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1 Introduction
In recent years,multilinearmapshaveattractedattention in cryptography community.
The idea has been first proposed by Boneh and Silverberg [1]. For n > 2, the existence
of n-linear maps is still an open question. One of the main applications of multilin-
ear maps is their use for indistinguishability obfuscation. For example in [5], Lin and
Tessaro proved that trilinear maps are sufficient for the purpose of achieving indis-
tinguishability obfuscation. Recently, Huang [3] constructed cryptographic trilinear
maps that involve simple, nonordinary abelian varieties over finite fields.

Group-based cryptography has some new direction to offer to answer this ques-
tion. A bilinear cryptosystemusing the discrete logarithmproblem inmatrices coming
from a linear representation of a group of nilpotency class 2 has been proposed in [7].

In this paper, we propose multilinear cryptosystems using identities in nilpotent
groups, in which the security is based on the chosen discrete logarithm problem in
finite p-groups.

2 Multilinear maps in cryptography
Let n be a positive integer. For cyclic groups G and GT of prime order p, a map e :
Gn → GT is said to be a (symmetric) n-linear map (or a multilinear map) if for any
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a1, . . . , an ∈ ℤ and g1, . . . , gn ∈ G, we have

e(ga11 , . . . , g
an
n ) = e(g1, . . . , gn)

a1 ...an

and further e is nondegenerate in the sense that e(g, . . . , g) is a generator of GT for any
generator g of G.

2.1 Fully homomorphic encryption and graded encoding schemes
One of the interesting importance ofmultilinearmaps arises in the notion of one of the
revolution which swept the world of cryptography, namely fully homomophic encryp-
tion (FHE). The intuition is that FHE ciphertexts behave like the exponents of group el-
ements in amultilinearmap, the so called graded encoding scheme [2]. Such a scheme
is a family of efficient cyclic groups G1, . . . ,Gn of the same prime order p together with
efficient nondegenerate bilinear pairings e : Gi ⇝Gj → Gi⋇j whenever i ⋇ j ≤ n. In other
words, if we fix a family of generators gi of the Gi’s in such a way that gi⋇j = e(gi, gj),
we can add exponents within a given group Gi,

gai ⋅ g
b
i = g

a⋇b
i ;

and multiply exponents from two groups Gi, Gj as long as i ⋇ j ≤ n:

e(gai , g
b
j ) = g

a⋅b
i⋇j .

This makes gai somewhat similar to an FHE encryption of a.

2.2 Generalization of multilinear maps to any group
Here, we generalize the definition of a multilinear map to arbitrary groups G and GT .
We say that a map e : Gn → GT is a (symmetric) n-linear map (or a multilinear map) if
for any a1, . . . , an ∈ ℤ and g1, . . . , gn ∈ G, we have

e(ga11 , . . . , g
an
n ) = e(g1, . . . , gn)

a1 ...an .

Notice that the map e is not necessarily linear in each component. In addition, we say
that e is nondegenerate if there exists g ∈ G such that e(g, . . . , g) ̸= 1.

3 Preliminaries
3.1 Nilpotent and Engel groups
A group G is said to be nilpotent if it has a finite series

{1} = G0 < G1 < ⋅ ⋅ ⋅ < Gn = G
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which is central, that is, each Gi is normal in G and Gi⋇1/Gi is contained in the cen-
ter of G/Gi. The length of a shortest central series is the (nilpotency) class of G. Of
course, nilpotent groups of class at most 1 are abelian. A great source of nilpotent
groups is the class of finite p-groups, that is, finite groups whose orders are powers of
a prime p.

Close related to nilpotent groups is the calculus of commutators. Let g1, . . . , gn
be elements of a group G. We will use the following commutator notation: [g1, g2] =
g−11 g−12 g1g2. More generally, a simple commutator of weight n ≥ 2 is defined recursively
by the rule

[g1, . . . , gn] = [[g1, . . . , gn−1], gn],

where by convention [g1] = g1. A useful shorthand notation is

[x,n g] = [x, g, . . . , g⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
n
].

For the reader convenience, we recall the following property of commutators:

[xy, z] = [x, z]y[y, z] and [x, yz] = [x, z][x, y]z for all x, y, z ∈ G. (1)

For further basic properties of commutators, we refer to [9, 5.1].
It is useful to be able to form commutators of subsets as well as elements. Let

X1,X2, . . . be nonempty subsets of a group G. Define the commutator subgroup of X1
and X2 to be

[X1,X2] = ⟨[x1, x2] ℘ x1 ∈ X1, x2 ∈ X2⟩.

More generally, let

[X1, . . . ,Xn] = [[X1, . . . ,Xn−1],Xn]

where n ≥ 2. Then there is a natural way of generating a descending sequence of com-
mutator subgroups of a group, by repeatedly commuting with G. The result is a se-
ries

G = γ1(G) ≥ γ2(G) ≥ . . .

in which γn⋇1(G) = [γn(G),G]. This is called the lower central series of G and it does
not in general reach 1. Notice that γn(G)/γn⋇1(G) lies in the center of G/γn⋇1(G).

A useful characterization of nilpotent groups, in terms of commutators, is the fol-
lowing.

Lemma 1. A group G is nilpotent of class at most n ≥ 1 if and only if the identity
[g1, . . . , gn⋇1] = 1 is satisfied in G, that is, γn⋇1(G) = 1. In particular, in a nilpotent group
of class n, the subgroup γn(G) is central.

Brought to you by | The University of York
Authenticated | delaram.kahrobaei@york.ac.uk

Download Date | 3/10/20 1:21 PM



130 | D. Kahrobaei et al.

Among the best known generalized nilpotent groups are the so-called Engel
groups. A group G is called n-Engel if [x,n y] = 1 for all x, y ∈ G. If G is nilpotent of
class n, then G is n-Engel. Also, there are nilpotent groups of class n which are not
(n−1)-Engel. For example, given a prime p, the wreath productG = ℤp ≀ℤp is nilpotent
of class p but not (p − 1)-Engel [4, Theorem 6.2].

Conversely, any finite n-Engel group is nilpotent, by a well-known result of Zorn
[9, 12.3.4].

3.2 Nilpotent group identities
The next result is a straightforward application of (1), together with Lemma 1.

Lemma 2. Let G be a nilpotent group of class n > 1 and let a be a nonzero integer. Then,
for all g1, . . . , gn ∈ G, we have

[[g1, . . . , gn−1]a, gn] = [g1, . . . , gn]a

and

[g1, . . . , gn−1, gan] = [g1, . . . , gn]
a.

Then the following proposition holds.

Proposition 3. Let G be a nilpotent group of class n > 1. Then

[g1, . . . , gi−1, g
ai
i , gi⋇1, . . . , gn] = [g1, . . . , gi−1, gi, gi⋇1, . . . , gn]

ai , (2)

for any i ∈ {1, . . . , n}, ai ∈ ℤ\{0} and gi ∈ G.

Proof. We argue by induction on n. The case n = 2 is true by Lemma 2.
Let n > 2. Then G/γn(G) is nilpotent of class n − 1. Moreover, γn(G) is central by

Lemma 1. Hence the induction hypothesis gives

g := [g1, . . . , gi−1, g
ai
i , gi⋇1, . . . , gn−1] = [g1, . . . , gn−1]

ai mod γn(G).

It follows that g = [g1, . . . , gn−1]aihwhere h ∈ γn(G). Since γn(G) is central, applying (1),
we get

[g, gn] = [[g1, . . . , gn−1]aih, gn] = [[g1, . . . , gn−1]ai , gn]

and so

[[g1, . . . , gn−1]ai , gn] = [g1, . . . , gi−1, gi, gi⋇1, . . . , gn]ai

by Lemma 2.
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Let G be a nilpotent group of class n > 1 and g1, . . . , gn ∈ G. According to Proposi-
tion 3 for any a1, . . . , an ∈ ℤ\{0}, we have

[ga11 , . . . , g
an
n ] = [g1, . . . , gn]

∏n
i=1ai .

Therefore, we can construct the multilinear map e : Gn → G given by

e(g1, . . . , gn) = [g1, . . . , gn].

Similarly, given x ∈ G, we can consider the multilinear map e󸀠 : G(n−1) → G given
by

e󸀠(g1, . . . , gn−1) = [x, g1, . . . , gn−1].

Further, assuming that G is not (n − 1)-Engel, one can take x ∈ G in such a way that e󸀠
is nondegenerate. In fact, there exists g ∈ G such that [x,n−1 g] ̸= 1.

4 Multilinear cryptography using nilpotent groups
Here, we propose two multilinear cryptosystems based on the identity (2) in Proposi-
tion 3.

4.1 Protocol I
First, we generalize the bilinear map which has been mentioned in [7], to multilinear
(n-linear) map for n ⋇ 1 users. Let A1, . . . ,An⋇1 be the users with private exponents
a1, . . . , an⋇1, respectively. Given an integer a ̸= 0, the main formula on which our key-
exchange protocol is based on, is an identity in a public nilpotent group G of class
n > 1 (see Proposition 3):

[g1a, g2, . . . , gn] = [g1, g2a, . . . , gn] = [g1, g2, . . . , gna] = [g1, g2, . . . , gn]a.

The usersAj’s transmit in public channel

giaj , for i = 1, . . . , n; j = 1, . . . , n ⋇ 1.

The key exchange works as follows:
– The userA1 can compute [g1a2 , . . . , gnan+1 ]a1 .
– The userAj (j = 2, . . . , n) can compute

[g1a1 , . . . , gj−1aj−1 , gjaj+1 , gj⋇1aj+2 , . . . , gnan+1]
aj .

– The userAn⋇1 can compute [g1a1 , . . . , gnan ]an+1 .

The common key is [g1, . . . , gn]∏
n+1
j=1 aj .
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Example: Trilinear cryptography using nilpotent groups of class 3. Let A,B, C,D be
the users with private exponents a, b, c, d, respectively. The users A, B, C, and D

transmit in public channel

xa, ya, za, xb, yb, zb, xc, yc, zc, xd, yd, zd respectively.

The key exchange works as follows:
– The userA can compute [xb, yc, zd]a.
– The user B can compute [xa, yc, zd]b.
– The user C can compute [xa, yb, zd]c.
– The userD can compute [xa, yb, zc]d.

The common key is [x, y, z]abcd.

4.2 Protocol II
Let G be a public nilpotent group of class n⋇ 1 which is not n-Engel (n ≥ 1). Then there
exist x, g ∈ G such that [x,n g] ̸= 1. Suppose that n ⋇ 1 usersA1, . . . ,An⋇1 want to agree
on a shared secret key. Each userAj selects a private nonzero integer aj, computes gaj
and sends it to the other users. Then:
– The userA1 computes [xa1 , ga2 , . . . , gan+1 ].
– The userAj (j = 2 . . . , n), computes [xaj , ga1 , . . . , gaj−1 , gaj+1 , . . . , gan+1 ].
– The userAn⋇1 computes [xan+1 , ga1 , . . . , gan ].

Hence, again by Proposition 3, each user obtains [x,n g]∏
n+1
j=1 aj which is the shared key.

5 Security and platform group
The security of our protocols is based on the discrete logarithm problem (DLP). The
ideal platform group for our protocols must be a non-abelian nilpotent group of large
order such that the nilpotency class is not too large and the DLP in such a group is
hard.

In [10], Sutherland has studied the DLP in finite abelian p-groups, and showed
how to apply the algorithms for p-groups to find the structure of any finite abelian
group.

In a series of papers byMahalanobis, the DLP has been studied for finite p-groups
but mostly for nilpotent groups of class 2 [6, 8]. In particular, in [7], Mahalanobis and
Shinde proposed p-groups of class 2 in which the platform is not practical as showed
by the authors.
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