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• Thermal management methods of catalytic converters were analyzed in detail.• Methods based on the control of engine parameters bring significant fuel penalty.• Extra heating devices allow flexibility of heat injection.
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A B S T R A C T

Catalytic converters mitigate carbon monoxide, hydrocarbon, nitrogen oxides and particulate matter emissions
from internal combustion engines, and allow meeting the increasingly stringent emission regulations. However,
catalytic converters experience light-off issues during cold start and warm up. This paper reviews the literature
on the thermal management of catalysts, which aims to significantly reduce the light-off time and emission
concentrations through appropriate heating methods. In particular, methods based on the control of engine
parameters are easily implementable, as they do not require extra heating devices. They present good perfor-
mance in terms of catalyst light-off time reduction, but bring high fuel penalties, caused by the heat loss and
unburnt fuel. Other thermal management methods, such as those based on burners, reformers and electrically
heated catalysts, involve the installation of additional devices, but allow flexibility in the location and intensity
of the heat injection, which can effectively reduce the heat loss in the tailpipe. Heat storage materials decrease
catalyst light-off time, emission concentrations and fuel consumption, but they are not effective if the engine
remains switched off for long periods of time. The main recommendation of this survey is that integrated and
more advanced thermal management control strategies should be developed to reduce light-off time without
significant energy penalty.

1. Introduction

Internal combustion (IC) engines for vehicle propulsion are facing
major challenges due to their relatively high emissions and low effi-
ciency. Nevertheless, mainstream projections indicate that IC engines
will still be widely used for a relatively long period [1], at least as parts
of hybrid electric powertrains. Hence, the automotive industry is
making significant efforts to further reduce IC engine emissions, i.e.,
carbon monoxide (CO), hydrocarbon (HC), nitrogen oxides (NOx) and
particulate matters (PM) [2]. To this purpose, after-treatment systems,
such as three-way catalysts (TWCs) [3], diesel oxidation catalysts
(DOCs) [4], selective catalytic reduction (SCR) systems [5] and diesel
particulate matter filters (DPFs) [6], have been successfully im-
plemented in spark ignition (SI) and compression ignition (CI) engines.

However, as most of the after-treatment systems are catalytic con-
verters, their functionality deteriorates at low temperature, e.g., during
engine cold start and warm up [7]. In fact, catalysts usually convert
harmful emissions only when their temperature reaches certain
thresholds, i.e., the so-called light-off temperature, which is normally
around 250–300 °C for TWCs [8]. Hence, high levels of exhaust emis-
sions are transferred into the atmosphere while the exhaust tempera-
ture is low, during the engine cold start or warm up phases, in which
the catalyst is not fully operational [9]. For example, during a new
European driving cycle (NEDC) from cold conditions, with a total
duration of ~1200 s, the exhaust temperature is typically below the
catalyst light-off level for over 200 s [10]. Up to 80% of CO and HC are
emitted during this period, which is less than 20% of the total duration
of the cycle [11]. In addition, during cold start, a considerable amount
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of gas-phase HC condenses on the surface of the tailpipe and catalyst,
and partially volatilises to the atmosphere without catalytic oxidation
during the following warm up phase [11]. Also the DPFs have re-
generation issues in conditions of low exhaust temperature. In fact, to
maintain DPF performance, periodical or continuous DPF regeneration
is needed to remove the particles accumulated on the filter. In parti-
cular, catalyst soot filters (CSFs) [12], fuel borne catalysts (FBCs) [13],
continuously regenerating diesel particulate matter filters (CR-DPFs)
[14] and catalysed continuously regenerating diesel particulate filters
(CCR-DPFs) [15] show excellent regeneration characteristics only at
temperatures higher than 350 °C.

The thermal management of catalytic converters is a timely topic. In
fact, in the current context of the automotive sector, hybrid electric
vehicles (HEVs) play an increasingly important role. HEVs allow IC
engines to operate more efficiently, and partially recuperate their ki-
netic energy during braking [16]. However, HEVs still face the chal-
lenge of cold start emissions, as HEV engines are usually switched off at
low speed and wheel torque, when the brake specific fuel consumption
is particularly high. This may reduce the exhaust temperature, and thus
the catalyst efficiency. Therefore, the thermal management of the cat-
alyst is important for both conventional vehicles and HEVs.

To add complexity, the interaction between the different types of
after-treatment devices has a major influence on the system perfor-
mance. For example, heat release occurs during the catalytic action of
the DOC, which increases the exhaust temperature. As the DPF re-
generation temperature is much higher than the DOC light-off tem-
perature, the heat release in the DOC helps the DPF regeneration, and
thus the DPF is often located on the downstream side of the DOC. In
production diesel engines, fuel is often injected into the exhaust before
the DOC to achieve DPF regeneration assisted by the heat release of the
DOC catalytic actions [17]. During the DOC operation, part of the NO is
converted into NO2, which contributes to the DPF regeneration [18]
and SCR reaction [19]. The flow through the SCR catalyst also has a
reduction effect on the soluble organic fraction (SOF) contained in the
PM, hence in some implementations the SCR and catalysed DPF are
combined to decrease PM and NOx emissions [20].

A large amount of research has been undertaken to investigate
catalyst characteristics and improve catalyst light-off performance
through appropriate thermal management. Nevertheless, the literature
misses a detailed survey on the thermal management of catalytic con-
verters to decrease exhaust emissions during engine cold start and
warm up. Such gap is covered by this contribution, which reviews the

research and development activities on the topic, and includes a critical
analysis of the different heating methods.

2. Exhaust emissions of IC engines during cold start and warm up

Ref. [20] provided a detailed review on cold start emissions. Several
studies, e.g., Ref. [21] and Ref. [22], report experimentally measured
high CO and HC emissions for both gasoline and diesel engines in cold
start conditions. In the analysed papers the maximum concentrations of
CO and HC ranged from ~950 ppm to ~8400 ppm and from ~220 ppm
to ~28,000 ppm, respectively [22–31]. Such high emissions are caused
by poor cylinder combustion and catalyst efficiency. The particle
number concentration does not significantly vary during cold start,
while it is closely related to engine speed and load [32]. Although less
elemental carbon forms in cold start conditions due to the low cylinder
temperature, much more gas-phase HC converts into liquid-phase par-
ticles. Hence, the drop of HC concentration contributes to PM decrease
in cold start conditions. Ref. [33] also observed high NOx emissions,
mainly caused by low catalyst efficiency. In particular vehicles, such as
the airport shuttle buses, sightseeing buses and urban buses, the ex-
haust temperature can be permanently below the catalyst light-off level.
In ultra-low emission vehicles (ULEVs) [34], 80–90% of the tailpipe HC
emission occurred during the first test cycle in the federal test proce-
dure (FTP) according to Gong et al. [35], and these values can further
increase in super ULEVs.

Given these facts, measures were taken or evaluated to reduce
emissions during warm up by improving: (i) combustion; and/or (ii)
catalyst efficiency. For example, with respect to (i), an appropriate heat
storage or additional heat source can increase the lubricant [36] or
coolant [37] temperature before the engine starts, and effectively raise
the cylinder temperature to reduce CO and HC formation. Also intake
air heating [38] and fuel heating [39] can improve combustion. With
respect to (ii), the typical methods vary the operational engine para-
meters, e.g., they adjust the valve timing, enrich the air/fuel mixture
and adjust the start of combustion. Such methods can effectively de-
crease the catalyst light-off time; nevertheless, IC engine emissions re-
main deteriorated before the catalyst light-off. Hence, to accelerate
light-off, a pre-catalyst device could heat the exhaust.

Among the multiple methods to effectively decrease cold start and
warm up emissions, this paper mainly reviews those based on the
thermal management of the catalytic converters.

Nomenclature

Abbreviations

CA crank angle
CI compression ignition
CO carbon monoxide
CO2 carbon dioxide
CCR-DPF catalysed continuously regenerating diesel particulate

filter
CR-DPF continuously regenerating diesel particulate filter
CSF catalyst soot filter
DOC diesel oxidation catalyst
DPF diesel particulate fliter
EHC electrically heated catalyst
EVO early exhaust valve open
FBC fuel borne catalyst
FMEP friction mean effective pressure
FTP federal test procedure
GDI gasoline direct injection
HC hydrocarbon

HEVs hybrid electric vehicles
IC internal combustion
IVO intake valve opening
NEDC new European driving cycle
NH3 ammonia gas
NO nitric oxide
NO2 nitrogen dioxide
NOx nitrogen oxide
PM particulate matter
POX partial oxidation
SCR selective catalytic reduction
SI spark ignition
SOI start of injection
SOF soluble organic fraction
TWC three way catalyst
ULEV ultra-low emission vehicle
VGT variable geometry turbine
VNT variable nozzle turbine
VVT variable valve timing
λ equivalent ratio
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3. Catalyst performance during cold start and warm up

TWCs, DOCs, SCR systems and DPFs are successful commercial
products that reduce primary exhaust emissions, i.e., CO, HC, NOx and
PM. In particular, TWCs decrease SI engine emissions in conditions of
stoichiometric air/fuel ratio. DOCs achieve the oxidation of CO and HC
with a 40–60% conversion efficiency, and also contribute to the de-
crease of PM emissions both in mass and number, as liquid-phase HCs
are one of the main components of PM [40]. In DOCs part of the nitric
oxide (NO) is oxidized into nitrogen dioxide (NO2), which contributes
to PM oxidation during continuous DPF regeneration, and promotes the
NOx catalytic reaction with ammonia gas (NH3) in SCRs. Only the DPF
implementations including fuel additives and catalyst coating, used in
the DPF channels as passive regeneration methods, are considered in
this review.

Exhaust temperature plays an important role in catalyst perfor-
mance. It tends to be rather low in real driving cycles, which causes low
catalyst efficiency [41]. Robinson et al. [10] showed the inlet exhaust
temperature history of a DOC during NEDCs from cold and hot condi-
tions. During the cold NEDC, the inlet temperature was below 130 °C in
the majority of the first 400 s, and temperatures greater than 180 °C
were achieved only in a small portion of the hot driving cycle. SCR
devices have similar problems, as in Ref. [42] more than 1000 s were
required to reach the SCR light-off temperature.

Catalyst performance during cold start and warm up differs with
fuel, which influences the cylinder combustion and exhaust tempera-
ture. The exhaust temperature for SI engines is much higher than that of
CI engines, which causes shorter TWC light-off time in cold start con-
ditions. For example, in Ref. [21] it took less than 100 s for the exhaust
temperature to reach 200 °C for a four stroke SI engine. Blending ga-
soline with ethanol increases the oxygen content, which causes higher
exhaust temperature, as well as high specific fuel consumption due to
the low heating value of ethanol [30]. The viscosity of biodiesel, i.e., a
blend of diesel and soybean-oil, is higher than that of common diesel.
This brings disadvantages in terms of poor air/fuel mixture formation,
with a consequent catalyst light-off delay, though biodiesel has high
oxygen content [43]. In hydrogen enriched compressed natural gas
(HCNG) engines, the hydrogen promotes combustion with high flame
propagation velocity [44], which brings faster catalyst light-off with
respect to compressed natural gas (CNG).

4. Overview of thermal management methods to reduce cold start
and warm up emissions

The high emissions during cold start and warm up primarily depend

on low in-cylinder and exhaust temperatures, and thus effective thermal
management of the catalytic converter must address these problems
[45]. However, very high catalyst temperatures increase the possibility
of thermal sintering, and usually imply energy penalties. Therefore,
thermal management design is a trade-off among catalyst efficiency,
fuel consumption and thermal sintering, and should holistically con-
sider the engine, the heating device (if applicable) and the catalyst.

Various thermal management methods were investigated in the
literature. A simple solution is to locate the catalyst closer to the engine;
however, after warm up the high exhaust temperature may cause
thermal sintering [55], which shortens catalyst lifetime [56] and
compromises its performance [57]. Extra combustion devices [58],
higher idle speed [59], variable valve timing [47], retarded ignition
timing [60], heat storage devices [61] and electrically heated catalysts
(EHCs) [62] have been employed to improve light-off performance
during warm up.

Table 1 reports examples of results of different thermal management
methods from the literature. The light-off time decrease ranged from
20% to 90%, with significant reductions of the maximum emission
concentrations.

5. Catalyst heating methods based on IC engine parameters

The adjustment of the operational engine parameters can rather
easily achieve high exhaust temperatures in a short time, however it
makes the engine deviate from the optimal working conditions. The
next subsections critically analyse the effect of such methods.

5.1. Start of combustion delay

5.1.1. Spark ignition engines
Retarded ignition timing is a common and effective method to in-

crease the exhaust temperature without extra devices [63]. However, it
reduces the constant volume combustion and leads to more unburned
fuel in the exhaust pipe, with subsequent deterioration of engine power
and efficiency.

Fig. 1 shows an example of light-off time and fuel consumption
characteristics as functions of the retarded ignition timing, expressed
with respect to the calibrated engine ignition timing (0 ° CA). The light-
off time decreased by 60 s for a retarded ignition timing of 10 ° CA, with
a ∼10% fuel consumption increase, while the fuel penalty to achieve a
catalyst light-off time reduction of 86 s was ∼50%. Given its significant
fuel penalty, retarded ignition timing should be applied with modera-
tion and combined with other heating measures.

Table 1
Overview of the catalyst performance improvement associated with different thermal management methods.

Thermal management methods Concentration/ppm or conversion efficiency/% Light-off time reduction or emission reduction

Without thermal management With thermal management

CO HC NOx CO HC NOx

Start of combustion delay [46] n.a. n.a. n.a. n.a. n.a. n.a. ∼80%t

Higher idle speed [35] n.a. n.a. n.a. n.a. n.a. n.a. ∼90%t

Variable valve timing [47] n.a. n.a. n.a. n.a. n.a. n.a. ∼30%a

Air/fuel ratio adjustment [48] ∼45% n.a. n.a. ∼60% n.a. n.a. n.a.
After-treatment layout [49] n.a. n.a. n.a. n.a. n.a. n.a. ∼26%t

Burner [50] n.a. n.a. n.a n.a. n.a. n.a ∼40%t

Reformer [51] ∼5500c ∼1400c 1230c ∼1500c ∼200c 220c ∼50%t

Thermal energy storage device [52] ∼2000c ∼480c n.a ∼1200c ∼395c n.a ∼70% t

EHC [53] n.a n.a 42e n.a n.a 62e ∼50%t

Coolant and lubricating oil heating [54] n.a. n.a. n.a. n.a. n.a. n.a. ∼20%a

a Cumulative emission reduction.
c Maximum concentration during cold start.
e Conversion efficiency.
t Light-off time reduction.
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5.1.2. Compression ignition engines
The start of fuel injection influences the heat release rate, and is

closely related to the engine power output and exhaust temperature.
Similarly to the retarded ignition timing, the late fuel injection causes
less fuel to combust in the power stroke, and more unburned fuel is
emitted to the atmosphere. The SCR is usually positioned downstream
of the DOC and DPF, which means that the expansion in the turbine and
the long distance between the exhaust valve and the SCR lead to sig-
nificant heat loss. Cavina et al. [64] optimised the start of injection
(SOI) and the opening of a variable nozzle turbine (VNT) to achieve fast
SCR temperature increase with limited fuel penalty. With the SOI
control strategy in Ref. [60], the light-off time decreased from ∼900 s
to ∼300 s with only 1.47% fuel penalty; however, 300 s are still a long
light-off time.

5.2. Higher idle speed and load

Higher idle speeds imply more fuel injected into the cylinder, which
means that additional exhaust energy heats the catalyst during warm up
before being dissipated in the atmosphere, while fuel consumption in-
creases. Fig. 2 shows the catalyst inlet temperature profiles for an SI
engine at different idle speeds [35]. The temperature was still below
200 °C after a 75 s warm up at an idle speed of 1400 r/min. Even with
the highest idle speed, the temperature ramp rate was insufficient to
achieve fast catalyst light-off.

Compared with higher idle speed, increased load during the warm
up of an HEV engine implies less fuel penalty and faster temperature
increase [35]. The additional mechanical power can be used by the
electric motor to recharge the HEV battery [65].

Ding et al. [66] improved the thermal management of the catalyst of

a six-cylinder diesel engine by deactivating three cylinders and
adopting “flexible valve motion” in loaded conditions. The cylinder
deactivation increased the load of the three active cylinders, which
caused lower exhaust flow rate at higher temperature. Only 2% fuel
penalty was measured for an exhaust temperature increase from
∼190 °C to ∼310 °C, with respect to the six-cylinder operation without
thermal management, while, a 39% fuel consumption reduction was
achieved in comparison with the six-cylinder operation at ~310 °C. No
fuel penalty was obtained when the cylinder deactivation was com-
bined with “flexible valve motion,” while the exhaust temperature in-
creased from ∼120 °C to ∼200 °C. Based on these results, such method
is practical to achieve fast catalyst light-off without additional fuel
consumption.

5.3. Variable valve timing, wastegate control, variable nozzle turbines and
variable geometry turbines

Variable valve timing (VVT) has been widely applied by the auto-
motive industry to improve engine performance. VVT is also an alter-
native method to increase exhaust temperature during cold start. In
fact, late intake valve opening (IVO) implies less fresh air into the cy-
linders, which leads to richer air/fuel mixture in CI and GDI engines,
while early exhaust valve opening (EVO) reduces the exhaust expansion
and increases its temperature. These two measures cause post-oxidation
and fast catalyst light-off, which in Ref. [47] contributed to ~30% HC
emission reduction with respect to the baseline engine (Fig. 3). As HC is
one of the main ingredients of PM, in the same study the HC reduction
also caused a ~28% PM reduction. The decrease of PM, especially
evident during cold start, is mainly related to the nucleation mode
particles that consist of inorganic salt and organic compounds. The
drawback is that both late IVO and early EVO reduce thermal effi-
ciency. Roberts et al. [67] adopted early EVO for the thermal man-
agement of the catalytic converters of a CI engine. The exhaust tem-
perature increase ranged from 30 °C to 100 °C for early EVO values from
0° to 90° with respect to the calibration value, bringing a ~5% decrease
of brake thermal efficiency during warm up for the 90° case.

Modern IC engines tend to have turbines with high expansion ratios
to increase power density. The exhaust temperature significantly de-
creases after the expansion in the turbine, especially in cold start con-
ditions, when the volute and blades of the turbine are cold. During
warm up an effect similar to that of early EVO can be achieved by: (i)
appropriate control of the wastegate opening to partially bypass the
turbine; (ii) a variable nozzle turbine (VNT); or iii) a variable geometry
turbine (VGT), where (ii) and (iii) increase the opening. However, all
these methods imply substantial reductions of the available engine
power in cold start conditions. The e-boost [68] could attenuate this
effect, by using the electric supercharger during cold start and the
turbocharger after engine warm up. As the literature on the topic is very
limited, the e-boost application needs further investigation to discover
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its potential.

5.4. Air/fuel ratio adjustment

Enriching the air/fuel mixture is another method to increase the
exhaust temperature and accelerate catalyst light-off [69]. It should be
noted that after enrichment the air/fuel ratio is still lean for CI engines,
while the ratio is rich for SI engines.

Enriched mixtures increase CO and HC engine-out emissions as the
TWC efficiency is particularly poor during warm-up [24]. The air/fuel
ratio can be increased through late IVO, as described in Section 5.3, and
throttle adjustment. Late IVO is not an available option if the engine
runs at high load.

Enriched air/fuel mixtures cause unburned HC and CO. As the
temperature near the exhaust valve is high enough, secondary air in-
jection into the tailpipe can alleviate the HC increase. For example, Lee
[70] applied enriched air/fuel mixture and secondary air injection to an
SI engine in the first 25 s of the FTP-75 driving cycle, as the majority of
the emissions are produced at the beginning of the driving schedule.
Moreover, the secondary air injection can increase the exhaust flow rate
and decrease the exhaust temperature at the catalyst inlet. Hence, the
cold air injection must be sufficiently far from the catalyst inlet, and
applied at the optimal rate for the specific engine condition. Fig. 4
shows the effect of the equivalent air/fuel mixture ratio and secondary
air injection rate on CO and HC emissions. The CO reduction in the
catalyst increased with the equivalent ratio without the secondary air
injection, because there was less oxidant in the exhaust after the mix-
ture was enriched. For a given equivalent ratio, the pipe-out CO con-
centration decreased with the secondary air injection because of the
post-oxidation and improved thermal condition of the catalyst. After
the secondary air injection, thermal oxidation (CO and HC oxidation
upstream of the catalyst) increases especially for higher air injection
rates, with CO thermal oxidation percentages from cylinder to catalyst
in excess of 50% [70]. For high equivalent ratios, also the catalyst light-
off performance improves with the secondary air injection. The CO and
HC oxidation before the catalyst releases significant heat, which further
contributes to the exhaust temperature increase. High equivalent ratios
lead to shorter light-off times but more pipe-out emissions, and sec-
ondary air injection alleviates the emission deterioration. For example,
in the first 25 s of the FTP-75 driving cycle, the cumulative pipe-out
emission is worsened after adopting these methods. The cooling effect
of the secondary air injection is compensated if the injected air is pre-
heated. In Ref. [8] the secondary air was preheated without additional
energy consumption, by using the exhaust after the catalyst, which had
a relatively low temperature after the SCR device, but was still hotter
than the injected air. Other measures, such as thermal insulation,
should be combined to alleviate emission deterioration when fuel

enrichment is used. When the IC engine runs at the stoichiometric ratio,
the catalyst is not in its best operating condition and typically has an
efficiency of 40%~50%.

Air/fuel mixture enrichment is a commonly used technique.
However, Nakayama et al. [48] adopted an air/fuel ratio leaner than
15.5 in an SI engine with the assistance of VVT and electronically
controlled lift to increase the catalyst temperature. Valve timing and lift
controlled the lean combustion and retarded ignition during cold start.
The lean engine operation could increase the intake air velocity and
enhance fuel atomisation, further increasing the burning rate. The HC
reduction reached 45% when the air/fuel mixture was 5% leaner than
the stoichiometric ratio.

5.5. Discussion

Because of their significant fuel penalty, the engine parameter based
methods have a limited potential as thermal management methods on
their own, although these techniques do not require any additional
heating device. In fact, with the current focus on CO2 emission reduc-
tion, these are low performance methods, and can be combined with
the thermal management methods presented in the next sections.
Moreover, based on the rather variegated data from the literature,
which are difficult to compare, objective evaluation indices should be
put forward and systematically used to evaluate the effect of such
methods on catalyst performance improvement, for example in terms of
light-off time reduction and cumulative emission reduction per unit of
additional energy consumption.
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6. Catalyst heating methods independent of engine parameters

6.1. After-treatment system layout

The after-treatment system layout has a major influence on the
thermal behaviour of the catalyst. For example, in Ref. [35] the var-
iation from 28 cm to 15 cm of the pipe length between the exhaust
outlet and the catalyst inlet reduced the light-off time from more than
180 s to less than 80 s. The reduction of the pipe length effectively
decreases the heat loss, but can provoke overheating and thermal sin-
tering in normal conditions, with irreversible catalyst damage. Fig. 5
shows the performance of CSF and CR-DPF systems [71], and also in-
dicates the importance of the after-treatment system layout. In Ref. [77]
the CR-DPF and CSF systems achieved continuous regeneration from a
temperature of 270 °C. The continuous regeneration temperature de-
creased to 250 °C when the DOC and CR-DPF were jointly used, because
of the DOC catalytic reaction and high NO2 concentration.

According to Miao et al. [49], the best way to reduce the SCR light-
off time was to decrease the thermal inertia of the catalyst and move the
SCR upstream. In Ref. [72] the SCR was positioned at the downstream
side of the DOC, and a heating device was coupled with the DOC inlet,
such that the SCR could benefit from the higher exhaust temperature
induced by the heater and the heat release of the HC oxidation in the
DOC. During the FTP-75 driving cycle from cold conditions, the SCR
reached the operational temperature within 100 s, and the NOx emis-
sion reduction was in excess of 90% between 150 s and 300 s. The
thermal behaviour of the DPF was deteriorated when the SCR was lo-
cated at the DOC downstream, because of the heat absorption of the
urea hydrolysis. The DPF and SCR layout had a minor influence on the
PM removal efficiency, but it affected the DPF regeneration conditions.
Miao et al. [49] coupled two small DOCs with the catalytic DPF and
SCR, to simultaneously improve their thermal dynamics, with a com-
promise between DPF regeneration and SCR light-off time. We believe
that, similarly to the solution in Ref. [49], two smaller heaters could be
positioned before the DOC and SCR. The first heater would shorten the
DOC light-off time, while the second heater would significantly im-
prove the SCR thermal dynamics. The power distribution between the
two heaters should be based on the appropriate prioritisation of the
emission reduction (HC, CO and NOx).

6.2. Burners

Similarly to enriched air/fuel mixtures combined with secondary air
injection, after-burner devices form combustible mixture in the tailpipe.
Ma et al. [50] used an after-burner to improve the thermal conditions of
the catalyst, and achieved catalyst light-off in less than 20 s. Additional
fresh air was injected into the exhaust manifold, coupled with unburned
fuel, obtained through appropriate engine calibration, to form the
combustible mixture. The combustion temperature of the mixture in the
after-burner is hard to control, which may lead to catalyst damage and
thermal sintering. Moreover, although the catalyst light-off time is
shortened, this method brings significant fuel penalty. Being in-
dependent of the operating conditions of the engine, the extra burner
allows flexibility in terms of heat injection position. Akcayol et al. [73]
analysed an extra burner heated catalyst applied to an SI engine. The
burner provided excellent emission reduction performance.

In Ref. [74] a diesel vaporiser without secondary emissions was
designed to minimise the complexity and cost of the catalytic DPF re-
generation system during cold start. The theory behind this method is
the same as for burners. Vaporised diesel fuel is injected into the ex-
haust system, so that that the diesel fuel is oxidised by the DOC with
heat released, resulting in DPF regeneration. Compared with the engine
parameter based regeneration, the fuel penalty could be reduced by
50%. This system has the advantages of fast response, low fuel con-
sumption and no effect on the engine power output. Singh et al. [75]
also indicated that the delayed regeneration, with additional PM

cumulated in the DPF, decreased the energy consumption.

6.3. Reformers

Similarly to the extra burners, reformers do not rely on the engine
operating conditions. Kirwan et al. [51] used an on-board reformer to
decrease cold start emissions by pyrolysing the gasoline in rich air/fuel
conditions (richer than the stoichiometric value). The reformer pro-
vided an on-board H2 source at high temperature. Part of the reformed
gas was introduced into the cylinder to improve the combustion, and
the remaining part was injected into the exhaust to heat the catalyst.
Such method causes excellent engine-out and pipe-out emission re-
duction during cold start, at the price of a large fuel penalty. Moreover,
only 10–15% of the gasoline is reformed, and large amount of heat is
transferred to the tail-pipe and atmosphere. To decrease the heat loss in
the tailpipe, the heat injection position can be close to the catalyst inlet.
H2 in the cylinder promotes flame propagation, which improves com-
bustion efficiency with less unburned fuel. Reformers preheating the
catalyst inlet encounter similar problems of fuel penalty and higher CO2
emissions. Reformers operate independently from the IC engine, with
no influence on its power output. The reforming system needs an ad-
ditional reactor and a fuel supply system, which imply high costs and
complexity.

In Ref. [76] a partial oxidation (POX) system, i.e., a small com-
bustion device, was introduced to convert liquid fuel into gaseous
species. This system replaced the fuel supply of the engine during cold
start, with 40–80% HC and CO emission reduction.

6.4. Thermal insulation methods

During cold start and warm up, the quenching and crevice effects on
the cylinder wall and piston head are serious, and lead to high engine-
out emissions, especially for SI engines. Cerit et al. [77] analysed the
effect of partially ceramic coated pistons on the cold start emissions of
an SI engine. In the specific application, the temperature of the ceramic
coating area increased by 100 °C, with a ∼15% reduction of the peak
values of HC emission. Higher cylinder temperatures improve com-
bustion and increase exhaust temperature. In the last century, the
adiabatic diesel engine was investigated to decrease the thermal loss
and improve the thermal efficiency, with the result of high exhaust
temperatures [78].

Similarly to ceramic coated pistons and adiabatic diesel engines,
thermal insulation methods are an alternative solution to improve the
catalyst thermal behaviour by decreasing the exhaust heat loss during
warm up. Although this method leads to significant thermal load and
demanding specifications for the thermal insulation material,
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decreasing the catalyst heat loss through thermal insulation is more
practical than thermally insulating the engine. In fact, a thermal in-
sulation material on the catalyst wall can effectively decrease the heat
loss [79,80]. Nevertheless, in our opinion, such option needs to be
further demonstrated through simulations or experiments, as it can
provoke issues after catalyst light-off.

Burch et al. [79] proposed vacuum insulation and thermal storage
based on phase changing materials to enhance the heat retention of a
catalytic converter. Compared with thermal insulation materials, va-
cuum insulation could effectively alleviate the thermal hysteresis
caused by the thermal capacity of the insulation material. Also, a metal
hydride, with a controllable thermal conductivity ranging from 0.49 to
27W/m2 K, was used to prevent catalyst overheating. The heat stored
in the phase changing material during the vehicle operation reduced
the light-off time with no energy penalty. The vacuum insulation of the
catalytic converter was also simulated by Daya et al. [80], with results
showing 26% and 48% CO and HC emission reductions during warm
up. According to [81], such method can keep the catalyst temperature
above 300 °C for at least 12 h once the IC engine is switched off. In
addition to decreasing the heat loss, catalyst carrier materials with low
thermal capacity, i.e., typically ceramic materials, have a high tem-
perature ramp rate for the same absorbed heat. Metal carriers have low
thermal capacity, however they are usually implemented in a fragile
honeycomb structure, and require a noble material coating, which is
rather difficult to manufacture.

6.5. Heat storage materials

Gökçöl et al. [61] reviewed energy storage systems based on phase
changing materials for IC engine and catalyst preheating, including
analysis of the suitable storage materials and the structure of the de-
vices. However, the equipment is complex, and is difficult for phase
changing materials to keep the temperature high for long, i.e., when the
IC engine is off. Also, it takes significant time to store the thermal en-
ergy if the phase changing material is cold. Such devices are more
practical for vehicles running regularly for long time at low speed, for
example urban buses and airport shuttle buses.

6.5.1. Application to the IC engine
IC engines waste almost 50% of the heat through the exhaust,

coolant and lubricating oil. Heat storage materials can be used to par-
tially recuperate thermal energy after the engine is warm, for pre-
heating the IC engine, i.e., for warming it up before it is switched on.

Gumus [52] used Na2SO4·10H2O as heat storage material to preheat
a four-cylinder gasoline engine through its coolant, so that the engine
temperature increased by 17.4 °C, with 64% and 15% reduction of the
CO and HC concentrations at the engine output. Coolant preheating
increases the cylinder and piston temperatures, which decreases the
quenching and crevice effects on the engine-out emissions, improves
the air/fuel mixture and increases the exhaust temperature. In the ex-
ample shown in Fig. 6, the emission reduction in the exhaust pipe was
caused by the improved post-oxidation and catalyst performance. In the
first 420 s the combustion improvement dominated the emission re-
duction. The HC concentration difference before and after the catalyst
became more significant once the catalyst reached 200 °C. The exhaust
temperature benefit achieved through coolant preheating was limited,
i.e., preheating had a weak effect on catalyst performance, while it
enhanced fuel economy by improving combustion. In our opinion,
coolant preheating should be combined with catalyst preheating to si-
multaneously increase engine and catalyst temperatures.

The benefits of preheating the engine also include reduced friction
losses. This aspect is especially important during warm up, when, be-
cause of the low temperature, the viscosity of the lubricating oil is
usually high, which increases the friction mean effective pressure
(FMEP) and leads to low mechanical efficiency [82].

6.5.2. Application to the catalytic converter
Korin et al. [83] investigated a thermal capacitance based on phase

changing materials, integrated into the catalytic converter to maintain
the catalyst temperature during engine stops. The phase transition
temperature was slightly higher than the catalyst light-off temperature.
Under normal operating conditions, part of the thermal energy of the
exhaust gas was stored in the device, which preheated the catalyst
before the engine was switched on. This method has the advantage of
not causing additional energy consumption. However, the heating
profile associated with the device is not flexible and the temperature
ramp rate depends on the hardware design. What is worse, the catalyst
light-off time will be prolonged if the heat storage material is cold after
a long engine stop. Gumus et al. [84] showed that the case study heat
storage system worked only for engine stops shorter than 15 h.

6.6. Electrically heated catalysts

Electrically heated catalysts (EHCs) are an effective method to re-
duce exhaust emissions and fuel consumption. Andre [85] observed
that the temperature of the lubricating oil and coolant in one third of
the considered trips (a database of 55 vehicles along 10,000 trips was
considered) was lower than the fully warm level, which promoted the
EHC adoption during cold start and warm up. Knorr et al. [86] high-
lighted the potential CO2 and exhaust emission reduction benefits for
HEVs equipped with EHCs coupled with advanced emission control
strategies.

Pace et al. [60] indicated that the thermal energy to cause a given
catalyst temperature increase through an EHC device is ~40% of the
energy of the additional injected fuel for achieving the same effect
through an engine parameter based method. In fact, an electric heater

Fig. 6. Examples of HC and CO emission profiles with and without preheating
(reproduced from Ref. [52]).
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can directly heat the catalyst rather than the exhaust, and less energy is
wasted with respect to the engine parameter based methods. Overall,
EHCs provide high efficiency and are considered compatible with the
2020 CO2 targets [87]. The transient response of EHCs is better than for
thermal energy storage, because of their heat injection flexibility and
independence from the IC engine operating conditions. EHCs are
especially convenient in HEVs, in which they consume the energy
stored in the battery during regenerative braking and cruising. Never-
theless, the EHC consumes electric energy, which is eventually gener-
ated from fuel consumption. As the literature does not cover such topic
in detail, the overall efficiency improvement associated with the EHC,
in comparison with other methods such as additional fuel injection,
needs further investigation.

With respect to the EHC configurations, Pfahl et al. [88] integrated a
heater into a hydrolysis catalyst with upstream urea injection to achieve
a 65–70% NOx conversion rate. This method could effectively resolve

the urea evaporation and hydrolysis problems during cold start. As the
heating position for the hydrolysis catalyst was at the downstream of
the DPF and the DPF regeneration temperature was much higher than
that of the SCR, extra thermal management methods could have been
implemented for fast DOC and DPF light-off, such as another heater or
post injection. Culbertson et al. [89] adopted the same method with an
effective control strategy to decrease the NOx emissions during cold
start and manage the exhaust temperature for improving the catalytic
process [89]. The combination of DOC and CSF was effective to achieve
DPF regeneration without additional heat injection when the DOC was
operating above its light-off temperature [90]. However, the same set-
up was ineffective during cold start; hence, heat injection was necessary
to achieve DPF regeneration. Williamson et al. [91] developed a cata-
lytic DPF regeneration device based on an electrical heater integrated
with the DPF to heat the upstream exhaust. Gonze et al. [92] im-
plemented a cold start heating system for a diesel engine, targeting the
thermal management of the SCR and NOx emission reduction. The
heating element was positioned at the SCR inlet with a control strategy
based on the SCR temperature.

A novel EHC configuration was proposed in Ref. [93], in which the
device consisted of two heaters with different volumes and heating
powers, as shown in Fig. 7(a). The larger one was used for heating the
catalyst during cold start and warm up, while the small heater was more
often used in the regular start-stop conditions to keep the catalyst in its
high efficiency region, i.e., for post-heating. However, it should be
noted that the larger heater was located at some distance from the
catalyst, which may lead to additional energy loss during cold start.
Alternatively, the whole heating device could consist of several small
volume units, to be switched on and off depending on the operational
requirements.

In order to achieve fast catalyst light-off, Ramanathan et al. [93]
also divided the TWC into a smaller light-off catalyst and a main cat-
alyst, as shown in Fig. 7(b). Such configuration shortened the catalytic
converter light-off time because of the small thermal capacity of the
light-off catalyst, which was activated first. The catalytic reaction of the
light-off catalyst provided extra thermal energy for heating the main
catalyst. Due to the small volume of the light-off catalyst, the tem-
perature increase can be rather rapid, which, without appropriate
control, enhanced the possibility of thermal sintering.

Fig. 8 shows an example of exhaust temperature profile with and
without EHC during a part of the NEDC [42]. The EHC shortened the
TWC light-off time from 60 s to 15 s, and the maximum temperature
value was 430 °C. The system response would have been further im-
proved by a more advanced EHC control strategy, as the specific con-
troller applies a constant heating power well beyond the catalyst light-
off.

Horng et al. [94] compared the light-off times with an EHC and a
fuel enrichment method, and found that the time with the EHC was less
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Fig. 7. Two novel EHC configurations (reproduced from Ref. [91]).
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than 180 s, shorter than through fuel enrichment. In the EHC, the heater
power determines the profile of the exhaust temperature increase. Cu-
mulative HC emissions for different EHC heating powers are shown in
Fig. 9 [92]. The specific catalyst took only 60 s to reach 200 °C with a
heating power of 3 kW, 70 s for 1 kW, and 150 s without EHC. The
cumulative CO emission reduction was more than 50% for the 1 kW
case.

In general, most of the currently proposed EHC heating control
strategies are rather basic, i.e., they do not consider engine conditions
and exhaust temperature. A poor control strategy may also cause
thermal sintering of the catalyst. Ideally, the EHC heating power should
vary with the exhaust temperature profile and flow rate through con-
tinuous feedback control, rather than being constant, e.g., the power
may decrease during warm up. Also, the EHC should be switched off
after the engine reaches its warm condition, rather than operating for a
constant duration. We believe that further work should be carried out to
implement more advanced EHC controllers and devices, based on a
trade-off between exhaust temperature increase, energy and fuel con-
sumption, catalyst efficiency and thermal sintering prevention. Such
EHC controllers should be holistically designed, to integrate the engine
parameter based methods as well. For example, in conditions of high
engine load, the power output should have the priority even at the cost
of catalyst performance. Moreover, model predictive strategies in-
cluding consideration of the expected vehicle operating profile should
be evaluated. Finally, appropriate EHC performance indicators should
be proposed, for example in terms of cumulative emission reduction per
unit power (%/kW) and light-off time reduction per unit power (s/kW).

6.7. Improved thermal management of the coolant and lubricating oil

The coolant and lubricating oil warm up time greatly influences the
IC engine and catalyst performance. In fact, fast engine warm up de-
creases the catalyst light-off time. Effective methods to achieve fast
coolant warm up are based on electric heaters controlled by thermostats
[95], electric pumps [96] and heat storage materials [61]. For example,
in Ref. [54], ~10% HC and ~20% CO emission reductions were ob-
tained with an electric coolant pump, which adjusted the coolant
temperature from ~90 °C to ~110 °C. An electric heater, controlled by a
thermostat, preheated the coolant before engine cranking, which sig-
nificantly decreased the engine warm up time. For heat storage mate-
rials the reader can refer to Section 6.5.

Similarly to the coolant, low oil temperature causes high lubricant
viscosity, which leads to high fuel consumption and emissions. For a
specific application, the maximum friction losses in the warm up pro-
cess were 2.5 times higher than in warm conditions [97]. Waste heat
recovery [98], heat storage materials [52] and controllable electric oil
pumps [99] were used to enhance the thermal dynamics of the oil. Di
Battista et al. [98] indicated that the maximum exhaust temperature
increase was in excess of 200 °C after using a heat exchanger to heat the
oil with the waste heat from the exhaust. This was also beneficial to the
thermal dynamics of the coolant.

The conclusion is that coolant and lubricating oil heating can ac-
celerate catalyst light-off. The effect of coolant and lubricating oil
heating on catalyst thermal conditions should be further explored to
optimise catalyst performance during cold start, possibly including
thermal management methods of the catalytic converter as well.

7. Conclusions

IC engine emissions are associated with environmental and health
problems, which have led to the promulgation of stricter emission
regulations. Significant emission reductions have already been achieved
for engines operating in normal conditions. However, the emissions
during cold start and warm up are still significant, because of the ser-
ious engine-out emissions and weak catalyst performance due to the
low cylinder and exhaust temperatures. Based on the available data, in

cold start conditions the maximum pipe out concentrations of CO and
HC range from ~950 ppm to ~8400 ppm and from ~220 ppm to
~28000 ppm, respectively.

This paper reviewed thermal management methods for fast catalyst
light-off, with the purpose of decreasing cold start and warm up emis-
sions. The literature shows that through appropriate methods the cat-
alyst light-off time improvement was in the 20–90% range, while the
reduction of the maximum emission concentration exceeded 90%.

Burner devices and engine parameter based methods shorten the
catalyst light-off time by improving its thermal management, further
decreasing exhaust emissions in cold start and warm up conditions.
However, these methods often imply high fuel penalty as significant
heat is transferred to the atmosphere though the tailpipe, particularly
when the engine is far from its optimal operating conditions. For ex-
ample, the heat loss through the turbine volute is an important factor
causing exhaust temperature decrease, and thus low catalyst tempera-
ture. Measures such as wastegate, VGT and VNT can be applied to de-
crease the expansion ratio during cold start and warm up, but they may
cause engine power reduction and additional fuel consumption. From a
technical viewpoint, the e-boost has the potential to be a better solution
to balance exhaust temperature, engine power output and fuel
economy.

Compared with the previous methods, thermal management using
heat storage materials resolves the trade-off between energy con-
sumption and emission reduction by preheating the engine coolant,
lubricating oil and catalytic converter. However, in general, such
techniques bring limited benefits in terms of catalyst performance im-
provement. Heat storage systems are more practical for vehicles that
are frequently used, to prevent the heat storage material from losing its
heat.

Thermal insulation material coatings can be applied to the catalyst
and exhaust pipe, for reducing the heat loss. Low thermal capacity
materials for the catalyst carrier are useful to swiftly increase the cat-
alyst temperature. However, they also increase the risk of thermal
sintering.

With the most obvious advantage of flexibility of heat injection in
terms of position and flux, EHCs are also characterised by high energy
utilisation efficiency and low thermal energy transfer to the atmo-
sphere. EHCs have excellent catalyst light-off time reduction capability
and effectively decrease exhaust emissions. A lack of advanced EHC
control strategies was identified in the survey, together with a gap in
terms of evaluation indices for the objective assessment of the thermal
management of the catalyst. Such indicators should consider the trade-
off among light-off time improvement, cumulative emission reductions
and fuel consumption, e.g., they could include the cumulative emission
reduction per unit power (%/kW) and the light-off time reduction per
unit power (s/kW). Moreover, multiple thermal management methods
should be combined to optimise the thermal behaviour of the catalyst,
and integrated model predictive control strategies should be introduced
and assessed to further improve performance.
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