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 
Abstract—This paper presents techniques into prediction and 

control of the radiated harmonic levels in time modulated 

antenna arrays (TMAs). The effect of ramping on the controlling 

switching waveform, due to slew in the RF switches, is analyzed 

first. This is followed by a novel technique for controlling and 

reducing the fundamental carrier component (due to the Fourier 

series 0 Hz term) that is always produced by TMAs. A new 

bespoke, steerable, TMA RF hardware test platform is presented, 

using three gain states to pragmatically implement the proposed 

carrier reduction technique. The platform implementation 

utilizes binary logic control interfaces to the TMA, rather than 

analogue control interfaces. Laboratory measurements using the 

test platform demonstrate a 16.5dB reduction (limited by PCB 

emissions) in the level of the fundamental carrier component 

relative to the steered first harmonic, from a possible reduction 

of 21.3dB. The array gain for the first harmonic beam is 2dBi. 

 
Index Terms—Time Modulated Antenna Arrays, Fourier 

series, RF hardware platform, Microwave circuits.  

 

I. INTRODUCTION 

HERE IS TODAY much ongoing research into 

beamforming techniques for use in next generation 5G 

communications, including a focus on mmWave radio for 

mobile applications [1]. From a future mobile device’s 
perspective, it can be argued that only a single active beam 

may be required at any particular instant; significantly 

relaxing the technical challenge and cost in implementing a 

radio using beamforming. 

The time modulated antenna array (TMA) [2], [3], [4], [5], 

[6] can be used to generate a beam at a desired angle without 

the use of vector modulators or phase shifters, though it seems 

rarely used in practice. TMAs create a steerable beam, using 

only RF switching elements and can create or receive multiple 

beams carrying different modulated data [7], [8] or steer nulls 

in the direction of interference [9], [10], [11], [12]. The TMA 

has also been investigated for use in direction finding systems 

[13], [14] by analyzing signal harmonic  
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characteristics. TMAs are also applicable to radar systems 

[15], [16] and can incorporate both a radar function in the 

boresight beam and a communications function in the other  

beams, using a single system [17], [18], [19]. The TMA has 

also seen application in reflector arrays [20], for diversity 

reception systems [21], and multiple beam communications 

[22]. Recently TMAs have found use in generating orbital 

angular momentum waves [23], [24] and circular polarization 

[25]. Most systems use only the boresight beam or possibly 

the first harmonic beam, with increased beam steer angles 

requiring the use of higher order harmonics for realizable 

switching timings. 

In this paper we devise concepts to predict and control the 

level of the harmonic beams including, for the first time to our 

knowledge, a new technique to control or cancel the 

fundamental beam at boresight. In section II of this paper we 

briefly introduce the concept of TMAs and then go on to 

predict the magnitude of a harmonic beam as a function of RF 

switch ramping time between on and off states, due to slew 

rate. We then propose a new way of controlling the harmonic 

fundamental beam magnitude due to the Fourier series 0 Hz 

term, using a bipolar gain stage. Section III introduces a 

5.8GHz RF hardware switching architecture, using three gain 

states and phase inversions per array element to implement the 

required bipolar gain, leading to a novel RF TMA test 

platform. In section IV we present measured data from 

radiated chamber tests of the six element TMA array. We 

conclude the paper in section V. 

The contributions of this paper are threefold: 1) 

mathematical model for the prediction of harmonic levels in 

TMAs due to RF switching slew; 2) Novel algorithm and RF 

hardware technique to null out the TMA fundamental 

component at the carrier frequency without affecting the 

harmonic beam steering; and 3) proof of concept test results 

from laboratory tests using the bespoke RF hardware platform.  

II. HARMONIC LEVELS IN TIME MODULATED ARRAYS 

TMAs use switching time to control the direction of a 

harmonic beam carrying RF energy. Often in TMA design, the 

fundamental component at the carrier is the focus of attention 

and all other harmonics are to be curtailed. There has been 

some research into controlling the magnitude of these 

harmonic levels, for example using trapezoid switching 
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waveforms and cosine switching waveforms [26], [27], though 

these can require complex circuitry to implement the required 

analogue control waveforms. There has also been 

investigation into the control of the instantaneous emission 

level [28], which can be significant in TMAs. In this paper we 

only consider the average emission level, as would be 

perceived by a receiver of the beam from a linear array. 

A. TMA with RF Switching Slew 

The Array Factor (AF) for an array of N isotropic radiating 

elements in a TMA can be described by (1) [5], where 𝐹𝑛[𝑈𝑘(𝑡)] is the Fourier coefficient of the nth harmonic of the 

time domain switching waveform U on the kth antenna 

element.  

 𝐴𝐹(𝜃, 𝑡) = 𝑒𝑗[𝜔𝑐+𝑛𝜔𝑝]𝑡 . ∑ 𝐹𝑛[𝑈𝑘(𝑡)]𝑁𝑘=1 𝑒𝑗𝜑𝑘 (1) 

 

The time modulation of the RF signal at element k can be 

represented as a series of Fourier coefficients, multiplied with 

harmonics of the switching frequency 𝜔𝑝, then up-converted 

to the carrier frequency 𝜔𝑐. The term 𝑒𝑗𝜑𝑘 is an element-

specific phase shift, due to antenna element spacing and 

evaluated beam angle and can be expressed using (2), where k 

is the element number, d is the spacing between the elements 

and θ is the azimuth beam angle direction being evaluated. 

 𝜑𝑘 = (𝑘 − 1) 2𝜋𝜆 . 𝑑. 𝑠𝑖𝑛(𝜃) (2) 

 

In the rest of this paper we refer to the nth Fourier 

coefficient of the switching waveform nth harmonic, for a 

particular element k, as 𝐶𝑛𝑘 = 𝐹𝑛[𝑈𝑘(𝑡)] and the overall 

magnitude of the combined AF due to the nth harmonic as Cn. 

Although there has been some prior research into 

deliberately shaping the switching waveform 𝑈𝑘(𝑡), such as 

[27], AF TMA models commonly assume an infinite slew rate 

on the transition of the RF signal from radiating element k ‘on’ 
state to element ‘off’ state. In this ideal case, the fundamental 

Fourier term 𝐶0𝑘 can be represented by (3), where 𝑇𝑘 is the 

element on-time and 𝑇𝑝 is the frame period, with 𝜔𝑝 = 2𝜋𝑇𝑝. 

 𝐶0𝑘 =  𝑇𝑘𝑇𝑝 (3) 

 

In practical systems, an RF switching ramp time of zero 

seconds is not achievable. Fig. 1 shows a more typical time 

domain waveform for Uk(t), with period 𝑇𝑝 and the switch’s 

‘on’ duration time 𝑇𝑘, with ramping durations 𝑇𝑟 and 𝑇𝑓. 

 

 
Fig. 1.  Uk(t) example time domain form, including ramping 𝑇𝑟and 𝑇𝑓. 

 

Next are presented the equations for the Fourier coefficients 

that include the effect of RF switching slew: 𝑇𝑟 ‘off-to-on’ and 𝑇𝑓 ‘on-to-off’ transitions. Equation (4) describes the 𝐶0𝑘 term 

and (5) the 𝐶𝑛𝑘 term, for a particular ramped element k in the 

TMA. 

 𝐶0𝑘_𝑟𝑎𝑚𝑝 =  𝑇𝑟2𝑇𝑝 + 𝑇𝑘𝑇𝑝 + 𝑇𝑓2𝑇𝑝 (4) 

 

From (4), the Fourier coefficient 𝐶0𝑘 for the kth element 

with switching slew can be seen to include the expression of 

the ideal (zero ramping) from (3) and additional terms 

associated with the ramping slew. The magnitude of the 

Fourier coefficient of the nth harmonic from the kth element 

can be predicted using (5). 𝐶𝑛𝑘_𝑟𝑎𝑚𝑝 = {𝑒−𝑗𝑛𝜔𝑝𝑇0𝑘𝑇𝑝𝑇𝑟𝑛2𝜔𝑝2 [𝑒−𝑗𝑛𝜔𝑝𝑇𝑟 − 1] + 𝑗𝑒−𝑗𝑛𝜔𝑝(𝑇0𝑘+𝑇𝑟)2𝜋𝑛 } +
{𝑠𝑖𝑛(𝑛𝜋𝑇𝑘𝑇𝑝 )𝑛𝜋 𝑒−𝑗𝑛𝜋(2𝑇0𝑘𝑇𝑝 +𝑇𝑘𝑇𝑝+2𝑇𝑟𝑇𝑝 )} + {𝑒−𝑗𝑛𝜔𝑝(𝑇0𝑘+𝑇𝑟+𝑇𝑘)𝑛22𝜋𝜔𝑝𝑇𝑓 [1 −
𝑒−𝑗𝑛𝜔𝑝𝑇𝑓] − 𝑗𝑒−𝑗𝑛𝜔𝑝(𝑇0𝑘+𝑇𝑟+𝑇𝑘)2𝜋𝑛 }  (5) 

 

Hence, (4) and (5) allow the prediction of the harmonic 

levels as a function of switching ramp times 𝑇𝑟 and 𝑇𝑓. Fig. 2 

shows an example AF for a six element Dolph-Chebyshev 

weighted array, designed for -20dB sidelobes on the first 

harmonic and steering the harmonic beam to +10 degrees, 

with 𝑇𝑝 set to 1μs, 𝑇𝑟 and 𝑇𝑓 set to 1ns (i.e. 0.1% of switching 

period 𝑇𝑝). 

 

 
Fig. 2.  Six element TMA AF for fundamental and positive harmonics 1 to 3. 𝑇𝑟 and 𝑇𝑓 set to 0.1% of 𝑇𝑝, first harmonic beam set to +10 degrees. 

 

As an example of the effect of switching slew, let 𝑇𝑟 and 𝑇𝑓 

now increase to 200ns (20% of 𝑇𝑝). As would be expected, the 

magnitude of the harmonic levels predicted by (5) are 

significantly reduced, as shown in Fig. 3.  

In some circumstances it may be desirable to precisely 

control the magnitudes of the higher harmonic beams: control 
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of 𝑇𝑟 and 𝑇𝑓, or adjusting 𝑇𝑘 for a given 𝑇𝑟 and 𝑇𝑓, are ways 

this could be achieved. 

 

 
Fig. 3.  Six element TMA AF for fundamental and positive harmonics 1 to 3. 𝑇𝑟 and 𝑇𝑓 set to 20% of 𝑇𝑝, first harmonic beam set to 10 degrees. 

 

The dominant, non-steerable, beam due to Fourier C0 

component is also strongly evident in Fig. 2 and Fig. 3. This 

could be a limitation in using the TMA in some practical 

implementations, also representing a waste of energy on the 

non-steerable beam. We now go on to consider how the C0 

level emission may be controlled and reduced. 

B. Use of Bipolar Uk(t) to Reduce Fundamental C0 Emission  

It will be noticed from (3) that since 0 Hz coefficient C0 

can never be zero for practical array timings, there will always 

exist a strong emission on array boresight, which may be 

undesirable.  

Other researchers have investigated simulated TMA 

techniques to control or reduce the levels of harmonics and 

sidelobes (often focusing on maintaining only the C0 beam). 

Techniques usually manipulate switch timings, with use of 

computer optimization to reduce the sidelobe levels [29], [30], 

[31], [32]. 

In this paper we offer an alternative strategy, using 

dedicated simple hardware and a simple algorithm to reduce 

the C0 beam, whilst also still supporting steering of other 

harmonic beams. One way to remove the C0 contribution at 

each element is to arrange for a two-state amplifier with gains 

chosen such that the combined average of 𝑈𝑘(𝑡) over one 

cycle of 𝑇𝑝 is zero. Let the kth element amplifier have linear 

gain states 𝑅𝑎𝑘 (positive) and 𝑅𝑏𝑘 (negative) at the antenna 

element. The resulting equations for the Fourier coefficients at 

element k in this bipolar gain scenario are shown in (6) and 

(7).  

 𝐶0𝑘 =  𝑇𝑘𝑇𝑝 (𝑅𝑎𝑘 − 𝑅𝑏𝑘) + 𝑅𝑏𝑘 (6) 

 𝐶𝑛𝑘 = (𝑅𝑎𝑘−𝑅𝑏𝑘𝜋𝑛 ) 𝑒−𝑗𝑛𝜋(2𝑇𝑜𝑘𝑇𝑝 +𝑇𝑘𝑇𝑝)𝑠𝑖𝑛 (𝑛𝜋𝑇𝑘𝑇𝑝 ) (7) 

If 𝐶0𝑘 is set to zero in (6), a relationship between 𝑅𝑎𝑘 and 𝑅𝑏𝑘 can be obtained for the kth element that should remove 

the C0 term, as now shown in (8). 

 𝑅𝑎𝑘𝑅𝑏𝑘 = 1 − 𝑇𝑝𝑇𝑘  (8) 

 

A simulation of the AF resulting from modified Fourier 

coefficients (6) and (7) to point a first harmonic beam at +10 

degrees and using element specific gains 𝑅𝑎𝑘 and 𝑅𝑏𝑘 from 

(8) applied to (1) is shown in Fig. 4. (𝑇𝑟 and 𝑇𝑓 are set to zero). 

For this simulation six antenna elements were used (k = 1..6), 

all 𝑅𝑎𝑘 values were set to 0dB, 0 degrees phase and 𝑅𝑏𝑘 

values were found using (8) as follow:- 

Rb1 = Rb6 = -13.1dB, 180 degrees 

Rb2 = Rb5 = -8.1dB, 180 degrees 

Rb3 = Rb4 = 0dB, 180 degrees 

 

 Using the proposed technique, Fig. 4 clearly shows the 

cancellation of the fundamental C0 emission as desired. Fig. 4 

also shows visible minor effects on the shape of the remaining 

beams, due to the C0 canceller, compared to the normal TMA.  

 

 
Fig. 4.  Six element TMA AF for fundamental and positive harmonics 1 to 3. 

Harmonic beams shown for normal TMA mode and C0 cancellation mode, first 

harmonic beam set to 10 degrees. Fundamental C0 carrier component cancelled. 

 

Key attractions of the TMA are its low cost and low 

implementation complexity, in contrast to using phase shifters 

or vector modulators commonly used in antenna arrays for 

beam steering. It is therefore proposed that calculating and 

controlling gain 𝑅𝑏𝑘 and 𝑅𝑎𝑘 on a per-element basis is highly 

unattractive, due to the complexity of element RF hardware - 

hence a pragmatic approach is required. The ideal values of 𝑅𝑏𝑘 vary with element and desired beam angle, but we have 

observed that their average value across the array is constant 

per harmonic, regardless of the beam pointing angle.  
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Furthermore, we have found that all values of 𝑅𝑏𝑘 can be 

quantized to a subset of just two values (Rb1q, Rb2q) and still 

provide useful (though imperfect) cancellation of the 

fundamental whilst steering beams in the first three harmonics. 

Considering the first, second and third harmonic beams, 

example values of Rb1q and Rb2q which led to better than 

10dB C0 cancellation across the array pattern were found by 

simulation and are described in linear form by (9) and (10). In 

(10) mean(Rb) is the average of all elements’ ideal 𝑅𝑏𝑘 

values, as found using (8), and Rb_mid is the ideal value of Rb 

for the centre element in the array. Ra was chosen and fixed 

the same for all elements at 0dB. 

 

Rb1q = -Ra (9) 𝑅𝑏2𝑞 =  𝑚𝑒𝑎𝑛(𝑅𝑏) − 𝑅𝑏_𝑚𝑖𝑑6  (10) 

 

The choice between Rb1q or Rb2q for the gain to be used 

for 𝑅𝑏𝑘 in element k was then made based on comparing the 

ideal value of 𝑅𝑏𝑘 to the value mean(Rb) as follows: 

 

if (𝑅𝑏𝑘 < mean(Rb)) 

   𝑅𝑏𝑘 = Rb1q 

else 

   𝑅𝑏𝑘 = Rb2q 

end 

 

When pointing the second or third harmonic beam, a 

simpler mapping just using Rb2q was found sufficient: 𝑅𝑏𝑘 = 

Rb2q. Further improvements in the technique to select Rb1q 

and Rb2q may be possible but have not been trialed, and may 

possibly require numerical solutions. However, the technique 

proposed has been sufficient to support investigation of our C0 

cancellation concept. 

Example AFs using an array of six elements are shown in 

Fig. 5 for a first harmonic beam pointed at +18 degrees and 

Fig. 6 for a second harmonic beam at +35 degrees. The 

following 𝑅𝑏𝑘 values were used for the first harmonic beam 

generation, using (9), (10) and the proposed Rb1q Rb2q 

algorithm:- 

Rb1 = Rb6 = -8.6dB, 180 degrees 

Rb2 = Rb5 = -8.6dB, 180 degrees 

Rb4 = Rb3 = 0dB, 180 degrees 

The required values for generating C0 reduction when 

pointing the second harmonic beam were:- 

Rb1 = Rb6 = -16.8dB, 180 degrees 

Rb2 = Rb5 = -16.8dB, 180 degrees 

Rb4 = Rb3 = -16.8dB, 180 degrees 

 

Hence, it is therefore proposed that by use of RF switches 

and fixed gain states in the TMA, the fundamental carrier (un-

steered) C0 emission can be reduced, whilst maintaining beam 

steering across the remaining harmonics. 

III. TMA RF HARDWARE TEST PLATFORM 

TMAs generally requires fast RF switching, with a slew rate 

significantly faster than the switching frequency if higher 

harmonics are to be available for beams. The effect of 

switching slew on harmonic energy levels has been shown in 

(4) and (5). Furthermore, to obtain harmonic beams with a 

wide spectral spacing requires a high switching frequency. 

To allow us to investigate our C0 cancelling algorithm and 

assess the real-world performance, a 5.8GHz transmitting 

(TX) test platform with six novel switched antennas has been 

created.  

A. Design of 5.8GHz RF Switching Cell and Test Platform 

Hardware 

As described thus far, we propose to modify the TMA Uk(t) 

waveform to be bipolar, with a single fixed positive gain state 

(Ra) and two fixed negative gain states (Rb1q, Rb2q) with the 

same values available for use at each element. From (8) it can 

be seen that the ratio of stage gains are key, hence the absolute 

gains can be scaled to convenient practical values.  

 

 
Fig. 5.  Six element TMA AF for fundamental and positive harmonics 1 to 3, 

with first harmonic beam pointing at +18 degrees. TMA bipolar gain 

quantized to Ra, Rb1q, Rb2q. Carrier beam suppressed by 20dB. 

 

 
Fig. 6.  Six element TMA AF for fundamental and positive harmonics 1 to 3, 

second harmonic beam pointing at +35 degrees. TMA bipolar gain quantized 

to Ra, Rb1q, Rb2q. Carrier beam suppressed by 10dB. 
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The proposed test platform consists of six identical stages 

(or cells), each using three gain states: Ra = 0dB / 0 degree 

phase, Rb1q = 0dB / 180 degree phase and Rb2q = -10dB / 

180 degree phase. Simulations of the expected AF patterns 

when using the quantized gains for a desired first harmonic 

beam at 18 degrees are shown in Fig. 7, which shows similar 

AF to Fig. 5, though with further C0 nulling on boresight.  

 

 
Fig. 7.  Fundamental reduction for a six element array, first harmonic beam 

pointing at 18 degrees, fixed Rb2q = Rb1q – 10dB. 

 

The individual cell RF hardware used to implement the 

required switched gains and phase is shown in Fig. 8. The 

single switching cell was designed based on an Analog 

Devices HMC7992 single pole 4-throw RF switch [33], with a 

resistive attenuator pad to implement level control for Rb2q 

and coplanar waveguide PCB tracking to implement the 

required phase inversions for Rb1q and Rb2q, with reference 

to Ra. The output of the cell branches are combined via a 

simple three-way Wilkinson combiner. The HMC7992 switch 

has the advantage of providing a 50 ohm termination to all 

ports, including the unselected ports. This simplifies the 

design of the Wilkinson output combiner network due to all 

ports seeing correct termination regardless of switch state. 

Finally, an RF amplifier using an Analog Devices ADL5611 

[34] was used at the output to drive the cell’s patch antenna. 
The switching cell was then duplicated six times to create the 

six element array. A six way feed network of Wilkinson 

splitters was created to distribute the input 5.8GHz RF signal 

to all the cells.  

The switching control and sequencer for the TMA was 

implemented using a Microchip DSPIC 

(DSPIC33EP512GP806) [35], clocked internally at 140MHz 

and providing a sample rate of 2Msamples/s in the form of a 

12 bit parallel word to control switch states for all the 

HMC7992 switches. The DSPIC hence defines the overall 

frame length 𝑇𝑝, as well as 𝑇𝑘 and 𝑇0𝑘. The DSPIC produces 

70 discrete samples per each frame, resulting in a 𝑇𝑝 of 35μs. 
Fig. 9 shows the structure of the complete system, including 

RF input signal distribution. 

The completed PCB consists of an FR4 substrate 1.6mm 

thick with two copper layers and with an overall PCB size of 

210mm by 160mm. The radiating elements are conventional 

5.8GHz patch antennas, with centre spacing of 19mm. 

 

Fig. 8.  A single TMA cell with Ra, Rb1q and Rb2q paths selected by RF 

switch. 

 

 
Fig. 9.  Full TMA RF hardware system, using six stages and DSPIC MCU 

pattern sequencer. 

 

B. Generation of Switching Patterns for TMA Hardware 

Platform 

Trial switching patterns were generated in Matlab and then 

loaded into the DSPIC. The switching patterns were created 

using (1) and (2) to obtain a chosen n harmonic beam to point 

in a desired angular direction. The AF for the array with 

particular element timings can therefore be expressed by (11). 
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𝐴𝐹(𝜃, 𝑡) = 𝑒𝑗[𝜔𝑐+ 𝑛.𝜔𝑝]𝑡 . ∑ 𝑒𝑗𝜑𝑘𝑁𝑘=1 . 𝑠𝑖𝑛(𝑛.𝜋𝑇𝑘𝑇𝑝)𝑛.𝜋 . 𝑒−𝑗𝑛𝜋(2𝑇0𝑘𝑇𝑝 +𝑇𝑘𝑇𝑝)
  

 (11) 

 

The derivation of equations used to calculate the element-

specific timings 𝑇𝑘 and 𝑇0𝑘 for a particular frame period 𝑇𝑝 are 

based on the approach in [5], but now extended here to use an 

arbitrary desired harmonic n, as shown in (12) and (13). 

 𝑇𝑘 = 𝑇𝑝. 𝑎𝑟𝑐𝑠𝑖𝑛(𝐺(𝑘))𝑛.𝜋  (12) 

 𝑇0𝑘 = 𝑇𝑝 . [(𝑘−1)𝑑𝜆𝑠𝑖𝑛(𝜃𝑡)𝑛 − 𝑇𝑘2𝑇𝑃 ] (13) 

 

In (12) and (13), G() is a desired Dolph-Chebyshev array of 

weights for the overall array pattern [36], n is the desired 

harmonic beam (1 for first harmonic, 2 for second, etc) to 

point in desired angular direction 𝜃𝑡, and 𝑑𝜆 is the element 

spacing divided by wavelength (0.5 used for half-wavelength 

spaced elements). Dolph-Chebyshev array weights were 

chosen to achieve a 20dB sidelobe level. 

The maximum beam steering angle possible for a particular 

harmonic can be defined as the point when any of the array’s 
RF switches have an on time (𝑇0𝑘 + 𝑇𝑘) exceeding the frame 

period 𝑇𝑝. Such an occurrence would cause the switch to be 

turned off after the end of the current frame duration – which 

is clearly an invalid configuration. For our system, the steering 

range is –19 degrees to +19 degrees for the first harmonic and 

–46 degrees to +46 degrees for the second harmonic. 

It should also be noted that the expected array gain for the 

harmonic beam from (1) and (7) can be calculated and 

compared for different 𝑅𝑏𝑘 values, including the conventional 

TMA with no C0 cancelation (i.e. 𝑅𝑏𝑘 equals zero). 

C. Initial Testing of TMA Hardware Platform 

The built TMA PCB was first tested using 5.8GHz 

conducted RF signals feeding each cell, to test their phase and 

amplitude alignments. The results of this commissioning test 

are shown in Table I, overall showing good agreement with 

the desired amplitude and phase shifts required for Ra, Rb1q 

and Rb2q for each cell. The expected conducted gain for the 

Ra path was -4dB (due to FR4 PCB tracking, Wilkinson 

splitters, etc) and the mean Ra path gain measured was -6dB. 

When combined with a typical patch antenna gain, this leads 

to a predicted element cell radiated gain of circa -3dBi. 

The typical measured RF power ramp duration 𝑇𝑓 was 90ns 

and the 𝑇𝑟 duration was 100ns, as measured using a Rohde & 

Schwarz FSIQ26 spectrum analyser in 0 Hz mode. Given our 𝑇𝑝 of 35μs and (5) suggests that the RF switches will not 

enforce notable attenuation on the harmonic beams. 

The measured mean gain difference between Rb1q and Ra 

paths was -0.6dB and the mean gain difference between Rb2q 

and Ra paths was -10.3dB. The mean phase error for the 

required 180 degree shift between Rb1q and Ra paths was -0.2 

degrees and for Rb2q to Ra paths was 1.0 degree. This overall 

gave confidence that the TMA system was functioning 

adequately and absolute gain and phase alignment between 

cell stages was acceptable. 

The return loss and coupling between the 5.8GHz patch 

antennas was also measured. The return loss for each antenna 

was found to be better than 10dB and the isolation due to 

mutual coupling was better than 13dB between adjacent 

elements. 

Simulations were run to investigate the expected 

performance of the cancellation algorithm when using the 

measured PCB values for all elements’ Ra, Rb1q and Rb2q. 

Fig. 10 shows the expected AF for the carrier fundamental and 

first harmonic beam when pointed at +18 degrees; still 

providing 20dB of rejection relative to the carrier, as also seen 

in Fig. 5. 

TABLE I 

 MEASURED CELL STAGE GAINS AND PHASE SHIFTS 

Stage 

k 

Gain Delta 

Rb1q(k)-

Ra(k) 

(dB) 

Gain Delta 

Rb2q(k)-

Ra(k) 

(dB) 

Phase Delta 

Rb1q(k)-

Ra(k) 

(degrees) 

Phase Delta 

Rb2q(k)-

Ra(k) 

(degrees) 

1 -2.4 -10.4 -179 -180 

2 2.3 -10 -173 -178 

3 0.3 -9.5 -187 -180 

4 -1 -10 -180 -181 

5 -1 -10.6 -182 -181 

6 -1.6 -11.2 -180 -174 

 

 
Fig. 10.  Six element TMA simulated AF for fundamental and first positive 

harmonic. Harmonic beam pointing at +18 degrees. TMA bipolar gain 

quantized to measured PCB values for Ra, Rb1q, Rb2q. Fundamental 

suppressed by 20dB. 

IV. TMA RADIATED CHAMBER TESTS 

The TMA PCB was tested in an anechoic chamber in the 

University of Sheffield’s Communications Research Group. 
Tests evaluated the magnitude of the fundamental (C0), first 

(C1) and second (C2) harmonic beam patterns. The 

measurement system consisted of a Gigatronics 2540B 

5.8GHz CW signal source, Rohde & Schwarz FSV40-N 

Spectrum Analyser and AEL H-1498 measurement horn 

antenna. The H-1498 measurement antenna was mounted on a 
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movable arch, pointing down vertically from above towards 

the TMA under test, thus allowing measurement of the 

radiated energy at various azimuth angles (test PCB facing 

upwards). Due to limitations of the measurement system, one 

measurement horn was used to measure emissions for 

clockwise rotations of the arch and another identical horn for 

anti-clockwise rotation. The measurement system is shown in 

Fig. 11, with an example measurement shown in Fig. 12a. Fig. 

12b shows the RF side of the assembled TMA PCB. The 

distance d between the measurement horn(s) and the TMA 

PCB was 56cm. Since this is an anechoic measurement 

environment and far-field, simple free space path loss (FSPL) 

can be used at the measurement wavelength λ, using (14). 

 FSPL = 20log10 (4𝜋𝑑𝜆 ) dB (14) 

 

The manufacturer’s specification of the H-1498 horn 

antenna gain (circa 8dBi), a calculation of 43dB for the FSPL 

between the TMA PCB and measurement horn and a 

measurement of the overall cable loss allowed an estimation of 

the radiating gain of the TMA as an antenna array system to 

be made. Therefore, the measurement figures in this section 

show the measured radiated gain in dBi, after accounting for 

the measurement losses in the system. This is useful in 

allowing an absolute comparison between various radiated 

levels and also comparing to theoretical simulations. 

Background noise was circa 70dB below measured main-lobe 

powers. 

Tests were first performed without any screening can fitted 

to the PCB and with a desired C1 first harmonic beam steered 

to +18 degrees, first without and then with the C0 cancellation 

algorithms operational, with results shown in Fig. 13 and Fig. 

14 respectively. Since, at this stage, no RF screening enclosure 

was fitted to the PCB, the reduction in achieved C0 

cancellation was suspected to be due to radiation directly from 

the circuitry, prior to the patch antennas, thus limiting the 

dynamic range of the chamber measurements. To investigate 

this, the outputs from each TX stage were terminated in 50 

ohm loads and their antennas isolated. The emissions 

emanating from the board were then measured and indeed 

confirmed to be significant. The effect of this leakage from the 

PCB (mainly from the input Wilkinson distribution network) 

was characterised and found to impose a measurement floor to 

the antenna gain calculations, as presented in Table II. 

 

TABLE II 

 GAIN MEASUREMENT FLOOR DUE TO PCB LEAKAGE EMISSIONS  

Measurement 

angle 

(degrees) 

Fundamental 

(C0) 

measurement 

floor 

(dBi) 

1st harmonic 

(C1) 

measurement 

floor 

(dBi) 

2nd harmonic 

(C2) 

measurement 

floor  

(dBi) 

0 -10 -30 -28 

-10 / +10 -10 -30 -44 

-20 / +20 -20 -40 -37 

-40 / +40 -20 -33 -37 

 
Fig. 11.  Laboratory TMA radiated measurement system. 

 

 
(a)            (b) 

Fig. 12.  TMA RF hardware testing. (a) example TMA pattern measurement 

being taken, (b) built TMA test system, with DSPIC on reverse of PCB. 

 

To help reduce the compromising of the measurements due 

to carrier leakage, a screening can was then fitted over the 

entire RF circuitry. Tests were again performed with a desired 

C1 first harmonic beam steered to +18 degrees, without and 

then with the C0 cancellation algorithms operational, with 

results shown in Fig. 15 and Fig. 16 respectively. Comparing 

the C0 traces on Fig. 14 and Fig. 16 shows a circa 5dB 

reduction in carrier seen on the boresight, confirming that 

PCB leakage had been an issue. Figs. 14 and 16 also show the 

predicted theoretical radiated gain (isotropic reference) of the 

array from (11), for comparison. Unless stated, all subsequent 

reported measurements are using the screened PCB system. 

Tests were then performed for a desired C1 harmonic beam 

steered to -18 degrees both without and with the C0 

cancellation algorithms operational, with results shown in Fig. 

17 and Fig. 18 respectively. In all cases the C0 magnitude is 

reduced on boresight by our technique and the main lobe of 

the C1 steered beam broadly follows the gain and beam shape 

from the AF predictions. 

Comparing Fig. 15 to Fig. 16 also shows an increase in the 

desired first harmonic C1 beam. However Fig. 16 appears to 

also show circa 5dB less than expected C0 cancellation was 

achieved on the PCB, for reasons we discuss later.  

The TMA was then configured to produce a desired beam at 

+35 degrees, using the second switching harmonic, C2. The 

results for this scenario when the fundamental C0 signal is 

present unmodified and then when the C0 canceller is 

operational are shown in Fig. 19 and Fig. 20 respectively.  
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Fig. 13.  Measured radiated gain of TMA when pointing first positive 

harmonic beam to +18 degrees in conventional TMA pattern operation (no 

PCB screening can). 

 

 
Fig. 14.  Measured radiated gain of TMA pointing first positive harmonic 

beam to +18 degrees with C0 canceller activated (no PCB screening can). 

 

 
Fig. 15.  Measured radiated gain of TMA when pointing first positive 

harmonic beam to +18 degrees in conventional TMA pattern operation (with 

PCB screening can). 

 

In Fig. 20 the level of cancellation of the C0 beam is less 

than that obtained when steering the first harmonic beam, such 

as in Fig. 16. This is expected and due to the compromise 

made in quantizing element gains 𝑅𝑏𝑘 and 𝑅𝑎𝑘 to common 

Ra, Rb1q and Rb2q fixed gain states, as discussed in Section 

IIB. Improved C0 cancellation would require either more Rb 

states or variable control of gains 𝑅𝑏𝑘 and 𝑅𝑎𝑘 per element. 

 

 
Fig. 16.  Measured radiated gain of TMA pointing first positive harmonic 

beam to +18 degrees with C0 canceller activated (with PCB screening can). 

 

 
Fig. 17.  Measured radiated gain of TMA pointing first positive harmonic 

beam to -18 degrees in conventional TMA pattern operation (with PCB 

screening can). 

 

Comparing Fig. 19 and Fig. 20 does show that the 

fundamental emission on boresight due to C0 has been 

reduced by circa 10dB and the beam pattern also follows the 

trend predicted in AF simulations. The wanted C2 emission 

has increased and also closely follows AF simulations.  

To allow comparisons, the C2 and C0 emissions without the 

screening can fitted are shown in Fig. 21. An improvement in 

C0 cancelation due to the screening can is seen in Fig. 20, also 

showing a close trend to theoretical predictions for C0. 

With the screening can refitted, the TMA was then 

configured to produce a desired C2 beam at -35 degrees, again 

using the second harmonic. The results for this scenario when 

the fundamental C0 signal is present and then when the C0 

canceller is operational are shown in Fig. 22 and Fig. 23 

respectively.  

Note that Figs. 16, 18, 20, 21 and 23 also show the 

predicted gain (isotropic reference) of the array from (11), for 

comparison. Here, the predicted gain of (11) uses actual PCB 
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measured values for Ra, Rb1q and Rb2q, extracted from each 

of the six cells. 

 

 
Fig. 18.  Measured radiated gain of TMA pointing first positive harmonic 

beam to -18 degrees with C0 canceller activated (with PCB screening can). 

 

 
Fig. 19.  Measured radiated gain of TMA pointing second positive harmonic 

beam to +35 degrees in conventional TMA pattern operation (with PCB 

screening can). 

 

 
Fig. 20.  Measured radiated gain of TMA pointing second positive harmonic 

beam to +35 degrees with C0 canceller activated (with PCB screening can). 

 

 
Fig. 21.  Measured radiated gain of TMA pointing second positive harmonic 

beam to +35 degrees with C0 canceller activated (no PCB screening can). 

 

 
Fig. 22.  Measured radiated gain of TMA pointing second positive harmonic 

beam to -35 degrees in conventional TMA pattern operation (with PCB 

screening can). 

 

 
Fig. 23.  Measured radiated gain of TMA pointing second positive harmonic 

beam to -35 degrees with C0 canceller activated (with PCB screening can). 

 

From Fig. 22 and Fig. 23 it is clear that the C0 canceller is 

reducing the strength of the fundamental emission on 

boresight by circa 8dB and also following the trend predicted 

by the AF simulations. Similarly, the desired C2 beamwidth 

and gain are closely matching AF calculations and the 

performance is also broadly similar to the AF as seen in Fig. 

20 (using the opposite beam). 
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The fundamental radiated performance of three antennas 

and associated circuit cells (A1, A3, A6) within the array was 

also characterised, to investigate their basic patterns, with 

results shown in Fig. 24. The expected radiated gain of a cell 

is -3dBi (based on measured average Ra gain of -6dB, a 

theoretical PCB patch antenna directivity of 6dBi and FR4 

radiating efficiency of -3dB) - which agrees well with the 

boresight gains measured for A1, A3 and A6. The radiated RF 

leakage without DC power applied is also shown in Fig. 24. It 

is clear that whilst there are some differences between the 

individual measured antenna cells (contributed to by the 

spread in Ra circuit performance as well as possible antenna 

radiating pattern differences), the patterns are still broadly 

similar. The leakage from the PCB without DC power applied 

is also evident and imposes a fundamental floor on radiated 

C0 boresight cancellation of circa -18dBi. From subsequent 

tests we have found that RF radiation from the feed coax close 

to the PCB SMA connector, and the use of spot-solder joints 

(rather than seam solder joints) around the screening can are 

both still leading to some higher than desired carrier leakage.  

 

 
Fig. 24.  Measured radiated gain pattern (half of pattern) for three TMA 

antenna cells (Ra path and a single antenna tested in turn, all other antennas 

off). Carrier leakage with PCB unpowered is also shown. 

 

The reduction of the C0 beam can be predicted using (6). 

With the actual PCB values used for Rb1q, Rb2q, Ra and 

chosen switch timings, we would expect to see 20dB reduction 

in the C0 emission, when using the 18 degree C1 harmonic 

beam. We would expect to see a 10.6dB reduction in C0 

emission when using the 35 degree C2 harmonic beam. 

However, the measured C0 reduction is 12.6dB when the 18 

degree first harmonic beam is selected and worst-case 5dB 

(9.1dB when only considering C0 at boresight) when the 35 

degree second harmonic beam is selected. Fig. 24 suggests 

that the unwanted PCB emissions from carrier leakage could 

be limiting the performance of the C0 cancellation, as 

observed in Fig. 16, Fig. 18, Fig. 20 and Fig. 23.  

Also, note that due to the choice of values made for Rb1q, 

Rb2q and Ra, the existing PCB design is theoretically, and in 

practice, more suited to C0 cancellation when pointing the C1 

beam, rather than when using the C2 beam. This difference 

can, for example, be seen by comparing Fig. 16 and Fig. 20 or 

indeed Fig. 5 and Fig. 6. 

It is interesting to note that when the C0 reduction 

algorithm is operational, as well as attenuating the radiated 

energy in the boresight C0 beam, there is also an increase in 

energy in the harmonic beams. This can be predicted using (7) 

using the actual timings and Ra, Rb1q and Rb2q values 

obtained from the PCB. The expected gain enhancement of the 

first harmonic beam is 4.1dB and for the second harmonic 

beam an enhancement of 2.3dB is expected. In practice we see 

an enhancement of 3.9dB for the first harmonic and 2.8dB for 

the second harmonic beam. 

Overall, with the limitations of the PCB as-built, we are 

achieving an effective decrease in C0 emission of 16.5dB 

relative to the first harmonic beam C1, which from theory 

should be 21.3dB if C0 RF PCB leakages were insignificant. 

We achieve a decrease in effective C0 emission of worst-case 

7.6dB (11.8dB if only C0 boresight is considered) relative to 

the second harmonic beam C2, which broadly agrees with the 

theoretical prediction of 10.8dB.  

The measured equivalent isotropic gain of the C0 cancelled 

TMA system is +2dBi for the first harmonic beam and -6dBi 

for the second harmonic beam. A comparable phased array 

(using the same PCB RF amplifiers, splitters and antennas, but 

assuming phase shifters are used instead of the TMA RF 

switches) would be expected to have a gain of +4.6dBi. The 

2.6dB loss in first harmonic beam gain can be considered an 

implementation loss for the TMA. Such a loss may be 

acceptable for many applications, given the lower cost of the 

hardware and simpler digital control supported, possibly also 

mitigated by using a larger array of elements. 

V. CONCLUSION 

This paper has presented new TMA techniques to predict 

and control the magnitude of the fundamental carrier (C0) 

beam whilst still steering higher-order radiated harmonic 

beams (C1, C2). These techniques will enable TMA system to 

become more useful to industrial and commercial radio system 

designers.  

The algorithmic concepts have been demonstrated and 

tested using a new, bespoke, RF hardware platform operating 

at 5.8GHz, with test results generally showing good agreement 

with theory. The sensitivity of the TMA radiated performance 

to PCB RF leakage emissions has been identified as a limiting 

factor. 

Further work is now planned to operate the TMA platform 

at higher switching rates and to develop techniques to control 

multiple harmonic beam levels. For this we are developing an 

FPGA platform to control the TMA, replacing the DSPIC. 

This faster switching platform will then allow us to investigate 

further harmonic control, such as using pulse-splitting 

techniques as investigated in [37]. Higher switching rates are 

vital to spectrally separate the generated harmonics, thus 

supporting transport of user modulated data on an RF channel. 

The higher switching rates will also allow us to vary 𝑇𝑘 as a 

means to control harmonic levels using (5) in systems where 𝑇𝑟 and 𝑇𝑓 are fixed, which is the usual case for RF switches. 

There is currently much interest in beam steering for future 
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5G and mmWave mobile systems. To be commercially viable, 

such systems must be cost-effective and very power efficient. 

The simple and low cost RF hardware TMA concepts 

described in this paper may be applicable to such future 

handset antenna arrays, which could be pointing traffic to only 

a single base station at a given instant. 

Although this paper has focused on a transmitter TMA, the 

concept of the triple-gain-state RF switch circuitry could also 

be applied for receiving arrays using low noise amplifiers, or 

indeed in a transceiver array. 
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