ,β       (18) 

Hence  sXYZ,δ = M−1Γ′δ,β𝑀 sXYZW,β = c sXYZW,δ            (19) 

Thus, if the CAT maps the TSVs of 𝑋w,β, 𝑌w,β, 𝑍w,β , 
the output is 𝑐𝑋w,δ, 𝑐𝑌w,δ, 𝑐𝑍w,δ , which is correct as 
expected. The chromatic adaptation transform should 
make the chromaticity correct as discussed in the paper[14] 
by Hunt et al. . However, one may think it is better if the 
CAT can make the luminance correct as well. It is clear the 
constant c must be 1 under this condition since one may 
want if 𝑋w,β, 𝑌w,β, 𝑍w,β  is the input, then the output is 𝑋w,δ, 𝑌w,δ, 𝑍w,δ . So the next condition for  factors 𝑞𝑅,𝛽 , 𝑞𝐺,𝛽 , 𝑞𝐵,𝛽 is: 

 
𝑞R,β𝑞R,δ = 𝑞G,β𝑞G,δ = 𝑞B,β𝑞B,δ = c = 1                          (20) 

Condition 20 means factors 𝑞𝑅,𝛽  , 𝑞𝐺,𝛽  , 𝑞𝐵,𝛽  are 
independent of illuminant. From Eqs. 12-14, Fairchild 
factors are illuminant dependent and they may not satisfy 
conditions (17) and (20).  Factors 𝑞𝑅,𝛽 , 𝑞𝐺,𝛽 , 𝑞𝐵,𝛽 defined 
by Eq. 15 are illuminant dependent, but they satisfy 
condition (17). They also satisfy condition (20) if 𝑌𝑤,𝛽 =𝑌𝑤,δ  . Factors 𝑞𝑅,𝛽  , 𝑞𝐺,𝛽  , 𝑞𝐵,𝛽  defined by Eq. 16  uses a 
fixed illuminant, hence then will satisfy both conditions 
(17) and (20).  

Up to now it seems that if the factors 𝑞𝑅,𝛽 , 𝑞𝐺,𝛽 , 𝑞𝐵,𝛽 
satisfy condition (20), the modified von Kries transform is 
in fact the classical von Kries transform. Yes, it is the case. 
However, one will see the reason for introducing the 
modified von Kries transform.      

However, neither the (classical) von Kries (see Eq. 6) 
nor the modified von Kries transform (see Eq. 11) with 
factors 𝑞𝑅,𝛽 , 𝑞𝐺,𝛽 , 𝑞𝐵,𝛽 given by any set of Eqs. 12-16 show 
a tight fit with the experimental visual data sets on 
corresponding colors (see test results below). To solve this 
problem, researchers have proposed various linear and 
nonlinear extensions, as detailed by Fairchild[11]. The 
linear extensions related to the CIE color appearance 
models[8,9], such as CAT02[13] and CAT16[9], with factors 𝑞𝑅,𝛽 , 𝑞𝐺,𝛽 , 𝑞𝐵,𝛽 defined by Eq. 15, can be expressed as Γδ,β,CATxx = DxxΓ′δ,β + (1 − Dxx)I3 ,                   (21) 

where, xx in the subscript can be 02 for CAT02[13] and 16 
for CAT16[9], although in fact  D02 and D16 are the same. 
The incomplete adaptation factor Dxx is between 0 and 1. 
When Dxx is 1, Γδ,β,CATxx becomes Γ′δ,β, in such a way that 

CAT02 and CAT16 can be considered as extensions to the 
modified von Kries transform. However, when Dxx  is 

different from 1 or 0, they no longer satisfy the symmetry 
and transitivity properties. That is, in general Γδ,β,CATxx 

does not satisfy Eqs. 8 and 9.  Hence an inverse CAT is 
needed for Γδ,β,CATxx, which is simple for linear CATs and 

is given by (Γδ,β,CATxx)−1 mapping stimulus sδ to stimulus sβ. The CAT Γδ,β,CATxx is normally called a one-step CAT, 

which directly maps stimulus sβ to stimulus sδ.  

Recently, Smet et al.[5,6](using factors 𝑞𝑅,𝛽 , 𝑞𝐺,𝛽 , 𝑞𝐵,𝛽 
defined by Eq. 16 ) and Li et al.[4] (using factors 𝑞𝑅,𝛽 , 𝑞𝐺,𝛽 , 𝑞𝐵,𝛽 defined by Eq. 15 ) proposed two-step CATs via the 
intermediate CIE illuminant E, which is defined by the 
equi-energy spectrum (see Fig. 1 in Ref. [5]).  Firstly, a one-
step CAT such as ΓE,β,CATxx is applied to map stimulus  sβ 
to stimulus sE . In this stage, the adaptation to the 
illuminant β for our visual system is referred to the 
illuminant E. Similarly, for the adaptation to the 
illuminant δ in the second stage, the illuminant E is also 
used and a one-step CAT (ΓE,δ,CATxx)−1 is applied to map 
stimulus  sE to stimulus  sδ. The end result is the two-step 
CAT, denoted by Πδ,β,2Step, defined by 

 Πδ,β,2Step = (ΓE,δ,CATxx)−1ΓE,β,CATxx .             (22) 

 
Note that the incomplete adaptation factor Dxx  in 

each of the one-step CATs in Eq. 22 may be different. 
Fortunately, the two-step CAT satisfies the symmetry and 
transitivity properties[4]. Furthermore, the two-step CAT 
performs equally well or better than the one-step CAT in 
predicting the visual datasets on corresponding colors[4]. 
However, the derivation of the two-step CAT is debatable. 
Why does the adaptation for our visual system always 
refer to an illuminant (illuminant E) which does not exist 
in the real world? We should recall that the derivations of 
the von Kries and modified von Kries transforms do not 
need an intermediate illuminant. 

Can we have a CAT which satisfies symmetry and 
transitivity without referring to an intermediate 
illuminant, and fits the visual datasets as good as or better 
than the one-step CAT? The answer is yes. To this end, we 
have introduced the incomplete adaptation factor D into 
the modified von Kries adaptation factors rather than into 
the modified von Kries transform Γ′δ,β (see Eq. 21). Thus, 
the new incomplete adaptation factors under illuminant β 
are 𝑘′′R,β = Dβ𝑘′R,β + (1 − Dβ)                               𝑘′′G,β = Dβ𝑘′G,β + (1 − Dβ)  .                  (23) 𝑘′′B,β = Dβ𝑘′B,β + (1 − Dβ)                               

  



Table 1. Performance of von Kries (𝚪𝛅,𝛃) and generalized von Kries transforms (𝚪′′𝛅,𝛃) together with the (one-step) 
CAT02 and the (one-step) CAT16, in terms of mean, weighted mean, maximum (Max) and minimum (Min)  CIELAB 

color differences, from visual datasets on corresponding colors[16-22] 
 CAT02 Matrix  CAT16 Matrix  HPE Matrix 

 Γδ,β CAT02 Γ′′δ,β  Γδ,β CAT16 Γ′′δ,β  Γδ,β Γ′′δ,β 

Mean 7.6 6.3 6.2  8.1 6.3 6.2  9.4 7.4 

Weighted Mean 6.4 5.5 5.5  6.9 5.6 5.6  8.1 6.7 

Max 34.2 26.7 24.4  39.9 27.0 25.5  50.0 35.5 

Min 0.5 0.3 0.4  0.3 0.3 0.3  0.4 0.3 

The new incomplete adaptation factors under 
illuminant δ can be similarly defined. As with the 
derivation of the von Kries or the modified von Kries 
transform, we have a new CAT, called the generalized von 
Kries (GvK) transform, which is denoted as Γ′′δ,β, and uses 
the new incomplete adaptation factors defined in Eq. 23. 
Thus, the GvK transform Γ′′δ,β is given by: 

 Γ′′δ,β = diag (𝑘′′R,β𝑘′′R,δ 𝑘′′G,β𝑘′′G,δ 𝑘′′B,β𝑘′′B,δ) .                 (24) 

 
It can be shown that Γ′′δ,β satisfies Eqs. 8 and 9. Thus, 

the GvK transform indeed satisfies the properties of 
symmetry and transitivity.  

Note that the GvK transform has two adaptation 
factors, Dβ  and Dδ . The Dβ  factor in CAT02 and CAT16 
depends only on the luminance level of illuminant β, and 
hence Dβ and Dδ are the same if the luminance levels of 
the two illuminants are the same. Recently, several 
papers[5,6,15] have reported that the D factor affects the 
performance of CATs and have guessed that the D factor 
may also depend on correlated color temperature (CCT).  

Note also that when we consider the von Kries, 
modified von Kries, and generalized von Kries (GvK) 
transforms in TSV space, and an associated matrix M 
mapping the stimulus in TSV to the cone-like space (see 
Eq. 1) is necessary. For example, as noted before the von 
Kries transform in TSV space is simply given by (M−1Γδ,βM) , where the matrix M  can be the CAT02, 
CAT16 or HPE matrices. 

Before we test the performance of the GvK transform, 
we need also to specify the factors 𝑞𝑅,𝛽 , 𝑞𝐺,𝛽 , 𝑞𝐵,𝛽 in Eq. 
10. According to the discussion above, it is better they are 
independent of illuminant. A simple choice is: 

 𝑞𝑅,𝛽 = 𝑞𝐺,𝛽 = 𝑞𝐵,𝛽 = 𝑐2                                (25) 

Here, 𝑐2 is a constant again. According to Eqs. (23) 
and (24), performance of the GvK is also dependent on 𝑐2 .  
For the testing below,  𝑐2 is set to be 100. The reason for it 
is explained below. 

Performance of the proposed von Kries transform Γ′′δ,β with the CAT02, CAT16, and HPE matrices has been 
tested using the available corresponding color datasets [16-

22], which were used for developing CAT02 and CAT16. 
The formula employed for the D factor was the one used 
for CAT02 and CAT16. Comparisons with the von Kries 
transform Γδ,β , (one-step) CAT02 and CAT16 were also 
made. The results found are summarized in Table 1, in 
terms of mean, weighted mean, minimum (Min) and 
maximum (Max) CIELAB color differences between 
predicted and experimental TSVs for each pair of 
corresponding colors in datasets. There are 21 datasets 
and each dataset has different number of pairs of 
corresponding colors. The values in the row of Table 1 
labeled with Mean are the average of the mean color 
differences for the different datasets, while the values in 
the row labeled with Weighted Mean are the weighted 
mean color difference, the weight for each dataset being 
the ratio of the number of pairs in this dataset and the 
number of pairs in all the datasets. The values in the 
second last row are the maximum of maximum color 
differences for the difference datasets. The values in the 
last row are the minimum of minimum color differences 
for the difference datasets.  The lower the values in Table 
1, the better the performance of the corresponding model.   

First, Table 1 indicates that using any of the three 
matrices, the proposed GvK transform (see results under 
columns Γ′′δ,β) is better than the von Kries transform (see 
results under columns Γδ,β ). Note the von Kries and 
modified von Kries are the same since factors 𝑞𝑅,𝛽 , 𝑞𝐺,𝛽 , 𝑞𝐵,𝛽  satisfy Eq. 25. Second, the proposed GvK is equally 
well as or better than the (one-step) CAT02 with one 
exception under minimum measure with negligible 0.1   
color difference unit (see results under column CAT02)  
and (one-step) CAT16 (see results under column CAT16). 
Third, both the von Kries and the proposed GvK 
transforms perform best using the CAT02 matrix, second 
best using the CAT16 matrix, and worst using the HPE 
matrix. However, we should note that the CAT02 matrix 
has the "yellow-blue" and "purple" problems[23-25]. The 
CAT16 matrix[9,26] was derived for the aim of fitting visual 
datasets, and overcoming the "yellow-blue" and "purple" 
problems. Therefore, we recommend that the CAT16 
matrix should be used for the von Kries, modified von 
Kries, and proposed GvK transforms.  

Note that if the D factors Dβ and Dδ are set to 1, any 𝑐2 value does not affect the performance of GvK transform. 



In fact, in this case, it is simply the von Kries transform, 
i.e., Γ′′δ,β = Γ′δ,β = Γδ,β  . However, when we use the D 
factor to be the D factor of  CAT02 (CAT16) , 𝑐2 value 
indeed affects the performance of the GvK transform. It 
was found that when 𝑐2 = 100,  the GvK performs the best,  
when 𝑐2 deviates from 100,  the GvK transform performs 
worse.  This may come from three facts. First all visual 
datasets tested here, Yw = 100.  Second the Yw factor was 
introduced into the CAT02,  CAT16 and CMCCAT2000  
for being consistent with the nonlinear CMCCAT97[27], 
which was built in CIECAM97s[7].  As discussed above, the Yw factor is just related to the scaling factors 𝑞𝑅,𝛽 , 𝑞𝐺,𝛽  , 𝑞𝐵,𝛽 (see Eqs. 10, 15).  Finally, the matrix and D factor of 
CAT02/CAT16 were derived based on fitting all the visual 
datasets [16-22] as best as possible. Hence it is recommended 
to use the 𝑐2 = 100  together with the D factor of the 
CAT02/CAT16 for the GvK transform before a better D 
factor is developed.  

When one of the two illuminants is illuminant E, the 
GvK transform Γ′′δ,β becomes one-step CAT (see Eq. 21) 
with 𝑐2 = 𝑌𝑤 = 100 .  In fact,  since the CAT02, CAT16, 
and HPE matrices are normalized according to the 
illuminant E, we have 

 𝑅w,E = 𝐺w,E = 𝐵w,E = 𝑋w,E = 𝑌w,E = 𝑍w,E = 100 .    (26)  

  
Thus, from Eqs. 3, 10, 14, we have 
 𝑘′R,E = 𝑘′G,E = 𝑘′B,E = 𝑘′′R,E = 𝑘′′G,E = 𝑘′′B,E = 1 .  (27) 

 
Therefore, from Eq. 15, considering also Eqs. 11, 14, 

and 17:  
  Γ′′E,β = diag (𝑘′′R,β𝑘′′R,E 𝑘′′G,β𝑘′′G,E 𝑘′′B,β𝑘′′B,E)    
 =  diag(𝑘′′R,β 𝑘′′G,β 𝑘′′B,β)  
  = Dβ diag(𝑘′R,β 𝑘′G,β 𝑘′B,β) + (1 − Dβ)I3 

 = Dβ Γ′E,β + (1 − Dβ)I3     . 
 
Hence, if we let  Dβ = Dxx in Eq. 12, we have 
 Γ′′E,β = ΓE,β,CATxx  .                            (28) 

 
Eq. 28 means that the proposed GvK transform 

mapping stimulus under illuminant β to stimulus under 
illuminant E, is just the normal one-step CAT from 
stimulus under illuminant β to stimulus under illuminant 
E. Remember that the one-step CAT ΓE,β,CATxx is used in 

the forward mode in CIECAM02/CAM16. Similarly, it can 
be proved that 

 Γ′′δ,E = (ΓE,δ,CATxx)−1                        (29) 

 
Eq. 29 means that the GvK transform mapping 

stimulus under illuminant E to stimulus under illuminant 
δ is just the inverse of the normal one-step CAT from 
stimulus under illuminant δ to stimulus under illuminant 
E. We should bear in mind that the inverse of one-step 
CAT ΓE,δ,CATxx  is used in the inverse mode in 
CIECAM02/CAM16.  Therefore, we conclude that the 
proposed GvK transform can be used in the current 
CIECAM02/CAM16. 

In conclusion, the von Kries transform was reviewed 
and then the modified von Kries transform was derived 
based on the modified von Kries adaptation coefficients 
(see Eq. 10). The factors  𝑞𝑅,𝛽 , 𝑞𝐺,𝛽  , 𝑞𝐵,𝛽  in Eq. 10 were 
shown to be better if they satisfy condition 20 , resulting in 
that it is better if the Yw  factor in CAT02, CAT16, and 
CMCCAT2000 is a constant of 100.  The  Yw factor was 
introduced into CMCCAT2000 first, later into CAT02 and 
CAT16 to be consistent with CIECAM97s and 
CMCCAT97 and further justification was discussed in the 
paper given by Hunt et al.[14].  Since 2000, there was a 
debate about the  Yw factor. There is nothing wrong with a 
CAT including the  Yw  factor like CMCCAT2000 and 
CAT02 since the main purpose of a CAT should make the 
chromaticity correct.  However, when Yw factor is fixed to 
a constant like 100, the CAT can make both chromaticity 
and luminance correct.  

It was found that the current linear CAT02 and 
CAT16 can be considered to be the extension of the 
modified von Kries transform. However, while the von 
Kries and modified von Kries transforms satisfy symmetry 
and transitivity, CAT02 and CAT16 do not satisfy these 
two properties in general. Finally, a generalized von Kries 
(GvK) transform has been proposed. The proposed GvK 
transform, similar to the von Kries and modified von Kries 
transforms, satisfies the properties symmetry and 
transitivity. Performance evaluation using available 
visual datasets[16-22] showed that the proposed GvK 
transform performs better than do the von Kries and 
modified von Kries transforms, and performs equally well 
as or better than the (one-step) CAT02 and CAT16. 
Furthermore, the proposed GvK transform does not need 
an inverse transform and can be used in 
CIECAM02/CAM16.  
        Finally, we note that recently, Kerouh et al.[28] used a 
CAT to convert the (input) image of a scene captured under 
one illuminant to the (output) image of the same scene 
captured under another illuminant. Their results have 
shown the CAT affects image content such as edges, 
texture and homogeneous area differently. Image content 
based CATs were developed. Comparison results based on 



multispectral images have shown the image content based 
CATs perform better than other CATs including the von 
Kries and Bradford transforms. Our proposed GvK model 
is evaluated here using the visual corresponding color 
datasets and may be further evaluated in the future using 
image data. 
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