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Abstract. The compressor adiabatic performance map is important for turbocharger matching 

with engine. Its accuracy was affected by the heat transfer phenomenon in the turbocharger. 

The corrected method for compressor performance measurement which affected by heat 

transfer was widely investigated by some authors. The aim of this work was to measure 

compressor adiabatic efficiency by simplified method, and estimated the effects of internal heat 

transfer on compressor efficiency. This approach only added five temperature sensors on the 

turbocharger based on the standard instruments and doesn't need other special instruments, and 

the heat transfer properties of turbocharger and compressor adiabatic efficiency could be 

calculated by lumped model. This method was validated by other experiments. Finally, the heat 

absorbed by compressor under different operating conditions was analyzed by this method. The 

results showed water-cooling was main influenced factor, and water-cooling was a barrier for 

heat transfer from turbine to compressor.. 

1. Introduction 

Turbocharger plays an dominant part in emission and energy reduction of road vehicles. The precise 

adiabatic efficiency of compressor is very important for engine simulating at the stage of engine 

design. The efficiency of compressor which was measured at standard test bench is not exacted due to 

heat transfer in turbocharger [1]. The traditional way to calculate the compressor efficiency, based on 

a ratio of adiabatic and actual of compressor enthalpy from measurements of a test-bench showed in 

Eq.1, the detailed about Eq.1 was presented in the reference [1], provides inaccurate results. This 

inaccuracy comes from the no consideration of heat fluxes effect in the turbocharger [1]. In order to 

corrected results of measured, a lot of experts and scholars did a great deal of researches for behavior 

of turbocharger heat transfer in the last few decades [2]. 

  
      

      
 
          

                

                 
                               (1) 

 

One dimensional lumped model of turbocharger heat transfer was studied by some authors. 

Turbochargers were simplified and divided into different one-dimensional nodes in the lumped model, 

convective or thermal conductance were used to connected different nodes of turbocharger [3]. The 
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model of calculation was validated by some experiments. The modeling methodology of one 

dimensional lumped model was given by Reyes-Belmonte et.al [4] and Shaaban et.al [5] .The heat 

transfer property of turbocharger was needed to measure by some particular instruments. The special 

oil as work medium was used in turbine and compressor in order to measure heat transfer properties of 

turbocharger. Turbocharger was often independent tested on test bench. In Ref. [6], a turbocharger was 

installed on a diesel engine and experiments performed at different engine speeds and loads. The test 

results showed that the temperature of the engine exhaust gases has a large impact for turbocharger 

internal heat transfer. 

The lumped model was analyzed and validated by some researchers, and some other authors 

applied this method to correct the turbocharger performance of measurement[7-14]. The special and 

expensive instruments were required in the lumped model solving process. 

The measured procedure of compressor adiabatic efficiency that applied in the previous studies is 

complex. Some simple and exact method was needed to investigate. The exacted and simplified 

methodology to measure adiabatic efficiency for compressor was presented in this paper. 

Experimental tasks was described in the first part, focusing on the description of sensors and 

equipment used, the testing methodology and the analysis of testing results were also reported in this 

part. The second part of this paper is focusing on validation for the testing methodology. The 

quantities of heat absorbed by compressor was analyzed for different operating conditions. The main 

conclusions of this work are summarized in the final part of this paper. 

2. Experiment investigation 

2.1. Test rig 

The turbocharger used in this study was for gasoline engine, with turbine and compressor wheel 

diameters of 37 mm and 44 mm respectively. The experimental activity was developed at Shouguang 

Kangyue Turbocharger company. A schematic of the test rig is presented in Figure 1. This test bench 

is able to simulate the conditions of engine intake and exhaust system. The mass flow rate of 0.02-1.0 

kg/s fresh air supplied by compression engine to turbine. The compressor sucks fresh air from 

environments and the operating states were set by valve (up and down stream of compressor) 

controlling. The hot air of turbine was heated by neutral gas in the combustion chamber. An 

combustor allows performing experimental investigations with turbine temperature up to 1100℃. An 

independent lubrication and water supply system is installed. System inlet pressure and temperature 

could be independent modified. The efficiency of compressor is calculated from the temperature of 

inlet and outlet, and the turbine efficiency is calculated by compressor power consumption. Data 

acquisition and actor controlling of this test rig was performed by NI (National instruments) hardware. 

The software of this test rig is developed by the company of KRATZER. Efficiency and other main 

operating parameters of turbocharger was recorded by automatic measured system of test rig. 

The static air pressure was estimated by the piezo-resistive transducers with an accuracy of ±0.3% 

of full scale. The air temperature was measured by K type thermocouples (accuracy ± 0.4% of full 

scale). The thermal mass flow meter with an accuracy of  ±1% at full scale was used to measure 
fresh air mass flow rate of compressor and turbine. The turbocharger rational speed was measured by 

an sensor (ACAM PICOTURN-BM) installed on the compressor volute and was able to detect the 

compressor wheel revolution with an accuracy of ±0.2% of full scale. 
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Figure. 1 Layout of turbocharger test bench 

Additional temperature sensors were installed on components of turbocharger due to the process of 

turbocharger heat transfer is complex. The static temperature of nodes were measured by these sensors. 

Values of those sensors measured were used to reflect temperature distribution of turbocharger under 

different conditions, the heat transfer of model was validated by those values to a certain extent. In 

order to measure temperature of nodes C, three K type thermocouples (accuracy ± 0.4 % of full scale) 

were installed at the volute compressor. Two metal temperatures were also measured on the bearing 

casing (nodes of H1 and H3), one nearing the turbine casing and another nearing the compressor 

casing. Details of the thermocouple installation are given in Figure 2 and Figure 3. The temperature of 

turbine surface was measured by infrared thermometer (accuracy ± 1.5% of full scale) due to K type 

thermocouple was difficult to fix on the high temperature surface.   

 

Figure 2. Compressor volute         Figure 3. Bearing casing 

2.2. Experimental study 

All performed measurements were processed in order to obtain compressor adiabatic-efficiency (AE). 

The definition of AE as seen in Ref [12]. To ensure the accuracy of AE, the heat transfer was 

considered in the        of measured,        is an important parameter for AE, these shown in Eq.(2)-

(3): 

                                                                                 (2) 

                                                                            (3) 

where:        : corrected temperature of compressor outlet; 

  : temperature difference between measured and corrected; 
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 : mass flow rates of compressor; 

  : heat of compressor obtained; 

In order to set and validate the model of proposed, main operating parameters of turbocharger were 

measured under different conditions. The compressor obtained heat was affected by compressor and 

lubricating system operating states. To evaluate heat transfer affected by compressor operating states, 

the compressor work at different rotational speed and compression ratio was performed in the 

experiments. The lubricating states is also related to heat transfer from turbine to compressor, so 

measurements were performed for oil at different inlet temperature and pressure. The turbocharger 

was run with and without water in the experiments due to water is important factor for compressor 

obtained heat from turbine. In order to woken the heat transfer in the turbocharger, the water inlet 

temperature maintain the same as oil inlet temperature. The turbine inlet temperature plays an 

important role in the turbocharger internal heat transfer, three different inlet temperature (500℃, 

600℃, 700℃) of turbine were given under the other conditions maintained constant. 

 Additional temperature sensors were installed on components of turbocharger due to the process of 

turbocharger heat transfer is complex. The static temperature of nodes were measured by these sensors. 

Values of those sensors measured were used to reflect temperature distribution of turbocharger under 

different conditions, the heat transfer of model was validated by those values to a certain extent. In 

order to measure temperature of nodes C, three K type thermocouples (accuracy ± 0.4 % of full scale) 

were installed at the volute compressor. Two metal temperatures were also measured on the bearing 

casing (nodes of H1 and H3), one nearing the turbine casing and another nearing the compressor 

casing. Details of the thermocouple installation are given in Figure 2-3. The temperature of turbine 

surface was measured by infrared thermometer (accuracy ± 1.5% of full scale) due to K type 

thermocouple was difficult to fix on the high temperature surface.   

2.3. Experimental results 

In order to evaluated the effects of heat transfer in the turbocharger, the section of experimental results 

will be make comparing for results with or without water cooling. 
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Figure 4. Temperature difference cooling or no cooling 
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Difference value of temperature between nodes of C and H3 was presented in Figure 4 a ( NC is no 

cooling, C is cooling ). It's shown that temperature difference between nodes of C and H3 was affected 

by the compression ratio, air temperature of turbine inlet and water cooling states. It was direct 

proportion to air temperature of turbine inlet, inverse ratio to compression ratio. This phenomenon was 

caused by internal heat transfer of turbocharger. The quantity of heat obtained by compressor can be 

directed reflected by the temperature difference between nodes of C and H3, so the heat transfer from 

turbine to compressor is higher when compression ratio decrease and turbine inlet temperature 

increase. That heat flux will be partly removed by the coolant liquid in case it exists, so the difference 

is higher at the no water cooling. b and c of Figure 4 show difference value of fresh air temperature 

between compressor inlet and outlet and efficiency of calculated at different conditions. Compressor 

adiabatic efficiency was determined by rational speed and compression ratio of compressor. The 

traditional way to calculate the compressor efficiency, based on compression ratio and outlet 

temperature of compressor, therefore, the same trend was observed in these two pictures. More heat 

was absorbed by compressor under no water cooling due to water is the barrier of heat from turbine to 

compressor. The value of no-cooling is larger than cooling. The compressor outlet temperature and 

efficiency increased when compressor compression ratio increases and it will cause the temperature 

difference between C and H3 decreasing, and the heat transfer from turbine to compressor was woken 

by this phenomenon, therefore, the heat of compressor absorbed is lower when compressor work at 

higher compression ratio operating points. From above analysis, the heat transfer can be separate 

reflected by two different parameters of difference temperature of nodes C and H3 and difference 

value of fresh air temperature between compressor inlet and outlet. The error of calculated efficiency 

was lead by heat transfer in the turbocharger. The heat absorbed by compressor can be calculated by 

solved equation about k and temperature difference of nodes C and H3, difference value of fresh air 

temperature between compressor inlet and outlet. The more detailed solution process was described in 

the section 3. 

3. Turbocharger thermal model 

In order to simplified the complex heat transfer phenomena in the turbocharger, heat has been assumed 

extracted from the exhaust gas of turbine to the fresh air in the compressor before it is expanded in the 

turbine stator (see Figure 5). Water and oil is the barrier to prevent heat transfer from turbine to 

compressor. Turbocharger was simplified into different nodes. The bearing casing was divided into 

three part in order to make sure accuracy of model. The heat transfer in the turbocharger is very 

complex and its affected by the water and oil operating states, the energy obtained from surroundings 

was omitted due to the surface of compressor is small in area and coefficient of heat transfer by free 

convection is little [13], therefore, the heat obtained by fresh air in compressor equalled to volute of 

compressor transfer from bearing casing due to the energy balance. The heat of compressor obtained is 

sampled to nodes H3 transfer to C and heat absorbed by compressor was calculated according to 

Eq.(4.) The temperature of nodes were measured by thermocouples. Details of the thermocouple 

installation are given in Figure 1. In order to solve the value of heat transfer coefficients (K) , the 

different heat transfer conditions were given under compressor operating at the same rotational speed 

and compression ratio (see Figure 5). The form of equation set was presented as Eq. (5)-(6). Because 

compressor adiabatic efficiency only determined by rotational speed and compression ratio, heat 

transfer coefficients (K) of bear casing to compressor volute can solved by Eq. (5)-(6) and not need 

some specific test bench, the value of K is 0.03467818 (unit was omitted and the unit of other variable 

is ISO). Q is the heat of turbine released or compressor obtained. 
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Figure 5. Schematic of turbocharger heat transfer 

QC/Air=( TH3 -TC) *K H1/C                             (4) 

Q=( TH3 - TC)*KH1/C                                    (5) 

Q'= (T'H3 - T'C)*KH1/C                                  (6) 

4. Model validation  
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Figure 6. Efficiencies of no correction 

Table1. Efficiency of correction 
Turbine_inlet_T[℃] 1.34NC [-] 1.34C [-] 1.55NC [-] 1.55C [-] 

500 0.556487974 0.556488 0.699807 0.699807443 

600 0.556487974 0.556488 0.699807 0.699807443 

700 0.556487974 0.556488 0.699807 0.699807443 

 

The validation for corrected method was reported in the below. The comparison of efficiency at with 

or without cooling, different compression ratio and turbine inlet temperature is given in Figure 6. The 

compressor adiabatic efficiency was only determined by the rotational speed and compression ratio of 

compressor under ideal condition. Compressor adiabatic efficiency measured in hot condition is less 

than the cooling condition due to heat transfer in the turbocharger. The value of measured compressor 

adiabatic efficiency also was affected by other operating (e.g. oil operating states, turbine inlet 

temperature, rotational speeds of turbocharger) and geometry parameters. The heat transfer of 

turbocharger also was affected by these parameters. The discrepancy of corrected results between with 

and without cooling is less than 1e-4 as shown in Table 1. The discrepancy was shown in the Table 1 

was caused by four main factors. First of all, some heat dissipated by bearing casing was omitted in 

corrected process. Second factor contributing to the overall discrepancy is that, some compressor 

absorbed heat of radiated by turbine was also neglected in corrected results. Third discrepancy 

influenced factor is that, compressor adiabatic efficiency has tiny difference when fresh air of 

compressor has different temperature state. Another overall discrepancy influenced factor is that, some 

measured error due to the temperature sensor was connected with turbocharger by high temperature 
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glue and some other uncertainty factors in the measured process. This method can be improved in four 

sides of expressed above. 

5. Conclusion 

Traditionally, heat losses have been neglected in the compressor map measured process and the 

behaviour of the compressor has been predicted by direct use of manufacturer maps to interpolate 

without any corrected, therefore, the accuracy of map can't reach up to the requirement of engine 

design. 

This paper reported the exacted methodology to measure efficiency and heat absorbed for 

compressor. This method isn't complex and can be performed at standard test bench of 

turbocharger .The following main conclusions can be drawn: 

(1) Water cooling significantly impacts heat transfer between the compressor and turbine for 

gasoline turbocharger. Temperature of water is more close to temperature of compressor than turbine 

operating temperature. Qc of without water-cooling is three to four times for with water-cooling. 

(2) The improved method gives exact measured results of adiabatic efficiency and Qc of 

compressor that only adding five temperature sensors based on standard test bench of turbocharger. 

Those sensors were used to measure temperature of nodes C and H3. 

 (3) Less quantities heat transfer from turbine to compressor at higher rational speeds due to the 

work range of compressor move to high compression ratio direction. The average temperature of fresh 

air in compressor was increasing when compression ratio increase. The temperature difference 

between nodes C and H3 was woken. Less quantities of heat was absorbed by compressor at higher 

compression ratio corresponding the same reason. 
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