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Abstract

Zero-inflated ordered probit (ZIOP) and middle-inflated ordered probit (MIOP) models are

finding increasing favour in the discrete choice literature. We propose generalisations to these

models–which collapse to their ZIOP/MIOP counterparts under a set of simple parameter

restrictions–with respect to the inflation process. These generalisations form the basis of a

new specification test of the inflation process in ZIOP and MIOP models. Support for our

generalisation framework is principally demonstrated by revisiting a key ZIOP application

from the economics literature, and reinforced by the reassessment of an important MIOP

application from political science. Our specification test supports the generalised models

over the original ZIOP/MIOP ones, suggesting an important role for it in modelling zero-

and middle-inflation processes.
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I Introduction

Recent advances in discrete choice modelling have witnessed the development of inflated

ordered probit models. These models draw inspiration from the suite of hurdle and double-

hurdle models for continuous and count outcome variables developed to address an excess

of zero observations (Cragg 1971, Mullahey 1986, Lambert 1992, Heilbron 1994, Mullahey

1997). Their use, which hinges on an assumption that the data are generated by two distinct

data generation processes, is typically motivated by the fact that in some ordered choice

situations, a large proportion of empirical observations fall into a single choice category

which appears ‘inflated’ relative to the others. Underpinning the importance of accounting

for the presence of suspected category inflation is the fact that failing to do so can lead to

model mis-specification, biased estimates, and incorrect inference.

Inflated ordered probit models have been applied in fields such as economics, political

science, and medical statistics, and can be divided into two main variants. The first is the

zero-inflated ordered probit (ZIOP) model, in which an excess of observations is observed

at one end of the choice spectrum (Harris and Zhao 2007; Meyerhoefer and Zuvekas 2010;

Downward et al. 2011; Gurmu and Dagne 2012; Habib et al. 2012; Jiang et al. 2013;

Peng et al. 2013; Akcura 2015; Bagozzi et al. 2015; and Falk and Katz-Gerro 2016). The

second is the more recently developed middle-inflated ordered probit (MIOP) model, which

is characterised by a middle outcome being inflated (Bagozzi and Mukherjee 2012; Brooks

et al. 2012; Bagozzi et al. 2014; Miwa 2015; and Zirogiannis et al. 2015).

This paper adds to this growing literature in several important ways. We propose gen-

eralisations of inflated ordered probit models that preserve the ordering of outcomes whilst

still explicitly accounting for the maintained inflation process. Instead of having a single

‘splitting equation’ in a setting with J categorical outcomes (see Harris and Zhao 2007),

our generalisations require J—1 of these latent equations to be estimated. These equations

capture the propensity to be pushed away from the model’s non-inflated outcomes towards

the inflated one. We refer to these models as the generalised zero-inflated ordered probit

(GZIOP) and the generalised middle-inflated ordered probit (GMIOP). These model col-

lapse to their associated ZIOP and MIOP counterparts when the parameter vectors of the

J—1 splitting equations are restricted to be equal. As these generalised models nest their

ZIOP/MIOP counterparts, it is possible to use standard testing paradigms to test if the

nested model specifications are too restrictive.

This aspect of our contribution is significant, as insufficient attention is devoted to this

issue in the literature.1 We derive the appropriate Lagrange multiplier (LM ) tests, which

can be used without having to estimate the more general models (c.f., the likelihood ratio

1Our testing framework focuses on instances where one inflated model nests another. In relation to the
problem of zero-inflation in the Poisson counts literature, Wilson (2015) argues that the widespread practice
of using the Vuong test as a test of zero-inflation in a non-nested setting is erroneous.
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(LR) test, for example). To explore the performance of our proposed generalisation and

testing framework, we consider the original data and model specifications from Harris and

Zhao (2007), who model tobacco consumption at the individual level. LM tests based on the

data in their ZIOP application appear correctly sized in Monte Carlo experiments and have

good power properties, and typically exhibit good quasi-power in identifying mis-specified

models. This suggests that our LM tests are good general specification tests. When the

generalised model is estimated using the original data and specification in Harris and Zhao

(2007), our specification test favours the generalised model.

To complement the above analysis, we also explored the performance of our generalisation

framework in a middle-inflation setting. The same methodological approach was applied to

a dataset from Bagozzi and Mukherjee (2012), who use a MIOP framework to model ‘face-

saving’ middle-category responses in a commonly studied Eurobarometer survey question

(European Commission 2002a,b). The associated LM tests were also found to have desirable

statistical properties, and favoured the generalised model when it was estimated on the

original data and specification in their paper. Taken together, our findings are important, as

both Harris and Zhao (2007) and Bagozzi and Mukherjee (2012) claim to have demonstrated

the superiority of the respective ZIOP and MIOP approaches over the ordered probit (OP)

one. We establish that further improvements in modelling category inflation can be realised

by increasing the flexibility of ZIOP and MIOP models.

Our focus is restricted to inflation in a single categorical outcome deriving from multiple

data generation processes (DGPs), and most closely relates to earlier work by Gillman et al.

(2013), who propose a three-outcome case of the generalisedMIOP model, which is developed

specifically to account for the prevalence of ‘no-change’ monetary policy decisions. Related

work by Sirchenko (2019) develops an endogenous switching model of monetary policy in a

discrete ordinal setting with three latent regimes. In both contributions, the nature of the

middle-inflation means that the decision to leave the policy stance unchanged arises due to

one of three distinct scenarios occurring.

Significantly, our work is distinct from contributions where category inflation is charac-

terised by more than one categorical outcome being inflated. For instance, Greene, Har-

ris, and Hollingsworth (2015) estimate a discrete ordered model of self-assessed health in

which two outcomes are subject to category inflation. Cai, Xia, and Zhou (2019) explore

the consequences of ‘generalised’ category inflation for multinomial, ordinal, Poisson, and

zero-truncated Poisson outcomes and allow for inflation in multiple categories from a sin-

gle source;2 unlike our contribution, no testing framework is proposed. In this regard, our

proposed generalisations and associated specification tests potentially have widespread ap-

plicability across the social and related sciences. For example, the empirical MIOP appli-

2As noted by a referee, the ZIOP modelling approach is distinct in a number of ways from zero-inflated
approaches to modelling count data.
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cation in Bagozzi and Mukherjee (2012) focuses on a type of survey question where the

response options range from feeling negative to positive about an issue, such that a middle

category captures feelings of neutrality or indifference. Such questions are commonplace in

questionnaires, which suggests there is considerable scope for the analysis of such data us-

ing our proposed models. We now say more about the motivation underlying our statistical

approach.

II Motivation

Accounting for the presence of category inflation raises salient issues regarding how it should

be modelled. Even if an ordered categorical outcome is characterised by a considerable

amount of observations relative to all others, a ZIOP or MIOP modelling approach may not

be warranted. Instead, a standard ordered probit model may suffice, in that any category

can be ‘inflated’ through adjustment of the relevant threshold parameters. It amounts to

assuming that the data are generated by a single DGP.

This highlights a defining feature of the ZIOP and MIOP modelling approach: an as-

sumption that category inflation is generated by two distinct DGPs. It also leads to a second

equally important characteristic of ZIOP andMIOP modelling that is commonly overlooked

in the literature: namely, a categorical outcome need not exhibit a build-up of observations

to warrant using a ZIOP or MIOP approach. All that is required is a belief that one of

the observed categories is generated by two distinct DGPs. This need not manifest itself in

a noticeable spike in the number observations for a given category, although in most cases,

ZIOP and MIOP modelling strategies are used when a relative build-up of observations is

observed. In this regard, its application should be strictly hypothesis driven. In turn this

will have significant implications for the choice of the model’s exclusion restrictions.

In this contribution, the nature of the inflation process underpinning the ZIOP and

MIOP models motivates us to ask two pertinent questions. First, can category inflation be

the product of more than two DGPs, and if so, how can this be modelled? Second, if category

inflation is generated by more than two DGPs, is it possible to test if using a ZIOP orMIOP

approach is too restrictive? As the DGPs that comprise the ZIOP and MIOP models are

unobserved, the question of whether the processes driving category inflation are correctly

specified is apposite; as noted, insufficient guidance is provided in the extant literature.

In developing a statistical framework that maintains the ordering of categorical outcomes,

accounts for the presence of category inflation with more than two DGPs, and nests the

respective ZIOP and MIOP models as special cases under certain parameter restrictions,

our contribution explicitly addresses the above questions. The model generalisations which

form the basis of specification tests of the ZIOP and MIOP models do indeed permit us to

determine if a ZIOP or MIOP inflation process is overly restrictive.
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Our generalised frameworks are also attractive natural extensions to the ZIOP andMIOP

models in their own right. For instance, some ordered choice situations may be characterised

by ‘status quo’ bias in which individuals select the alternative that implies ‘doing nothing

or maintaining one’s current or previous decision’ (Samuelson and Zeckhauser 1988, p.7). If

such bias is suspected of generating category inflation, exclusion restrictions would require

that the covariates responsible for this phenomenon will feature in the splitting equations, the

hypothesised effect of which will be to push individuals to choose the ‘status quo’ outcome.

In other situations, more overt forms of psychological group and peer pressure may push an

individual to select a particular option from an ordered set of alternatives over the option

which would otherwise be chosen. Here, the splitting equations would contain variables that

might proxy for such influences, which would push individuals towards choosing the inflated

outcome. Lastly, one might consider a set of ordered outcomes, where the splitting equations

contain proxies capturing ‘nudge’ effects (Thaler and Sunstein 2008), which push individuals

towards selecting a socially or commercially desirable outcome over all other alternatives.

These examples highlight the potential widespread applicability of our generalisations. Our

statistical approach, which focuses on the generalisation of the ZIOP model, but which is

straightforwardly applicable to the MIOP model, is now set out in more detail.

III Generalising Inflated Ordered Probit Models

Prior to developing our generalisation, it is useful to set out the key features of the ZIOP

model for comparative purposes. Consider a discrete random variable y that assumes the

discrete ordered values of y ∈ 0, 1, ..., J—1. A standard OP approach would map a single

latent variable to the observed outcome y via so-called boundary parameters, with the latent

variable being related to a set of covariates. Let r denote a binary variable indicating the

split between regimes 0 and 1. r is related to a latent variable r∗ via the mapping: r = 1

for r∗ > 0 and r = 0 for r∗ ≤ 0. The latent variable r∗ represents the propensity to be in

regime 1 and is defined as

r∗ = x′β + ε, (1)

where x is a kx vector of covariates that determine the choice between the two regimes, β

a vector of unknown coefficients, and ε a standard-normally distributed error term. The

probability of being in regime 1 is given by

Pr(r = 1 |x) = Pr(r∗ > 0|x) = Φ(x′β), (2)

where Φ(.) is the cumulative distribution function (CDF) of the univariate standard normal

distribution. Outcomes in regime 1 are represented by a discrete variable ỹ (ỹ = 0, 1, ..., J—1)

5



that is generated by an OP model via a second underlying latent variable ỹ∗, where

ỹ∗ = z′γ + u. (3)

In expression (3), z is a kz vector of explanatory variables with unknown weights γ, and

u is a standard normal error term. Under the assumption that ε and u identically and

independently follow standard Gaussian distributions, the full probabilities for y are

Pr(y) =

{
Pr (y = 0 |z,x) = Pr (r = 0|x) + Pr(r = 1|x) Pr(ỹ = 0|z, r = 1);
Pr (y = j |z,x) = Pr (r = 1|x) Pr (ỹ = j |z, r = 1) , (j = 1, 2, ..., J—1)

(4)

which, by independence of ε and u are given by

Pr(y) =





Pr (y = 0 |z,x) = [1− Φ (x′β)] + Φ (x′β) Φ (µ0 − z′γ) ;

Pr (y = j |z,x) = Φ (x′β)
[
Φ
(
µj − z′γ

)
−

Φ
(
µj−1 − z′γ

)
]
, (j = 1, 2, ..., J—2);

Pr (y = J—1 |z,x) = Φ (x′β)
[
1− Φ

(
µJ−2 − z′γ

)]
.

(5)

The framework depicted in expression (5) is the ZIOP model of Harris and Zhao (2007).

These authors refer to their contribution as a ‘double-hurdle combination of a split probit

model and an ordered probit model’ (p.1073). Here, the probability that a zero observation

has been inflated is captured by a combination of the probability of zero from the OP process

plus the probability of zero from the splitting equation. This central feature of the model

also holds when the model is extended to allow for correlated errors,

Pr(y) =





Pr (y = 0 |z,x) = [1− Φ (x′β)] + Φ2(x′β, µ0 − z′γ;−ρ);

Pr (y = j |z,x) =
[
Φ2
(
x
′β, µj − z′γ;−ρ

)
−

Φ2
(
x
′β, µj−1 − z′γ;−ρ

)
]
, (j = 1, 2, ..., J—2);

Pr (y = J—1 |z,x) = Φ2
(
x
′β, z′γ − µJ−2; ρ

)
(6)

where ρ is the correlation coefficient (−1 ≤ ρ ≤ 1), and Φ2 denotes the CDF of the bivariate
normal distribution.3 We refer to the correlated model in (6) as the ZIOPC.

Diagrammatically, the ZIOP model is illustrated in Panel A of Figure 1, and comprises

the binary probit ‘splitting equation’, which comprises regimes r = 0 and r = 1; and an

ordered probit (OP) model comprising J categorical outcomes ranging from ỹ = 0, 1, 2, ..., J—

1. In many empirical applications, the splitting equation is treated as distinguishing between

individuals who are willing to participate (r = 1) or not (r = 0) in the consumption of a

3In estimation, to ensure the required ordering of the boundary parameters, we specify them as µj =

µj−1 + exp
(
ξj
)
, j = 1, 2, ..., J—2, where µ

0
is freely estimated (Greene and Hensher 2010). In our J

outcome setting, we therefore have a full set of boundary parameters that are denoted µ
0
, µ

1
, ..., µJ−2. This

convention is carried through to our generalisations.
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good, typically a social bad. Non-participation decisions may be governed by factors such as

health concerns, religious beliefs, ethical considerations, or societal norms. Many real-world

examples reflect such behaviour: consider decisions not to consume drugs and recreational

substances such as alcohol, tobacco, and cannabis. However, non-consumption may still arise

if individuals who are prepared to consume the good in regime r = 1 are unable to do so

because of income or price constraints. Here, the ‘Observed outcome’ column in Panel A

shows that an observational unit for whom r = 1 and ỹ = 0 will still choose outcome y = 0;

this outcome is also shown as being realised for observational units in regime r = 0. Zero

consumption is thus driven by a mixture of non-participants, and participants who are unable

to consume.

Now consider the latent class model depicted in Panel B of Figure 1, which comprises

a single OP model comprising J categorical outcomes ranging from ỹ = 0, 1, 2, ..., J—1, and

J—1 splitting equations ranging from r∗1 through to r
∗
J−1. Here, for each j > 0 category

in the OP model, the individual has a propensity to be pushed towards choosing the zero

outcome by a category-specific splitting equation, an effect that we describe as ‘tempering’.

For instance, the ‘Observed outcome’ column in Panel B shows that an observational unit

for whom ỹ = 2 and r2 = 0 will still select outcome y = 0; this outcome is also shown as

being realised for observational units in regime ỹ = 0. We refer to this econometric model as

the ‘generalised ZIOP ’ (hereafter GZIOP model). The observed data is generated from the

joint outcome of J DGPs, namely the J—1 binary probit equations and the single OP one;

this contrasts with the ZIOP model, which is characterised by two DGPs.

The J—1 splitting equations of the GZIOP have the form

r∗j = x
′βj + εj, (7)

which allow for differentiated tempering effects across the j = 1, 2, ..., J—1 outcome equation

propensities. The associated observability criteria are given by

y = ỹrj =





0 if




(ỹ∗ ≤ µ0) or
(µj−1 < ỹ

∗ ≤ µj and r∗j ≤ 0), j = 1, 2, ..., J—2 or
(µJ−2 < ỹ

∗ and r∗J−1 ≤ 0)


 ;

j if (µj−1 < ỹ
∗ ≤ µj and r∗j > 0), j = 1, 2, ..., J—2;

J—1 if (µJ−2 < ỹ
∗ and r∗J−1 > 0).

(8)

Under independence, generalising the ZIOP in this manner yields the GZIOP model
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which has probabilities of the form

Pr(y) =




Pr (y = 0 |z,x) =

(
Pr (ỹ = 0|z)

+Pr (ỹ = j|z) Pr (rj = 0|x,ỹ = j) , j = 1, 2, ..., J—1

)
;

Pr (y = j |z,x) = Pr (ỹ = j|z) Pr (rj = 1|x,ỹ = j) , j > 0
(9)

such that

Pr(y) =





Pr (y = 0 |z,x) =





Φ (µ0 − z′γ) +
J−2∑

j=1

(
Φ
(
µj − z′γ

)
−

Φ
(
µj−1 − z′γ

)
)
Φ
(
−x′βj

)

+
[
1− Φ

(
µJ−2 − z′γ

)]
Φ
(
−x′βJ−1

)
;

Pr (y = j |z,x) =
[
Φ
(
µj − z′γ

)
− Φ

(
µj−1 − z′γ

)]
Φ
(
x
′βj
)
, j = 1, 2, ..., J—2;

Pr (y = J—1 |z,x) =
[
1− Φ

(
µJ−2 − z′γ

)]
Φ
(
x
′βJ−1

)

(10)

which embodies the required zero-inflation due to the terms Pr (ỹ = j|z) Pr (rj = 0|x, ỹ = j)
for j = 1, 2, ..., J—1. The generalised ZIOP with correlated errors has probabilities

Pr (y) =





Pr (y = 0 |z,x) =





Φ (µ0 − z′γ) +
J−2∑

j=1

[
Φ2
(
µj − z′γ,− x′βj; ρj

)
−

Φ2
(
µj−1 − z′γ;− x′βj; ρj

)
]

+Φ2
(
z
′γ − µJ−2,−x′βJ−1;−ρJ−1

)
;

Pr (y = j |z,x) =
[
Φ2
(
µj − z′γ,x′βj;−ρj

)
−

Φ2
(
µj−1 − z′γ,x′βj;−ρj

)
]
, j = 1, 2, ..., J—2;

Pr (y = J—1 |z,x) = Φ2
(
z
′γ−µJ−2,x′βJ−1; ρJ−1

)
.

(11)

and is referred to as GZIOPC, and characterised by J—1 correlation coefficients ρj ∀ j > 0.
Given this assumed form for the probabilities and an independent and identically dis-

tributed sample of size i = 1, . . . , N from the population on (yi, zi,xi), this satisfies all of

the standard regularity conditions for maximum likelihood estimation (see Greene 2012).

The full parameter set θ =
(
γ
′

,β
′

,µ′,ρ′
)′
of the model can be consistently and efficiently

estimated using standard maximum likelihood techniques, with the log-likelihood function

given by

` (θ) =
N∑

i=1

J−1∑

j=0

hij ln [Pr (yi = j |z,x,θ )] , (12)

where in (12) the indicator function hij is given by

hij =

{
1 if individual i chooses outcome j

0 otherwise.
(i = 1, ..., N ; j = 0, 1, ..., J—1). (13)

Our empirical applications use the common sandwich estimator (White 1982) to compute
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the standard errors of parameters.4 Standard errors of secondary estimated quantities, such

as partial effects and summary probabilities are estimated using the delta method. All sub-

sequent models differ only with respect to the probabilities entering the likelihood function

and the contents of θ. All latent equations are estimated simultaneously and not sequentially,

such that only the joint outcomes of the J DGPs captured by expression (9) are observed.

Such a model is an example of a partial observability one involving J latent equations.5

The generalised models collapse to their non-generalised counterparts under a set of

simple linear parameter restrictions. Imposing the restrictions that β1 = β2 = · · · = βJ−1
and ρ1 = ρ2 = · · · = ρJ−1 on (11) collapses the GZIOPC to the ZIOPC in (6). Imposing

the additional restriction that ρ1 = ρ2 = · · · = ρJ−1 = 0 collapses the GZIOPC to the ZIOP

in (5).6 Lastly, imposing the restriction that β1 = β2 = · · · = βJ−1 in (10) collapses the

GZIOP to the ZIOP. The sets of parameter restrictions described above thus provide tests

of: (i) the more flexible functional form of the GZIOPC model versus the simpler nested

forms of the usual ZIOPC and ZIOP models; and (ii) the GZIOP versus the ZIOP model.

This implies that the model on the right side of Figure 1 can nest the model depicted

on the left. In a generalised model, identification requires the data to identify J—1 splitting

equations as opposed to a single one. One implication of this model characteristic is that

compared to a non-generalised model, the choice of exclusion restrictions assumes a more

prominent role, as several splitting equations require identification instead of one. More

generally, what we refer to as ‘behavioural identification’ requires that there are no empty

sets of individuals in expression (3) that are pushed towards an inflated outcome for each

of a generalised model’s J—1 splitting equations.7 This contrasts with the ZIOP approach,

which assumes that the zero observations are comprised of two types of zero. The issue of

behavioural identification is revisited in Section VI.

In similar fashion to the ZIOP, we can generalise the MIOP, noting that the generalised

middle-inflated ordered probit (GMIOP) model is a total analogue to the generalization of

the ZIOP presented above.8 Further, as the MIOP and its generalisation are related in an

analogous way to that of the ZIOP and the GZIOP, we can also consider model variants

with correlated errors which we label MIOPC and GMIOPC, respectively. Testing the re-

strictions associated with these model variants entails testing (i) the more flexible functional

4Greene and Hensher (2010, p.31) state that ‘. . . in almost any case, the sandwich estimator provides an
appropriate asymptotic covariance matrix for an estimator that is biased in an unknown direction’.

5Poirier (1980) applies this concept in the context of a bivariate probit model.
6For a proof of these claims see Online Appendix A.
7This is likely to be evidenced by instances of model non-convergence and/or estimated model probabilities

close to zero. As Greene, Rose, and Hensher (2015, p.719) note in the context of a latent class ordered choice
model: ‘Signature features of a model that has been over-fit will be exceedingly small estimates of the class
probabilities, wild values of the structural parameters and huge estimated standard errors.’ We encountered
no such issues in our applications.

8If the MIOP was to additionally incorporate the first and the last categorical outcomes, the ZIOP could
be viewed as a ‘special case’ of the MIOP ; the same applies to its respective generalisations.
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form of the GMIOPC model versus the simpler nested forms of the MIOPC and MIOP

models and (ii) the GMIOP versus the MIOP model. A detailed exposition of the MIOP

and its generalisation is given in Online Appendix B.

A specification test of the ZIOP and MIOP models

To test the hypotheses associated with the various sets of parameter restrictions described

above, two approaches are used. First, we use the standard LR test. Second, an LM test

is proposed. This is an appealing specification test for the ZIOP and MIOP models and

their correlated versions versus their generalised alternatives as it only requires estimation

of the simpler nested models. It involves evaluation of the score vector of the more general

model evaluated at parameter values under the null hypothesis. The generic form for the

LM statistic is given by

LM = (∇β,∇γ,∇µ0,∇ξ,∇ρ)′
[
I

(
θ̂R

)]−1
(∇β,∇γ,∇µ0,∇ξ,∇ρ) ∼ χ2q, (14)

which is evaluated at the relevant parameter restrictions as defined by the appropriate null

hypothesis, and where q denotes the appropriate number of parameter restrictions. If the

alternative model is the uncorrelated generalised version, one would omit the relevant parti-

tion of the score vector (∇ρ). As is common practice, the outer product of gradients is used

to estimate the inverse of the variance of the score vector,
[
I

(
θ̂R

)]−1
(Greene 2012). Reas-

suringly, the results of the LR and LM tests are very similar in both empirical applications,

suggesting that standard asymptotic theory performs well.9

IV Data

To explore the performance of our generalisation and testing framework, we consider the

original data and model specifications from the original ZIOP contribution of Harris and

Zhao (2007), who consider tobacco consumption. Zero tobacco consumption is assumed to be

determined by two DGPs: non-participation due to, for example, health and legal concerns;

and zeros who are the corner solution associated with a standard consumer demand problem,

whereby individuals will not smoke if the price rises above a certain threshold, or income

falls below a certain threshold. This is reflected in the nature of the exclusion restrictions

governing the respective splitting (or ‘inflation’) and OP (or ‘consumption’) equations, which

also include standard controls capturing socio-economic and personal characteristics. Their

data is drawn from the 1995, 1998 and 2001 surveys of the Australian National Drug Strategy

Household Survey, in which information on tobacco consumption is available via a discrete

9Derivations of the score vectors for the LM test can be found in Online Appendix C. Online Appendix
D establishes that our proposed generalisations are coherent and demonstrates that our models neither nest,
nor are nested, by the generalised ordered probit (‘GOP’) model (Terza 1985).
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variable measuring consumption intensity. Respondents are asked: ‘How often do you now

smoke cigarettes, pipes or other tobacco products?’, where the responses take the form of

one of the following: not at all (y = 0); smoking less frequently than daily (y = 1); smoking

daily with less than 20 cigarettes per day (y = 2); and smoking daily with 20 or more

cigarettes per day (y = 3). 76% of observations are non smokers, 4% smoke weekly or less,

13.8% smoke daily but less than 20 per day, and 6.2% smoke daily and consume more than

20 cigarettes a day. The specification shares 13 common variables in the splitting and OP

equations, and is characterised by: N = 28, 813; J = 4; kx = 16; and kz = 18. For a full

description of the variable set, see Harris and Zhao (2007). In this empirical application,

which is characterised by four categorical outcomes, our generalisation requires that three

splitting equations–which capture the extent to which the individual is pushed towards

zero consumption–require estimation. Prior to these estimations, the performance of our

proposed models is explored using Monte Carlo (MC ) experiments.

V Finite sample performance

To ascertain the finite sample performance of our tests, we consider a range of Monte Carlo

(MC ) experiments based on the original data in the ZIOP application and the full sample

size reported above. The number of repetitions was set to 2, 000, where all simulation ‘noise’

had effectively settled after 1, 000 repetitions. Table 1 presents our findings, which include

results relating to empirical size and quasi-power. The first column identifies the true DGP

and the respective degrees of freedom for each test (df ). For each DGP, three tests–each

between a generalised model and a null, non-generalised variant–are performed.

Panel A considers the zero-inflated application and tests between: GZIOP vs. ZIOP ;

GZIOPC vs. ZIOPC ; and GZIOPC vs. ZIOP , with J = 3 outcomes.10 Row 1 has a ZIOP

DGP with df= 13, 14, 15, respectively. All empirical sizes are very close to a nominal 5% size,

even when the null model is the ZIOPC. Row 2 repeats the exercise, but for a true DGP of

ZIOPC. The empirical size is again very close to the nominal one (at 5.8%). The tests also

have good ‘power’ in correctly rejecting the uncorrelated versions of the model (38% and

49%, respectively). Row 3 considers the implications of extending the choice set to a larger

number of outcomes, one of which is relatively sparsely populated; here, the empirical sizes

remain very close to the nominal ones.

As rejection of the null model(s) may reflect other forms of model mis-specification,

we also generate under ordered probit and parallel regression assumption-relaxed (Brant

1990) models.11 These quasi-power experiments reflect likely forms of serious model mis-

10Initially, we combine two contiguous sparsely populated categorical outcomes.
11Although our interest with the parallel regression model is restricted to its use as a DGP, we note that

it is incoherent (see Greene and Hensher 2010, p.144). We thank a referee for bringing this to our attention.
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specification encountered with our type of data. The OP model is based on an equation

of the form of expression (3). For the parallel regression model, the data is generated by

multiple γj vectors generated by independent binary models for all observed values of j.

The results are presented in rows 4 and 5, respectively. All tests have good general ‘power’

(24%—36%) against the OP DGP. Against the parallel regression model, all tests similarly

exhibit reasonable ‘power’ (at around 14%).

We also considered a variant of the GZIOP model with no tempering corresponding to

the j = 3 splitting equation. Such a model does not collapse to the null ZIOP model under

any set of simple linear parameter restrictions. In experiments, this model variant failed to

converge in nearly 50% of instances. When convergence was achieved, the LM test always

rejected the null model, and the estimated probabilities of being pushed towards the true zero

amount were very close to zero. Clear evidence of model mis-specification in the splitting

equation of the non-tempered outcome presented itself in the form of very large coefficients

and extremely high standard errors. These findings add to the evidence that the LM test

performs well as a general specification test: they suggest that model failure in estimation

would also indicate a mis-specified model, as would obtaining splitting equation tempering

probabilities that are very close to zero. Significantly, all LM tests therefore appear correctly

sized, and typically have good ‘power’ in identifying mis-specified models.

Using the covariate data we also conducted genuine experiments based on the null model

of ZIOP. In all experiments we take the estimated value of β in each null model, setting

βj = β ∀ j in the corresponding generalised set-up, and perturb a single parameter β0 in a
single splitting equation by successively larger increments. For brevity, we only report power

runs for the non-correlated DGPs. The power curves are presented in Figure 2, and cover

experiments performed using alternative df.

We consider two curves for the ZIOP model, both of which utilise the full data sample:

one corresponds to J=3 categorical outcomes (df=13); and another to J=4 (df=26). The

curve corresponding to the higher df has uniformly higher power, where increasing the

number of categorical outcomes from three to four is responsible for the increase in the df.

Whilst relatively larger parameter perturbations are required to induce rejections under J=3,

both tests have the ‘usual’ shaped power curves and our analysis suggests both tests have

good power. Significantly, our results demonstrate that the ability of the tests to identify

ZIOP model mis-specification in the direction of the GZIOP one is an increasing function

of both the number and size of perturbations from the null. All of the above findings are

reinforced by the results of experiments for the MIOP application, which are reported in

part E.2 of the Online Appendix E. We now turn to model estimation.
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VI Estimation

To explore the validity of using a GZIOP approach, we first turn to the LM test results,

which are presented in Table 2. All ZIOP variants are overwhelmingly rejected in favour

of the generalised models, and the GZIOP is rejected in favour of GZIOPC. Results of the

corresponding LR tests closely mirror the LM ones. Using a generalised framework thus

appears to be a more appropriate modelling strategy.

To rationalise the GZIOP model conceptually, the ordered consumption levels can be

thought of as being driven by an OP process, where the propensity for zero-consumption

corresponds to non-participation. Here, rational addiction theory (Becker and Murphy 1988)

assumes that some individuals are rational in going ‘cold-turkey’–that is, switching from

positive consumption levels, as captured by the latent ordered probit equation, to zero, as

captured by the j = 1, 2, 3 splitting equations. Corresponding to each positive consumption

level is a splitting equation which divides individuals into two types: those remaining at a

positive consumption level, and ‘quitters’ who are pushed towards zero. The GZIOPC model

explicitly accounts for such behaviour. LM and LR tests permit us to determine if a single

splitting equation representing non-participation as in Harris and Zhao (2007) is sufficient

to represent all of the zero types corresponding to non-participation that could arise.

Table 3 presents a selection of overall partial effects for the ZIOPC and GZIOPC eval-

uated at sample means.12 Clearly, the choice of modelling approach has important implica-

tions for inference. For example, a one-unit increase in the own price of tobacco increases the

probability of zero-consumption by 0.1139. In the GZIOPC, the figure is 0.164. The corre-

sponding figures for high consumption levels (j = 3) are 0.083 for the ZIOPC and 0.101 for

GZIOPC. Income has a statistically significant effect on outcomes y = 0, 1, 2 in the ZIOPC,

whereas for the generalised variant, only high level consumers (j = 3) are significantly af-

fected. Here, we note that Harris and Zhao (2007) decompose the partial effects for income

for the ZIOPC, reporting that a 10% increase in personal income causes a 0.0027 rise in the

probability of non-participation (r = 0), but a 0.0017 fall in the probability of participation

with zero consumption (r = 1, ỹ = 0). This latter effect indicates that tobacco is a normal

good for participants. Conducting a similar exercise for the GZIOPC yields a larger fall

of 0.0024 in the probability of participation with zero consumption, with the probability of

non-participation increasing by 0.0037 for the heaviest smokers (ỹ = 3, r3 = 0). This effect

is considerably smaller in magnitude for individuals who smoke less frequently. Policy rec-

ommendations based on the ZIOPC model would fail to account for the non-participation

effects of income changes being differentiated across individuals with different consumption

patterns.

To further investigate the consequences of estimating the mis-specified ZIOP and ZIOPC

12We focus on the partial effects as the model coefficients (available from the authors on request) are
difficult to interpret in isolation.
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models over their generalisations, Table 4 presents a series of estimated model probabilities

averaged over all individuals, which quantify the extent to which non-participatory effects

contribute to decision outcomes. Such effects are obtained by estimating the probabili-

ties solely associated with the underlying OP components of the respective models. These

probabilities effectively ‘purge’ or ‘net-out’ any inflation effects. For the correlated versions

the estimated OP parameters were used to estimate these in isolation from the inflation

equations(s)–essentially setting the correlation coefficients to zero. We estimate the amount

of zero-inflation in the model–denoted Amount (Zero-inflation)–as the difference between

the overall predicted probability of zero consumption and the corresponding purged amount.

This quantity is then used to calculate the proportion of overall zero-consumption that is

attributable to the effects of model inflation. Expressed as a percentage, we denote this

quantity Amount(%).

The purged probabilities differ substantially for the GZIOP and ZIOP models, especially

for higher consumption levels. Whilst the GZIOP suggests some nearly 50% of the zero

observations can be attributed to zero-inflation, this figure is just over 45% for the ZIOP. By

comparison, the correlated models suggest greater levels of zero-inflation, with the generalised

variant indicating a relatively higher contribution to overall zero consumption (72% versus

63%). These findings point to the non-generalised models underestimating the degree of

overall model inflation.

To further evaluate the predictive performance of our models we construct hit-and-miss

tables, which provide information about the proportion of correct predictions. This involves

cross-tabulating the predictions of a given model obtained using the maximum probability

rule. Table 5 presents summary measures for both within sample and for a 10% ‘hold-out’

sample. Two approaches are used to measure model performance. First, the traditional ap-

proach, in which unconditional model forecasts are compared to observed outcomes (Greene

2012). For each j = 0, 1, 2, ..., J—1 this is obtained by dividing the number of correct predic-

tions within each category by the total number of predictions for that category. We denote

this measure CP, such that 0 ≤CP≤ 1, where a larger value implies greater predictive

accuracy. The second approach follows Henriksson and Merton (1981), and mitigates the

problem of a so-called ‘stopped-clock’ strategy when evaluating forecasts. In our example,

this translates to the traditional hit-and-miss approach placing too much weight on the most

heavily chosen outcome. This measure, denoted CP∗, lies between —1/J—1 and 1: a value of

—1/J—1 ≤CP∗ < 0 implies a forecasting performance worse than the stopped—clock strategy;
CP∗ = 0 suggests zero predictability, which is consistent with the ‘stopped clock’ strat-

egy; and CP∗ = 1 implies a perfect forecasting model. Both approaches indicate that the

generalised models perform best.

Finally, it is informative to consider the behavioural assumptions required for model iden-

tification. The ZIOP model is only identified if the inflated category observed in the data is
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composed of two types of observation: non-participants associated with the inflation equa-

tion (1); and infrequent smokers associated with the consumption equation (3). Behavioural

identification for the generalised model is stricter. This requires that there are no empty sets

of individuals in expression (3) that are pushed towards zero-consumption via (7), ∀ j ≥ 1.
In practice, the presence of empty sets may manifest itself in the form of one or more of

the r∗j splitting equations having negligible tempering probabilities. That is, the model will

appear to be ‘weakly identified’. We find no evidence of this form of weak identification, in

that all of the estimated tempering probabilities associated with the J—1 splitting equations

diverge from zero.

Significantly, no evidence of this type of weak identification is found when generalised

middle—inflated models are estimated using the Bagozzi and Mukherjee (2012) data and

specifications. In addition to this finding, the associated specification tests and measures of

predictive performance also support a generalised modelling strategy; and as is the case with

our zero-inflation application, the non-generalised middle-inflated models underestimate the

extent of overall model inflation.13

VII Conclusion

This paper has proposed generalisations to the ZIOP andMIOP models, which form the ba-

sis of a specification test relating to the underlying inflation process. As this issue has been

insufficiently explored in the literature, this development is important. Our specification

test favours the generalised model in our empirical applications, highlighting the potential

for model mis-specification in applications which assume that a ZIOP or MIOP modelling

strategy is appropriate. Just as saliently, the nature of our generalisation framework facili-

tates testing the predictions of economic theory, such as the decision to go ‘cold turkey’. In

this regard, our generalisations constitute valid and flexible modelling frameworks in their

own right.

Our contribution also raises issues that merit further exploration. Consider the tobacco

consumption application: tempering may be characterised not by a binary ‘to quit or not

quit’ decision–as captured by each of the J—1 splitting equations–but a movement down

from higher levels of tobacco consumption to lower levels, which may, or may not, include zero

consumption. Amending our generalisations to accommodate this kind of behaviour would

represent a move towards a latent class set-up, which would require even stricter conditions

for identification. Similarly, if evidence of empty sets is found, a generalised model may

be re-specified by omitting the affected r∗j splitting equations, and re-estimating without

them. Whilst the resulting specifications will still be inflated models, they will no longer be

‘generalised’, in that the standard ZIOP model will no longer be nested. Consequently, our

13See Online Appendix E.3.
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proposed specification tests would be inappropriate. The possibility of refining the GZIOP

in these ways suggests that the generalised models developed in this contribution form part

of a much broader model class for analysing category inflation, which extends beyond the

focus of the current contribution. Accordingly, as zero- and middle-inflated models have been

used effectively to model behaviour in an array of social, economic, and political settings, the

possibility of using these suggested innovations represents an interesting avenue for future

research.
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Figure 1: The Zero-Inflated Ordered Probit (ZIOP) model and its generalisation (GZIOP)
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Figure 2: Empirical power curves for the ZIOP model
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Table 1: Monte Carlo rejection probabilities

Rejection probability

True model
GZIOP
vs.
ZIOP

GZIOPC
vs.

ZIOPC

GZIOPC
vs.
ZIOP

1.ZIOP(df = 13, 14, 15) 0.053 0.058 0.056
2.ZIOPC (df = 13, 14, 15) 0.381 0.058 0.489
3.ZIOP(df= 26, 28, 29) 0.059 0.061 0.063
4.OP(df = 13, 14, 15) 0.252 0.358 0.239
5.Parallel(df = 13, 14, 15) 0.141 0.140 0.144

Table 2: Specification test results: competing zero-inflated models

Model
LM Test
statistic

df p-value
LR Test
statistic

p-value

ZIOP vs. GZIOP 194 32 4.27E − 25 178 3.56E − 22
ZIOPC vs. GZIOPC 207 34 1.68E − 26 202 9.09E − 26
ZIOP vs. GZIOPC 221 35 7.29E − 29 212 3.33E − 27
GZIOP vs. GZIOPC 27 3 5.89E − 06 34 1.98E − 07
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Table 3: Selected overall partial effects for the ZIOPC and GZIOPC models; smoking dataa

ZIOPC GZIOPC
j = 0 j = 1 j = 2 j = 3 j = 0 j = 1 j = 2 j = 3

ln(Income) 0.013 −0.003 −0.008 −0.001 0.007 0.003 −0.005 −0.005
(0.005)∗∗∗ (0.001)∗∗∗ (0.003)∗∗∗ (0.002) (0.005) (0.002) (0.004) (0.003)∗∗

Male −0.077 0.009 0.044 0.024 −0.069 0.015 0.013 0.042
(0.007)∗∗∗ (0.002)∗∗∗ (0.004)∗∗∗ (0.003)∗∗∗ (0.008)∗∗∗ (0.003)∗∗∗ (0.006)∗∗ (0.004)∗∗∗

Married 0.124 −0.016 −0.071 −0.037 0.128 −0.016 −0.063 −0.049
(0.007)∗∗∗ (0.002)∗∗∗ (0.004)∗∗∗ (0.003)∗∗∗ (0.008)∗∗∗ (0.004)∗∗∗ (0.006)∗∗∗ (0.004)∗∗∗

Pre school 0.038 −0.006 −0.022 −0.01 0.035 −0.005 −0.008 −0.022
(0.009)∗∗∗ (0.002)∗∗∗ (0.006)∗∗∗ (0.004)∗∗ (0.01)∗∗∗ (0.004) (0.008) (0.006)∗∗

Capital 0.012 0.002 −0.005 −0.009 0.007 0.005 0.001 −0.013
(0.007)∗ (0.001) (0.004) (0.003)∗∗∗ (0.007) (0.003)∗ (0.006) (0.004)∗∗∗

Work 0.036 0.004 −0.016 −0.024 0.044 0.001 −0.017 −0.029
(0.009)∗∗∗ (0.002) (0.005)∗∗∗ (0.004)∗∗∗ (0.011)∗∗∗ (0.005) (0.009)∗ (0.006)∗∗∗

Unemployed −0.059 0.005 0.032 0.021 −0.072 0.005 0.057 0.01
(0.019)∗∗∗ (0.004) (0.011)∗∗∗ (0.007)∗∗∗ (0.025)∗∗∗ (0.018) (0.018)∗∗∗ (0.011)

English-speaking −0.068 0.004 0.036 0.027 −0.063 0.007 0.024 0.032
(0.015)∗∗∗ (0.003) (0.009)∗∗∗ (0.006)∗∗∗ (0.015)∗∗∗ (0.005) (0.012)∗∗ (0.009)∗∗∗

Degree 0.205 0.001 −0.102 −0.104 0.226 0.012 −0.135 −0.102
(0.01)∗∗∗ (0.003) (0.006)∗∗∗ (0.005)∗∗∗ (0.012)∗∗∗ (0.005)∗∗ (0.009)∗∗∗ (0.007)∗∗∗

Diploma 0.062 0 −0.031 −0.031 0.076 0 −0.043 −0.033
(0.008)∗∗∗ (0.002) (0.005)∗∗∗ (0.004)∗∗∗ (0.01)∗∗∗ (0.005)∗∗ (0.008) (0.005)∗∗∗

Year 12 0.076 0.002 −0.037 −0.041 0.091 0.004 −0.058 −0.037
(0.01)∗∗∗ (0.002) (0.006)∗∗∗ (0.004)∗∗∗ (0.011)∗∗∗ (0.006) (0.009)∗∗∗ (0.006)∗∗∗

Young female −0.023 0.003 0.013 0.007 −0.012 0 0.013 −0.002
(0.011)∗∗ (0.002)∗ (0.006)∗∗ (0.003)∗∗ (0.01) (0.003) (0.006)∗∗ (0.007)

ln(PA) 0.28 0.017 −0.13 −0.168 0.327 0.003 −0.127 −0.202
(0.068)∗∗∗ (0.006)∗∗∗ (0.032)∗∗∗ (0.041)∗∗∗ (0.083)∗∗∗ (0.013) (0.036)∗∗∗ (0.051)∗∗∗

ln(PM) −0.005 0 0.002 0.003 −0.004 0 0.002 0.003
(0.01) (0.001) (0.005) (0.006) (0.012) (0) (0.005) (0.007)

ln(PT ) 0.139 0.009 −0.064 −0.083 0.164 0.001 −0.064 −0.101
(0.018)∗∗∗ (0.003)∗∗∗ (0.009)∗∗∗ (0.011)∗∗∗ (0.023)∗∗∗ (0.007) (0.012)∗∗∗ (0.014)∗∗∗

aStandard errors in parentheses.∗∗∗, ∗∗ and ∗ denote significance at 1%,5%, and 10%, respectively. ln(PA/M/T ) denotes the natural log of the price of

alcohol/marijuana/tobacco, respectively.
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Table 4: Summary probabilities from the ZIOP and GZIOP models; and ZIOPC and GZIOPC modelsa

Independent errors Correlated errors
Overall Purged Overall Purged

Outcome Sample ZIOP GZIOP ZIOP GZIOP ZIOPC GZIOPC ZIOPC GZIOPC
j = 0 0.748 0.747 0.748 0.403 0.383 0.747 0.748 0.279 0.206

(0.002)∗∗∗ (0.002)∗∗∗ (0.016)∗∗∗ (0.027)∗∗∗ (0.002)∗∗∗ (0.002)∗∗∗ (0.032)∗∗∗ (0.024)∗∗∗

j = 1 0.043 0.043 0.043 0.094 0.109 0.043 0.043 0.078 0.063
(0.001)∗∗∗ (0.001)∗∗∗ (0.003)∗∗∗ (0.015)∗∗∗ (0.001)∗∗∗ (0.001)∗∗∗ (0.006)∗∗∗ (0.007)∗∗∗

j = 2 0.145 0.145 0.145 0.340 0.372 0.145 0.145 0.347 0.437
(0.002)∗∗∗ (0.002)∗∗∗ (0.010)∗∗∗ (0.022)∗∗∗ (0.002)∗∗∗ (0.002)∗∗∗ (0.013)∗∗∗ (0.033)∗∗∗

j = 3 0.065 0.064 0.064 0.163 0.136 0.064 0.064 0.297 0.295
(0.001)∗∗∗ (0.001)∗∗∗ (0.006)∗∗∗ (0.019)∗∗∗ (0.001)∗∗∗ (0.001)∗∗∗ (0.046)∗∗∗ (0.046)∗∗∗

ZIOP GZIOP ZIOPC GZIOPC
Amount (Zero-inflation) 0.344 0.365 0.432 0.460

(0.016)∗∗∗ (0.027)∗∗∗ (0.030)∗∗∗ (0.025)∗∗∗

Amount(%) 46.09% 48.77% 62.72% 72.48%
aStandard errors in parentheses.∗∗∗, ∗∗ and ∗ denote significance at 1%,5%, and 10%, respectively.
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Table 5: In-sample and out-of-sample hit-and-miss tables for ZIOP applications
Predicted (ŷi): In-sample

Specification OP ZIOP ZIOPC GZIOP GZIOPC
Actual (yi) 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 Total
0 21535 0 0 4 21508 0 25 6 21518 0 15 6 21484 0 46 9 21492 0 43 4 21539
1 1244 0 0 0 1239 0 5 0 1241 0 3 0 1237 0 7 0 1236 0 8 0 1244
2 4167 0 0 5 4136 0 32 4 4148 0 19 5 4105 0 61 6 4107 0 63 2 4172
3 1854 0 0 4 1838 0 17 3 1847 0 8 3 1830 0 22 6 1829 0 28 1 1858
Total 28800 0 0 13 28721 0 79 13 28754 0 45 14 28656 0 136 21 28664 0 142 7 28813
CP 0.7475 0.7477 0.7476 0.7480 0.7481
CP∗ 0.0007 0.0026 0.0017 0.0051 0.0045

Predicted (ŷi): Out-of-sample — 10% ‘hold-out’ sample
Actual (yi) 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 Total
0 2200 0 0 0 2199 0 1 0 2199 0 1 0 2196 0 3 1 2196 0 4 0 2200
1 135 0 0 0 135 0 0 0 135 0 0 0 135 0 0 0 135 0 0 0 135
2 419 0 0 0 415 0 2 2 416 0 1 2 413 0 4 2 414 0 5 0 419
3 180 0 0 0 179 0 1 0 179 0 1 0 177 0 3 0 177 0 3 0 180
Total 2934 0 0 0 2928 0 4 2 2929 0 3 2 2921 0 10 3 2922 0 12 0 2934
CP 0.7498 0.7502 0.7498 0.7498 0.7502
CP∗ 0 0.0014 0.0006 0.0026 0.0034

Notes: The above table provides information about the proportion of correct predictions for alternative models. The predictions of each model are cross-

tabulated using the maximum probability rule ŷi = m if P̂im = max(P̂i0, P̂i1, P̂i2, ..., P̂iJ−1) against the observed outcomes in a J × J hit-and miss table,
where P̂ij denotes the predicted probability of outcome j arising for observation i. CP denotes the proportion of correct predictions calculated by summing
across all J diagonal elements and dividing by the total number of observations N , such that CP= (1/N)ΣNi=11 (ŷi = yi). CP

∗ follows Kim, Mizen, and
Chevapatrakul (2008) and Rosa (2009) who adapt the ‘stopped clock’ methodological approach of Henriksson and Merton (1981) for a discrete choice setting.

This criterion is calculated as CP∗ = 1/(1− J)
[
ΣJ−1j=0CP j − 1

]
, where CP j denotes the proportion of the correct predictions made by ŷi when the true state

is given by yi = j, such that CP j =
(
(1/N)ΣNi=11 (ŷi = j) 1 (yi = j)

)
/
(
(1/N)ΣNi=11 (yi = j)

)
.
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Online Appendix

A Collapsing the GZIOPC to the ZIOPC and ZIOP

Consider imposing the linear set of restrictions that β1 = β2 = · · · = βJ−1 and ρ1 = ρ2 =
· · · = ρJ−1 on the GZIOPC model in expression (11). This yields





Pr (y = 0 |z,x) =





Φ (µ0 − z′γ) +
J−2∑

j=1

[
Φ2
(
µj − z′γ,− x′β; ρ

)
−

Φ2
(
µj−1 − z′γ;− x′β; ρ

)
]

+Φ2
(
z
′γ − µJ−2,−x′β;−ρ

)
;

Pr (y = j |z,x) = Φ2
(
µj − z′γ,x′β;−ρ

)
− Φ2

(
µj−1 − z′γ,x′β;−ρ

)
, j = 1, 2, ..., J—2;

Pr (y = J—1 |z,x) = Φ2
(
z
′γ−µJ−2,x′β; ρ

)

(A.1)

where we note that while the expressions for Pr (y = j |z,x) and Pr (y = J—1 |z,x) immedi-
ately collapse to those in expression (6), the Pr (y = 0) expression in (A.1) can be constructed

using 1 minus the sum of the Pr (y = J—1 |z,x) and all Pr(y = j |z,x), ∀ j = 1, 2, ..., J—2

terms to give

Pr (y = 0 |z,x) = [1− Φ (x′β)] + Φ2 (x′β,µ0 − z′γ;−ρ) . (A.2)

This also yields the result in (6), and is straightforward to verify. Using (A.1) and (A.2)

yields

Pr (y = 0) = 1−

Pr(y=j ∀ j=1,2,...J−2)︷ ︸︸ ︷
J−2∑

j=1

[
Φ2
(
µj − z′γ,x′β;−ρ

)
− Φ2

(
µj−1 − z′γ,x′β;−ρ

)]
−

Pr(y=J−1)︷ ︸︸ ︷
Φ2
(
z
′γ−µJ−2,x′β; ρ

)
,

(A.3)

which can be expanded as follows

Pr (y = 0) = 1−





[Φ2 (µ1 − z′γ,x′β;−ρ)− Φ2 (µ0 − z′γ,x′β;−ρ)]
+ [Φ2 (µ2 − z′γ,x′β;−ρ)− Φ2 (µ1 − z′γ,x′β;−ρ)]
+ [Φ2 (µ3 − z′γ,x′β;−ρ)− Φ2 (µ2 − z′γ,x′β;−ρ)]

...

+
[
Φ2
(
µJ−2 − z′γ,x′β;−ρ

)
− Φ2

(
µJ−3 − z′γ,x′β;−ρ

)]

+
[
Φ(x′β)− Φ2

(
µJ−2 − z′γ,x′β;−ρ

)]





. (A.4)

After cancelling terms and algebraic manipulation, it can be verified that

Pr (y = 0) = [1− Φ (x′β)] + Φ2 (µ0 − z′γ,x′β;−ρ) . (A.5)
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Substituting (A.5) into (A.1) results in GZIOPC probabilities that are identical to the

ZIOPC probabilities in expression (5). That is, the GZIOPC collapses to–and therefore

nests–the ZIOPC. Further, setting ρ = 0 in (A.5) yields probabilities that are identical to

the ZIOP probabilities in expression (5), viz.

Pr (y = 0) = [1− Φ (x′β)] + Φ(x′β)Φ (µ0 − z′γ) . (A.6)

The GZIOPC also collapses to the ZIOP if additionally ρj = 0 ∀ j = 1, 2, ..., J—1. As noted,
the sets of parameter restrictions described above provide tests of: (i) the more flexible

functional form of the GZIOPC model versus the simpler nested forms of the usual ZIOPC

and ZIOP models; and (ii) the GZIOP versus the ZIOP model.

B The GMIOP model

Building on the ZIOP model, two contributions, Bagozzi and Mukherjee (2012) and Brooks

et al. (2012), independently suggested the middle-inflated ordered probit (MIOP) model to

allow for inflation in an arbitrary middle category. In this section we develop a generalised

framework for middle-inflation in the context of J outcomes. Consider a discrete variable y

that assumes the discrete ordered values of y ∈ {0, 1, ..., J—1}. Bagozzi and Mukherjee (2012)
and Brooks et al. (2012) assume that inflation in a middle category y ∈ {1, 2, ..., J—2} arises
due to the presence of two DGPs. We label the inflated middle category m, and define r∗

as an underlying latent variable that represents an overall propensity to choose the inflated

category m over any other, which translates into an ‘observed’ binary outcome given by

r∗ = x′β + ε. (B.1)

A propensity to choose m occurs when r∗ ≤ 0, which following the exposition of the ZIOP
model we label regime r = 0; a propensity to choose any outcome other than m arises when

r∗ > 0, and is labelled regime r = 1. x is a kx vector of covariates that determine the choice

between the two regimes, β a vector of unknown coefficients, and ε a standard-normally

distributed error term. A second latent variable ỹ∗ is given by

ỹ∗ = z′γ + u (B.2)

such that z is a kz vector of explanatory variables with unknown weights γ, and u is a

standard normal error term. ỹ assumes the form of a discrete ordered variable which can

assume the values ỹ ∈ {0, 1, ..., J—1}. A two-regime scenario arises where for observations
in regime r = 0, the inflated middle outcome is observed; but for those in r = 1, any of

the possible outcomes in the choice set j = {0, 1, 2, ..., J—1}–including the inflated category
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m–can be observed. Assuming that the normal error terms are correlated will yield the

overall probabilities for the MIOPC model, which are given by

Pr(y) =





Pr (y = 0 |x, z) = Φ2 (µ0 − z′γ,x′β;−ρ) ;
Pr (y = j |x, z) = Φ2 (µ1 − z′γ,x′β;−ρ)− Φ2 (µ0 − z′γ,x′β;−ρ) +M ;
Pr (y = J—1 |x, z) = Φ2

(
x
′β, z′γ−µJ−2; ρ

)
,

(B.3)

where M = 0 if y 6= m and M = Φ(−x′β) iff y = m. This implies that

Pr (y = m |x, z) = Φ2 (µ1 − z′γ,x′β;−ρ)− Φ2 (µ0 − z′γ,x′β;−ρ) + 1− Φ (x′β) . (B.4)

The probability of a single, middle category has therefore been inflated. Setting ρ = 0

in (B.3) and (B.4) collapses the MIOPC to the MIOP model, which is characterised by

independent errors.

We now generalise the inflation process for m. For any given propensity towards a given

category j 6= m in the outcome equation (B.2), it is possible to be pushed towards an inflated
middle category, m. Let these propensities towards m be determined, respectively, by J—1

splitting equations, each corresponding to a non-inflated category, namely

r∗j 6=m = x
′βj + εj (B.5)

such that the probability of a movement towards the inflated middle category, m, is given

by

Pr(rj 6=m = 0) = Φ
(
−x′βj

)
. (B.6)

Generalising the MIOPC in this way yields the generalised middle-inflated ordered probit

(GMIOPC ) which has probabilities of the form

Pr(y) =





Pr (y = 0 |z,x) = Pr (ỹ = 0|z) Pr
(
rj̃ = 1|x,ỹ = 0

)
;

Pr (y = m |z,x) =




Pr (ỹ = m|z)
+Pr

(
ỹ = j̃|z

)
Pr
(
rj̃ = 0|x,ỹ = j̃

)
, ∀ j̃

+Pr (ỹ = J—1|z) Pr (rJ−1 = 0|x,ỹ = J—1)


 ;

Pr
(
y = j̃ |z,x

)
= Pr

(
ỹ = j̃|z

)
Pr
(
rj̃ = 1|x,ỹ = j

)
, ∀ j̃;

Pr (y = J—1 |z,x) = Pr (ỹ = J—1|z) Pr (rj = 1|x,ỹ = J—1) .

(B.7)

where j̃ excludes the first (j = 0) and the last category (j = J—1), and includes all middle

categories excluding the inflated one (i.e., where j = m). The associated observability
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criteria are given by

y = ỹrj =





0 if (ỹ∗ ≤ µ0 and r∗0 > 0);

m if




(ỹ∗ ≤ µ0 and r∗0 ≤ 0) or
(µj̃−1 < ỹ

∗ ≤ µj̃ and r∗j̃ ≤ 0), ∀ j̃ or
(µJ−2 < ỹ

∗ and r∗J−1 ≤ 0) or
(µj−1 < ỹ

∗ ≤ µj=m)



;

j̃ if (µj̃−1 < ỹ
∗ ≤ µj̃ and r∗j̃ > 0), ∀ j̃;

J—1 if (µJ−2 < ỹ
∗ and r∗J−1 > 0).

(B.8)

We note here that by construction, the GMIOPC model must include splitting equations for

the first and final category; in expression (B.8), these are denoted by the latent equations r∗0

and r∗J−1, respectively. GMIOPC probabilities are given by

Pr(y) =





Pr (y = 0 |x, z) = Φ2(µ0 − z′γ,x′β0;−ρ0)
Pr
(
y = j̃ |x, z

)
= Φ2

(
µj̃ − z′γ,x′βj̃;−ρj̃

)
− Φ2

(
µj̃−1 − z′γ,x′βj̃;−ρj̃

)

Pr (y = m |x, z) =





[
Φ (µm − z′γ)− Φ

(
µm−1 − z′γ

)]

+Φ2 (µ0 − z′γ,− x′iβ0; ρ0)︸ ︷︷ ︸
a

+

J−2∑

j̃=1


 Φ2

(
µj̃ − z′γ,− x′βj̃; ρj̃

)

−Φ2
(
µj̃−1 − z′γ,− x′βj̃; ρj̃

)



︸ ︷︷ ︸
b

+Φ2

(
z
′γ−µJ−2,−x′βJ−1;−ρJ−1

)

︸ ︷︷ ︸
c

Pr (y = J—1 |x, z) = Φ2
(
z
′γ − µJ−2,x′βJ−1; ρJ−1

)

(B.9)

where inflation in category m is allowed for by the additional terms of a, b and c in equation

(B.9). The GMIOPC model is characterised by J—1 correlation coefficients ρj ∀ j 6= m,

which correspond to all categories apart from the middle-inflated one. Specifically, these

encompass the categories at each end of the choice spectrum, for which we have ρ0 and ρJ−1;

and all of the j̃ non-inflated middle categories, namely ρj̃ ∀ j̃. Here, we note that setting
ρ0 = ρj̃ = ρ

J−1
= 0, ∀ j̃, in (B.9) will yield the generalised middle-inflated ordered probit

(GMIOP) model, which is characterised by independent error terms.

Consider imposing the linear set of restrictions that β0 = βj̃ = βJ−1 = β and ρ0 =

ρj̃ = ρJ−1 = ρ on equation (B.9); setting β0 = βj̃ = βJ−1 = β implies that the tempering
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propensities for all of the J—1 splitting equations are identical. This yields

Pr(y) =





Pr (y = 0 |x, z) = Φ2(µ0 − z′γ,x′β;−ρ)
Pr
(
y = j̃ |x, z

)
= Φ2

(
µj̃ − z′γ,x′β;−ρ

)
− Φ2

(
µj̃−1 − z′γ,x′β;−ρ

)

Pr (y = m |x, z) =





[
Φ (µm − z′γ)− Φ

(
µm−1 − z′γ

)]

+Φ2 (µ0 − z′γ,− x′β; ρ)︸ ︷︷ ︸
a

+
∑

j̃


 Φ2

(
µj̃ − z′γ,− x′β; ρ

)
−

Φ2

(
µj̃−1 − z′γ,− x′β; ρ

)



︸ ︷︷ ︸
b

+Φ2
(
z
′γ−µJ−2,−x′β;−ρ

)
︸ ︷︷ ︸

c

Pr (y = J—1 |x, z) = Φ2
(
z
′γ − µJ−2,x′β; ρ

)

(B.10)

where the expressions for Pr (y = 0 |z,x), Pr
(
y = j̃ |z,x

)
and Pr (y = J—1 |z,x) immedi-

ately collapse to those in the MIOPC, given in expression (B.3). The Pr
(
y = j̃ |z,x

)
are

equivalent to cases of Pr (y = j |z,x) ∀j = 1, 2, ..., J—2 where M = 0. Using (B.3), subtract-

ing these terms from one yields

Pr (y = m |x, z) = Φ2 (µm − z′γ,x′β;−ρ)−Φ2
(
µm−1 − z′γ,x′β;−ρ

)
+1−Φ (x′β) . (B.11)

That is, the GMIOPC collapses to and therefore nests the MIOPC. As setting ρ = 0 in

(B.11) yields probabilities that are identical to theMIOP model, it follows that theGMIOPC

also collapses to the MIOP under the alternative set of parameter restrictions β1 = β2 =

β3... = βJ−1 and ρj = 0 ∀ j = 0, j̃, J—1. Applying only the latter set of restrictions to

the GMIOPC implicitly reduces it to the GMIOP. Equivalently, imposing the parameter

restrictions β0 = βj̃ = βJ−1 on the GMIOP model leads it to nest the MIOP. As with

the GZIOP model, the GMIOP is still an inflated ordered probit model. The ordering

of outcomes is still preserved, and middle-inflation arises due to J—1 distinct DGPs, as

opposed to just one. Further, as with the GZIOP, a straightforward test of hypotheses can

be undertaken using LR or LM tests.

Testing the restrictions associated with these model variants therefore entails testing (i)

the more flexible functional form of the GMIOPC model versus the simpler nested forms

of the MIOPC and MIOP models and (ii) the GMIOP versus the MIOP model. As with

the GZIOP model, the GMIOP is still an inflated ordered probit model. The ordering of

outcomes is still preserved, middle-inflation arises due to J—1 distinct DGPs as opposed to

just one, and all (latent) equations in the model are estimated simultaneously.

Diagrammatically, theMIOP/MIOPC is depicted in Panel A of Figure B.1. It comprises
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Figure B.1: The Middle-Inflated Ordered Probit (MIOP) model and its generalisation
(GMIOP)

a single splitting equation and an OP model, both of which are unobserved. Here, m denotes

an inflated middle category, which can assume any of the values in the set j ∈ {1, 2, ..., J—2};
the splitting equation now distinguishes between observational units in the inflated middle

category (r = 0) and those in all other categories (r = 1). Here, the ‘Observed outcome’

column in Panel A shows that an observational unit for whom r = 1 and ỹ = m will se-

lect outcome y = m; this outcome is also depicted for observational units in regime r = 0.

The GMIOP/GMIOPC is illustrated in Panel B of Figure B.1: it shows that for any given

propensity towards a particular category j 6= m in the OP equation, it is possible to be

pushed towards the inflated middle category m, due to the presence of J—1 splitting equa-

tions. For instance, the ‘Observed outcome’ column in Panel B shows that an observational

unit for whom ỹ = m—1 and rm−1 = 0 will still select outcome y = m; this outcome is also

shown as being realised for observational units in regime ỹ = m. As with the case of the

GZIOP, all categories in the OP equation other than the one being inflated have a corre-

sponding splitting equation.14 Intuitively, the nature of our generalisations means that the

model depicted on the right hand side of Figure B.1 can nest the non-generalised model

depicted on the left hand side through imposing the linear parameter restrictions described

above.

14In terms of the diagram in Panel B of Figure B.1, if the m—1th category is equal to category j = 0 and
the m+1th category is equal to the J—1th category, the model collapses to the three outcome case where
j = {0, 1, 2}. This is precisely the set-up we consider in our empirical GMIOP application.
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C Lagrange multiplier tests: Score vectors

C.1 Zero-inflated models

A highly appealing specification test for the ZIOPC models versus their generalised alter-

natives is the LM test, as this only requires estimation of the simpler nested models. This

involves evaluation of the score vector of the more general model evaluated at parameter

values under the null (i.e., at ZIOPC ones). Here we present the score for the case of corre-

lated errors. As noted above, the GZIOPC model of equation (11) can form the basis of an

LM test of the GZIOPC versus the ZIOP and ZIOPC models. The former is tested using

H0 : βj = β and ρj = 0,∀j and the latter by H0 : βj = β and ρj = ρ,∀j.
Using the matrix version of the general result for bivariate normal distributions that

∂Φ2 (a, b; ρ)

∂a
= φ (a) Φ

(
b− ρa√
1− ρ2

)
, (C.1)

where Φ2 (a, b; ρ) denotes the standardised bivariate normal cumulative density function

(CDF), we can define the following quantities of interest. First, define Φ+b,j as

Φ+b,j = Φ



(
µj − z′γ

)
− ρj

(
−x′βj

)
√
1− ρ2j


− Φ



(
µj−1 − z′γ

)
− ρj

(
−x′βj

)
√
1− ρ2j


 (C.2)

for j = 1, . . . , J—2 and

Φ+b,J−1 = Φ



(
z
′γ−µJ−2

)
− ρJ−1

(
x
′βJ−1

)
√
1− ρ2J−1


 (C.3)

for j = J—1; and then Φ−b,j as

Φ−b,j = Φ



(
µj − z′γ

)
+ ρj

(
x
′βj
)

√
1− ρ2j


− Φ



(
µj−1 − z′γ

)
+ ρj

(
x
′βj
)

√
1− ρ2j


 (C.4)

for j = 1, . . . , J—2 and

Φ−b,J−1 = Φ



(
z
′γ−µJ−2

)
+ ρJ−1

(
−x′βJ−1

)
√
1− ρ2J−1


 (C.5)

for j = J—1. Labelling the probabilities of the GZIOPC model PGZIOPC , and using expres-
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sions (C.2) to (C.5), the score with respect to the elements of β can be written as

∂` (θ)

∂βj
=




∑
yi=0

−xφ
(
−x′βj

)
Φ+b,j +

∑
yi=0

−xφ
(
−x′βJ−1

)
Φ−b,J−1+

yi=J−2∑
yi>0

xφ
(
x
′βj
)
Φ−b,j +

∑
yi=J−1

xφ
(
x
′βJ−1

)
Φ+b,J−1


÷ P

GZIOPC
j=yi

(C.6)

for βj, j = 1, . . . , J—1. Similarly, defining φ
+
a,j as

φ+a,j = φ
(
µj − z′γ

)
Φ



(
−x′βj

)
− ρj

(
µj − z′γ

)
√
1− ρ2j


−φ

(
µj−1 − z′γ

)
Φ



(
−x′βj

)
− ρj

(
µj−1 − z′γ

)
√
1− ρ2j




(C.7)

for j = 1, . . . , J—2 and

φ+a,J−1 = φ
(
z
′γ−µJ−2

)
Φ


x

′βJ−1 − ρJ−1
(
z
′γ−µJ−2

)
√
1− ρ2J−1


 (C.8)

for j = J—1; and then φ−a,j as

φ−a,j = φ
(
µj − z′γ

)
Φ


x

′βj + ρj
(
µj − z′γ

)
√
1− ρ2j


−φ

(
µj−1 − z′γ

)
Φ


x

′βj + ρj
(
µj−1 − z′γ

)
√
1− ρ2j




(C.9)

for j = 1, . . . , J—2 and

φ−a,J−1 = φ
(
z
′γ−µJ−2

)
Φ



(
−x′βJ−1

)
+ ρJ−1

(
z
′γ−µJ−2

)
√
1− ρ2J−1


 (C.10)

for j = J—1 permits us to write the score with respect to γ as

∂` (θ)

∂γ
=




∑
yi=0

[
−zφ (µ0 − z′γ) +

J−2∑
j=1

−zφ+a,j + zφ−a,J−1

]
+

yi=J−2∑
yi>0

[
−zφ−a,j

]
× 1 [yi = j] +

∑
yi=J−1

zφ+a,J−1




÷ PGZIOPCj=yi
. (C.11)

The required ordering of the boundary parameters is ensured by specifying them as

µj = µj−1 + exp
(
ξj
)
, j = 1, 2, ..., J—2, (C.12)
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where µ0 is freely estimated (Greene and Hensher 2010). The associated scores with respect

to µ0, ξ1, ξ2, . . . ξJ−2 are given by,

∂` (θ)

∂µ0
=

[
∑

yi=0

φ (µ0 − z′γ) + φ+a,j − φ−a,J−1

]
÷ PGZIOPCj=0 (C.13)

+

[
yi=J−2∑

yi>0

[
φ−a,j
]
× 1 [yi = j]

]
÷ PGZIOPCj=yi

−
[
∑

yi=J−1

φ+a,J−1

]
÷ PGZIOPCj=J−1

∂` (θ)

∂ξ1
=


∑

yi=0





∑
j=1 exp (ξ1)φ (µ1 − z′γ) Φ

(
x
′β1+ρj(µ1−z

′γ)√
1−ρ2

1

)
+

∑J−2
j=2 exp (ξ1)φ

+
a,j − exp (ξ1)φ−a,J−1






÷ PGZIOPCj=0 (C.14)

+

[
∑

yi=1

exp (ξ1)φ (µ1 − z′γ) Φ
(
x
′βj + ρj (µ1 − z′γ)√

1− ρ21

)]
÷ PGZIOPCj=1

+

[
yi=J−2∑

yi>1

exp (ξ1)φ
−
a,j

]
÷ PGZIOPCj=y +

[
∑

yi=J−1

− exp (ξ1)φ+a,J−1

]
÷ PGZIOPCj=J

∂` (θ)

∂ξ2
=


∑

yi=0





∑
j=2 exp (ξ2)φ (µ2 − z′γ) Φ

(
x
′β2+ρ2(µ2−z

′γ)√
1−ρ2

2

)

+
∑J−2

j=2 exp (ξ2)φ
+
a,j − exp (ξ2)φ−a,J−1






÷ PGZIOPCj=yi

(C.15)

+

[
∑

yi=2

exp (ξ2)φ (µ2 − z′γ) Φ
(
x
′β2 + ρ2 (µ2 − z′γ)√

1− ρ22

)]
÷ PGZIOPCj=2

+

[
yi=J−2∑

yi>2

exp (ξ2)φ
−
a,j

]
÷ PGZIOPCj=y +

[
∑

yi=J−1

− exp (ξ2)φ+a,J−1

]
÷ PGZIOPCj=J−1

...

∂` (θ)

∂ξJ−1
=

[
∑

yi=J−1

− exp
(
ξJ−1

)
φ+a,J−1

]
÷ PGZIOPCj=J−1 (C.16)

Finally, the derivatives of the elements of ρ ∀j = 1, 2, ..., J—2 are given by

∂` (θ)

∂ρj
=

[
∑

yi=0

[
φ2
(
µj − z′γ,− x′βj; ρ1

)
− φ2

(
µj−1 − z′γ,− x′βj; ρj

)]
]
÷ PGZIOPCj=0 (C.17)

+

[
∑

yi=j

−
[
φ2
(
µj − z′γ,x′βj;−ρ1

)
− φ2

(
µj−1 − z′γ,x′βj;−ρj

)]
]
÷ PGZIOPCj=yi

9



whereas for ρJ−1 we have

∂` (θ)

∂ρJ−1
=

[
∑

yi=0

−φ2
(
z
′γ − µJ−2,− x′βJ−1;−ρJ−1

)
]
÷ PGZIOPCj=0 (C.18)

+

[
∑

J−1

φ2
(
z
′γ − µJ−2,x′βJ−1; ρJ−1

)
]
÷ PGZIOPCj=J−1

In estimation we ensure a well-defined ρj, j = 1, . . . , J—1, such that for −1 < ρj < 1

we use the hyperbolic tangent function transformation, ρj = tanh ρ∗j , where ρ
∗
j is freely

estimated. If such a transformation is followed, then the above derivatives for ρ need to

be multiplied by ∂ tanh ρ∗j
/
ρ∗j = 1− tanh2 ρ∗j . Using all of the above quantities, the LM

statistic is given by expression (14).

C.2 MIOP score vector

Assume that J = 3, and label the ordered choices as j = 0, 1, 2 (negative, indifferent,

positive), where j = 1 is the hypothesised inflated category. Here the explicit form of the

GMIOPC probabilities will be

Pr (yi) =





0 = Φ2 (µ0 − z′γ,x′β0;−ρ0) ;

1 =





Φ (µ0 + exp (ξ1)− z′γ)− Φ (µ0 − z′γ)
+Φ2 (µ0 − z′γ,−x′β0; ρ0)
+Φ2 (z

′γ−µ0 − exp (ξ1) ,−x′β2;−ρ2)
;

2 = Φ2 (z
′γ−µ0 − exp (ξ1) ,x′β2; ρ2) .

(C.19)

The score with respect to γ (∇γ) will be

∂` (θ)

∂γ
=




∑
yi=0

[
−zφ (µ0 − z′γ)× Φ

(
x
′β0+ρ0(µ0−z

′γ)√
1−ρ2

0

)]
+

∑
yi=1




(−zφ (µ0 + exp (ξ1)− z′γ) + zφ (µ0 − z′γ))+

−zφ (µ0 − z′γ)× Φ
(
(−x′β0)−ρ0(µ0−z

′γ)√
1−ρ2

0

)
+

zφ (z′γ−µ0 − exp (ξ1))× Φ
(
(−x′β2)+ρ2(z

′γ−µ0−exp(ξ1))√
1−ρ2

2

)



+

∑
yi=J−1

[
zφ (z′γ−µ0 − exp (ξ1))× Φ

(
x
′β2−ρ2(z

′γ−µ0−exp(ξ1))√
1−ρ2

2

)]




÷PGMIOPCj=yi
.

(C.20)
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And for the boundary parameters, ∇µ0,∇ξ1

∇µ0 =




∑
yi=0

[
φ (µ0 − z′γ)× Φ

(
x
′β0+ρ0(µ0−z

′γ)√
1−ρ2

0

)]
+

∑
yi=1




φ (µ0 + exp (ξ1)− z′γ)− φ (µ0 − z′γ)+

φ (µ0 − z′γ)× Φ
(
(−x′β0)−ρ0(µ0−z

′γ)√
1−ρ2

0

)
+

φ (z′γ−µ0 − exp (ξ1))× Φ
(
(−x′β2)+ρ2(z

′γ−µ0−exp(ξ1))√
1−ρ2

2

)



+

∑
yi=J−1

[
φ (z′γ−µ0 − exp (ξ1))× Φ

(
x
′β2−ρ2(z

′γ−µ0−exp(ξ1))√
1−ρ2

2

)]




÷ PGMIOPCj=yi
.

(C.21)

and

∇ξ1 =




∑
yi=1




exp (ξ1)φ (µ0 + exp (ξ1)− z′γ)+

(− exp (ξ1))φ (z′γ−µ0 − exp (ξ1))× Φ
(
(−x′β2)+ρ2(z

′γ−µ0−exp(ξ1))√
1−ρ2

2

)

+

∑
yi=J−1

[
(− exp (ξ1))φ (z′γ−µ0 − exp (ξ1))× Φ

(
x
′β2−ρ2(z

′γ−µ0−exp(ξ1))√
1−ρ2

2

)]



÷PGMIOPCj=yi

.

(C.22)

The score with respect to β0 (∇β0) and β2 (∇β2) will respectively be

∇β
0
=




∑
yi=0

[
xφ (x′β0)× Φ

(
(µ0−z

′γ)+ρ0(x
′β0)√

1−ρ2
0

)]
+

∑
yi=1

[
−xφ (−x′β0)× Φ

(
(µ0−z

′γ)−ρ0(−x
′β0)√

1−ρ2
0

)
+

]


÷ P

GMIOPC
j=yi

(C.23)

and

∇β
1
=




∑
yi=1

[
−xφ (−x′β2)× Φ

(
(z′γ−µ1)+ρ2(−x

′β2)√
1−ρ2

2

)]

∑
yi=J−1

[
xφ (−x′β2)× Φ

(
(z′γ−µ1)−ρ2(x

′β2)√
1−ρ2

2

)]


÷ P

GMIOPC
j=yi

(C.24)

Deriving the score vector for the LM test is again, straightforward. Define: POPj as the

standard OP probabilities implied by equation (3); PMIOPj as those for the MIOP model;

PGMIOPj as those for the GMIOP model; and finally, P 0 as the splitting equation probability

of Φ (x′β0), P
J−1 as the splitting equation probability of Φ

(
x
′βJ−1

)
, and P j̃ as the split-

ting equation probabilities of Φ
(
x
′βj̃

)
, where j̃ captures all middle outcomes that are not

inflated.

As with the case of the GZIOP, we maintain the necessary ordering of the boundary

parameters by specifying them as µj = µj−1 + exp
(
ξj
)
, where µ0 is freely estimated. The
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elements of the score vector are given by

∂` (θ)

∂γ
=




∑
yi=0

−zµ̃−1P 0

+
∑
yi=1

(
−zµ̃0 − zµ̃−1 (1− P 0) + zµ̃1 (1− P 2)

)

+
∑
yi=2

zµ̃1P
2



÷ PGMIOPj=yi

(C.25)

∂` (θ)

∂µ0
=

[
∑

yi=0

µ̃−1P
0

]
÷ PGMIOPj=0 + (C.26)

[
∑

yi=1

µ̃0 + µ̃0
(
1− P 0

)
− µ̃1

(
1− P 2

)
]
÷ PGMIOPj=0 +

[
∑

yi=1

−µ̃1P 2
]
÷ PGMIOPj=2

∂` (θ)

∂ξ
=

[
∑

yi=1

exp (ξ) µ̃1 − exp (ξ) µ̃1
(
1− P 2

)
]
÷ PGMIOPj=1 + (C.27)

[
∑

yi=2

− exp (ξ) µ̃1P 2
]
÷ PGMIOPj=2

∂` (θ)

∂β0
=

[
∑

yi=0

xφ (x′β0)P
OP
j=0

]
÷ PGMIOPj=0 + (C.28)

[
∑

yi=1

−xφ (x′β0)× POPj=0

]
÷ PGMIOPj=1

∂` (θ)

∂β2
=

[
∑

yi=1

−xφ (x′β0)POPj=2

]
÷ PGMIOPj=1 + (C.29)

[
∑

yi=2

xφ (x′β2)× POPj=2

]
÷ PGMIOPj=2

Finally, as with theGZIOP, in estimation we ensure a well-defined ρj, j = 1, . . . , J—1, such

that ρj ∈ (−1, 1) where we use the hyperbolic tangent function transformation, ρj = tanh ρ∗j ,
where ρ∗j is freely estimated. Following such a transformation the above derivatives for ρ

require multiplication by ∂ tanh ρ∗j
/
ρ∗j = 1− tanh2 ρ∗j .
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D Model coherency and identification

It is important to ascertain whether the proposed discrete choice model generalisations are

‘coherent’ or ‘logically consistent’ (see, for instance, Maddala 1983). This entails ensuring

that the model’s parameters are uniquely identified and the associated probabilities are well-

defined and sum to unity. We demonstrate this using the GZIOP model with uncorrelated

errors. We also demonstrate that the generalised ordered probit (GOP) model of Terza

(1985), which is arguably characterised by incoherency (Greene, Harris, Hollingsworth, and

Weterings 2014), neither nests, nor is nested by our proposed generalizations.

D.1 Unique identification

Ensuring that the model parameters are uniquely identified is akin to ensuring that the

model cannot generate more than one value of y simultaneously. In this respect, if one

can simulate the dependent variable, then this suggests that the model is, indeed, coherent

(implying that the parameters are uniquely identified). Here, consider simulating along the

lines of the models described above:

1. Consider the ỹ∗ = z
′γ + u equation. With known γ and boundary parameters µ,

‘first stage’ ỹ values can be straightforwardly simulated by simply simulating u from

an assumed N (0, 1) distribution by the usual relationship between the simulated ỹ∗

and µ.

2. This uniquely places an individual in one, and only one, of the j = 0, 1, ..., J—1 ỹ

outcomes.

3. Individuals in the ỹ = 0 category are allocated to the observed y = 0.

4. For individuals falling uniquely into the ỹ = 1 category one can simulate their observed

outcome by consideration of r∗j=1 = x
′βj=1 + εj=1:

(a) With known βj=1 it is straightforward to simulate r
∗
j=1 by simulating εj=1, again

from an assumed N (0, 1) distribution.

(b) The position of the simulated index r∗j=1 with respect to 0, uniquely simulates

rj=1; rj=1 = 1
(
r∗j=1 > 0

)
, where 1(.) is an indicator function taking the value 1 if

the condition inside the parentheses is true, and 0 otherwise.

(c) With ỹ = 1 and rj=1 in hand, yj=1 is uniquely determined by the observability

criteria defined above, here explicitly, yj=1 = ỹrj=1.

5. Similarly, for all individuals uniquely falling into the ỹ = 2 category, observed yj=2 =

ỹrj=2, with rj=2 being determined as above by 1
(
r∗j=2 > 0

)
.
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6. And so on, for all other j ≥ 3.

7. Equivalently, y0 can be also be simulated as

1 (z′γ + u < µ0) +
∑J−1

j=1
1
([
µj−1 < z

′γ + u < µj
] [
x
′βj + εj < 0

])

with the usual convention of µJ−1 = ∞. As all components of this are mutually

exclusive, this uniquely maps onto a single value for all observed y (similar expressions

apply for the remaining j).

Thus although there is nothing in the model to prevent the ‘existence’ of several of the rj

variables ‘being equal to one’, apart from the one corresponding to the uniquely determined

ỹj value, all others are redundant. The reason for this follows from the more general latent

class models (of which our approach is a special case). Individuals can only be in any one

particular class at a given point in time, therefore behaviour in any other class simply does

not exist. In this way our approach is consistent with that of the standard latent class

approach.

D.2 Well-defined probabilities

We now explore if our proposed models have well-defined probabilities. It is straightforward

to show that model probabilities all lie within the unit circle and sum to unity. Consider the

GZIOP with J = 3:

P0 = Φ(µ0 − z′γ) + [Φ (µ1 − z′γ)− Φ (µ0 − z′γ)] Φ (−x′β1) + Φ (z′γ−µ1) Φ (−x′β2)
P1 = [Φ (µ1 − z′γ)− Φ (µ0 − z′γ)] Φ (x′β1)
P2 = Φ(z′γ−µ1) Φ (x′β2)

So ΣjPj is given by

∑
j
Pj =

Φ(µ0 − z′γ) + [Φ (µ1 − z′γ)− Φ (µ0 − z′γ)] Φ (−x′β1) + Φ (z′γ−µ1) Φ (−x′β2)
+ [Φ (µ1 − z′γ)− Φ (µ0 − z′γ)] Φ (x′β1) + Φ (z′γ−µ1) Φ (x′β2) .

(D.1)

Manipulating all of the terms in (D.1), it is straighforward to demonstrate that ΣjPj = 1.

Finally, it is evident that all individual outcome probabilities must lie in the unit circle. They

are all composed of positive components, or sums of positive components (due to the Φ (.)

transformation) and therefore are all positive. As the sum across j has been shown to

sum to unity, the individual outcome probabilities are in the (0, 1) space, and are therefore

well-defined.
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D.3 Comparison with the generalised ordered probit (GOP) model

The literature on discrete choice is characterised by a number of contributions which pro-

pose generalisations of the ordered probit model. A well-known and popular approach is

found in the generalised ordered probit (GOP) model of Terza (1985), in which the thresh-

old parameters are allowed to vary. Greene, Harris, Hollingsworth, and Weterings (2014)

argue that because the ordering of the thresholds is not enforced in this model, the pre-

dicted probabilities can lie outside the range of zero and one. As demonstrated above, our

proposed generalisations do not suffer from this form of incoherency. Here we show that

our proposed extensions to the ZIOP and MIOP models, and their generalisations are not

re-parameterisations of the GOP model. We now discount this possibility using the example

of the GZIOP model.

In its most usual form, the boundary parameters in a GOP model would be specified as

µi0 = x
′
iδ0

µi1 = µi0 + exp (x
′
iδ1)

...

so that P0 in a GOP would be

Pi0 = Φ(x
′
iδ0 − z′iγ)

so compared to the same for the GZIOP means that equivalence would imply that

Φ (x′iδ0 − z′iγ) = Φ (µ0 − z′γ) +
[Φ (µ1 − z′γ)− Φ (µ0 − z′γ)] Φ (−x′β1) +
Φ (z′γ−µ1) Φ (−x′β2) .

There are no obvious restrictions under which this condition would hold. On this basis, the

proposed new models are evidently not simple re-parameterisations of the GOP model.
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E MIOP empirical application

E.1 Data

Bagozzi and Mukherjee (2012) use a MIOP framework to analyze individual responses in

a data set that explores respondents’ attitudes towards European Union (EU) membership

in EU accession countries. When asked about their attitudes towards joining the EU, re-

spondents choose from one of three alternatives: a bad thing; neither good nor bad ; or a

good thing. The associated response frequencies for these are 10.83%, 33.07% and 56.10%,

respectively.

The authors hypothesise that the middle category contains responses from two distinct

sources: ‘informed’ respondents with good knowledge of the impact of EU membership; and

‘uninformed’ respondents, who select neither good nor bad as a ‘face-saving measure’.15 The

splitting equation covariates capture if a respondent is knowledgeable about the EU and

its impact, wheras the outcome (OP) equation contains variables standard in the political

science literature used to measure EU membership support. This is in addition to the

inclusion of standard controls capturing socio-economic and personal characteristics. The

specification shares 8 common variables in the two equations, and is characterised by: N =

9, 113; J = 3; kx = 12; and kz = 16. See Bagozzi and Mukherjee (2012) for a full description

of the variable set.

In this three categorical outcome application, our generalisation requires that two split-

ting equations–which capture the extent to which the respondent is pushed towards the

middle-inflated option of neither good nor bad–require estimation. Prior to estimation,

Monte Carlo experiments are used to investigate the performance of our specification test.

E.2 Finite sample performance

To ascertain the finite sample performance of our specification tests, we consider a range of

Monte Carlo (MC ) experiments. As with the case of the ZIOP model, these experiments are

based on the original MIOP data application data, and unless stated, are based on the full

sample sizes reported above. The number of repetitions was set to 2, 000, and all simulation

‘noise’ had effectively settled after 1, 000 repetitions. Table E.1 presents our findings, which

include results relating to empirical size and quasi-power. The first column identifies the

true DGP and the respective degrees of freedom for each test (df ). For each DGP, three

tests–each between a generalised model and a null, non-generalised variant–are performed.

Results for three MIOP experiments and tests are presented: GMIOP vs. MIOP ;

15A fourth ‘do not know ’ category is treated as being a neither good nor bad response by Bagozzi and
Mukherjee (2012). We emphasise the hypothesis driven nature of category inflation in this application: in
keeping with the discussion in Section II the inflated category is not characterised by an excess of middle
category observations relative to other categories.
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Table E.1: Monte Carlo rejection probabilities

Rejection probability

True model
GMIOP
vs.

MIOP

GMIOPC
vs.

MIOPC

GMIOPC
vs.

MIOP

1.MIOP(df = 12, 13, 14) 0.057 0.061 0.062
2.MIOPC (df = 12, 13, 14) 0.181 0.061 0.241
3.MIOP(df = 7, 8, 9) 0.056 0.055 0.053
4.MIOP(df= 12, 13, 14) 0.076 0.077 0.0795
5.OP(df = 12, 13, 14) 0.484 0.788 0.657
6.Parallel(df = 12, 13, 14) 0.253 0.677 0.503

GMIOPC vs. MIOPC ; and GMIOPC vs. MIOP. Row 1 corresponds to a MIOP DGP

and has J = 3. Here, all empirical sizes are very close to nominal ones. Row 2 considers

a MIOPC DGP. At 6%, empirical size is again very close to the nominal one. These tests

have reasonable ‘power’ at picking-up the mis-specified uncorrelated model, with rejection

probabilities of around 18% and 24%. The effect of reducing the df is explored here in row

3, where the MIOP is re-estimated and all statistically insignificant variables are removed.

This respectively yields df= 7, 8, 9; again, all tests are correctly sized.

As the tests are asymptotic, the implications for their properties of estimating using a

much smaller sample are also explored in row 4. This is achieved by taking the (already)

relatively small sample in the MIOP example and randomly removing 50% of the obser-

vations, yielding N = 4, 556. The re-sized sample marginally worsens the performance of

the tests, with all of them being slightly over-sized at around 7%—8%. Finally, quasi-power

experiments were once again performed by generating under an OP model and a parallel

regressions framework (rows 5 and 6, respectively). Again, all tests behave exceptionally

well as general specification ones, as indicated by high rejection probabilities of up to nearly

80% in some instances. In summary, for both the zero-inflated and middle inflated exper-

iments, all LM tests appear correctly sized, and typically have good ‘power’ in identifying

mis-specified models.

Using the covariate data we also conducted genuine experiments based on the null model

of MIOP. In all experiments we take the estimated value of β in each null model, setting

βj = β ∀ j in the corresponding generalised set-up, and perturb a single parameter β0 in a
single splitting equation by successively larger increments. For brevity, we only report power

runs for the non-correlated DGPs. The MIOP power curves are presented in Figure E.1,

and cover experiments performed using alternative df and sample size as described below.

For the MIOP experiments, which all have J = 3 categories, we initially focus on two

experiments that use the full sample but which are differentiated by one experiment dropping

insignificant variables from the splitting equations. This has the impact of reducing the df

from df= 12 to df= 7. The difference in the df has no discernible effect on power and is
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Figure E.1: Empirical power curves for the MIOP model

arguably to be expected given the nature of our perturbations. Specifically, in each MIOP

experiment the single perturbed parameter differs from only a single estimated parameter.

This is unlike the ZIOP experiments, where each experiment is distinguished by a different

number of splitting equations. In the df= 26 experiment, there are three such equations, and

the single perturbed parameter thus differs from two single estimated parameters. However,

in the df= 13 experiment, the presence of only two splitting equations means that the

single perturbed parameter differs from only a single estimated parameter. One might have

anticipated greater differences in power gains here, given the large difference in df in the

ZIOP experiments. When the df is smaller, model failure associated with a single parameter

could be interpreted as being more severe.16

For reasons noted above we also conducted experiments with a relatively small sample

size (small N , df= 12) under the null of MIOP. With the reduced sample, a reduction in

power is observed relative to other MIOP experiments, in that relatively larger parameter

perturbations are required to lead to model rejection. Despite the relative reduction in

power, we note that all MIOP tests have the ‘usual’ shaped power curves, and like the ZIOP

experiments, exhibit good power.

E.3 Estimation

Table E.2 presents the LM and LR test results for our middle inflated application. For both

tests, the MIOP model is rejected in favour of the GMIOP and GMIOPC, and the GMIOP

is rejected in favour of the GMIOPC. The LR and LM tests are generally similar. However,

unlike the zero-inflated application, the non-generalised models are not unanimously rejected

by both tests in favour of their corresponding generalised variants at 5% significance levels.

16Although not reported here, significant power gains also occurred in cases where (i) a full, single vector
was perturbed and (ii) all vectors were perturbed. Both of these alternative scenarios showed comparatively
higher power compared to the single-parameter experiment. This is because the single parameter experiment
represents the scenario where the test is most likely not to perform well, as it is closest to the null.
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Table E.2: Specification test results: competing middle-inflated models

Model
LM Test
statistic

df p-value
LR Test
statistic

p-value

MIOP vs. GMIOP 32.1 12 0.001 39.3 0.000
MIOPC vs. GMIOPC 20.4 13 0.086 26.2 0.016
MIOP vs. GMIOPC 37.0 14 0.001 46.0 0.000
GMIOP vs. GMIOPC 9.5 2 0.009 6.7 0.035

Specifically, the LM test of the MIOPC versus the GMIOPC fails to reject the former at

the 5% level, although it does reject at the 10% level. In contrast, all LR tests reject at the

5% significance levels.

TheGMIOP approach remains consistent with accounting for the presence of ‘face saving’

behaviour. Whereas ‘uninformed’ respondents are still likely to have preferences across the

full range of alternatives in the latent OP equation, the impact of the splitting equations is

to push such individuals towards the face-saving ‘neither good nor bad ’ outcome. In contrast,

‘informed’ respondents with propensities to select ‘a bad thing’ or ‘a good thing’ in the OP

equation will be unlikely to move from these choices.17 The GMIOP allows the potency of

these effects to differ across the splitting equations corresponding to these respective choices.

The overall partial effects for the MIOPC and GMIOPC models are given in Table E.3.

The reported effects across all specifications are similar, being comparable in magnitude,

direction of effect and statistical significance levels. There are a few exceptions to this.

For example, higher education-level effects appear more pronounced in the GMIOPC model

for outcomes j = 1, 2 whereas the effects of EU-bid knowledge (j = 1, 2) are comparatively

stronger in the MIOPC model. These results align with the estimated model parameters

which indicate that the face-saving effects in the GMIOPC model derive from the j = 2

splitting equation.18 Specifically, there are no significant drivers of face-saving behaviour in

the j = 0 splitting equation. This suggests the possible presence of an ‘asymmetry’ with

respect to the source of the middle-inflation, in that the GMIOPC can be viewed as being

characterised by having only a single statistically significant splitting equation. This may

account for why the LM test for the MIOPC model–which by construction has a single

splitting equation–was not rejected at the 5% significance level. From a policymaking

perspective, this result suggests that if individuals are more informed about the nature and

role of the EU and its institutions, the share of responses in favour of EU membership would

be even greater; in contrast, the share of respondents selecting ‘a bad thing’ would remain

unchanged, and increasing the extent to which such individuals are informed will not affect

17Here, we note that the latent OP equation does not explicitly distinguish between informed and unin-
formed respondents; it is the splitting equations that contain proxies capturing the extent to which respon-
dents are informed, which in turn determines the extent to which individuals are pushed towards the ‘neither
good nor bad ’ outcome.
18Results available from the authors on request.
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their views.19 Despite there being very little to choose between with respect to the GMIOPC

and the MIOPC models, there is a benefit to estimating the former model in that it helps to

uncover asymmetries which the single-equation splitting equation of the MIOPC may mask.

Model summary probabilities are given in Table E.4. The overall probabilities associ-

ated with the underlying OP component of each model are again calculated alongside the

corresponding probabilities ‘purged’ of inflation effects. As was the case under zero infla-

tion, for the correlated versions the implied independent OP is used in these calculations.

Once more, the difference between the overall j = 1 probabilities and these purged ones,

are denoted Amount (Middle-inflation), which can be interpreted as the amount of middle

category inflation due to face-saving behaviour.

Turning to the Amount(%) statistic, of the total responses to the neither good nor bad

outcome, some 33% of these can be attributed to face-saving responses for the MIOP model,

a figure that rises to around 53% for the GMIOP model. These percentages rise for the

correlated versions, to 43% and 54%, respectively. As with the tobacco consumption appli-

cation, the extent of overall model inflation in the non-generalised models is underestimated

relative to the generalised models. Once again, the results for the hit-and-miss analysis

(Table E.5) suggest that the generalised models out-perform the non-generalised variants.

Regarding our middle-inflated application, when the response options in survey questions

range from feeling negative to feeling positive about an issue, middle categories are often

used to capture feelings of neutrality or indifference. As noted earlier, because such questions

are commonplace in questionnaires, there is considerable scope for the analysis of such data

using a GMIOP framework.

19Accordingly, whilst policies aimed at better informing and educating people about the EU may improve
individuals’ reported opinions of it, alternative policies may be required to persuade individuals who select
‘a bad thing ’ that EU membership is beneficial; our findings suggest that for such individuals, increasing the
extent to which they are informed may not change their mind. This type of finding may have implications
for public policies designed to mitigate the rising populism and anti-EU sentiment witnessed across the EU
in recent years.
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Table E.3: Overall partial effects for the MIOPC and GMIOPC models
MIOPC GMIOPC

Common variables j = 0 j = 1 j = 2 j = 0 j = 1 j = 2

Rural −0.005 0.012 −0.007 −0.006 0.014 −0.008

(0.004) (0.006)∗∗ (0.006) (0.004) (0.006)∗∗ (0.007)

Female −0.015 0.052 −0.036 −0.017 0.054 −0.037

(0.006)∗∗ (0.01)∗∗∗ (0.011)∗∗∗ (0.006)∗∗∗ (0.01)∗∗∗ (0.011)∗∗∗

Age 8.8e− 05 0.001 −0.001 1.6e− 04 0.001 −0.001

(1.9e− 04) (2.8e− 04)∗∗∗ (3.6e− 04)∗∗∗ (2.1e− 04) (3.8e− 04)∗∗∗ (4.3e− 04)∗∗∗

Student −0.028 0.035 −0.007 −0.025 0.032 −0.007

(0.014)∗ (0.023) (0.027) (0.022) (0.034) (0.03)

Educ high −0.017 0.023 −0.006 −0.025 0.042 −0.018

(0.011) (0.02) (0.022) (0.013)∗ (0.024)∗ (0.024)

Educ high-mid −0.01 0.081 −0.071 −0.016 0.099 −0.083

(0.013) (0.019)∗∗∗ (0.023)∗∗∗ (0.015) (0.026)∗∗∗ (0.026)∗∗∗

Educ low-mid −0.005 0.083 −0.079 −0.011 0.105 −0.094

(0.009) (0.014)∗∗∗ (0.016)∗∗∗ (0.011) (0.018)∗∗∗ (0.018)∗∗∗

Discuss politics 0.005 −0.033 0.028 0.008 −0.037 0.03

(0.004) (0.007)∗∗∗ (0.008)∗∗∗ (0.005) (0.008)∗∗∗ (0.008)∗∗∗

Outcome equation only variables

Political trust −0.142 −0.144 0.285 −0.137 −0.162 0.299

(0.008)∗∗∗ (0.011)∗∗∗ (0.016)∗∗∗ (0.009)∗∗∗ (0.017)∗∗∗ (0.018)∗∗∗

Xenophobia 0.088 0.09 −0.178 0.089 0.105 −0.194

(0.009)∗∗∗ (0.01)∗∗∗ (0.018)∗∗∗ (0.01)∗∗∗ (0.012)∗∗∗ (0.019)∗∗∗

Professional 0.015 0.015 −0.03 0.012 0.015 −0.027

(0.013) (0.012) (0.025) (0.012) (0.014) (0.026)

Executive −0.019 −0.02 0.039 −0.017 −0.02 0.037

(0.016) (0.016) (0.032) (0.015) (0.018) (0.033)

Manual 0.021 0.021 −0.042 0.020 0.024 −0.044

(0.007)∗∗∗ (0.008)∗∗∗ (0.015)∗∗∗ (0.007)∗∗∗ (0.009)∗∗∗ (0.016)∗∗∗

Farmer 0.007 0.007 −0.015 0.009 0.011 −0.02

(0.015) (0.016) (0.031) (0.016) (0.018) (0.033)

Unemployed −0.018 −0.018 0.036 −0.017 −0.02 0.037

(0.009)∗∗ (0.009)∗∗ (0.017)∗∗ (0.009)∗∗ (0.01)∗∗ (0.019)∗∗

Income −0.011 −0.011 0.023 −0.011 −0.013 0.024

(0.001)∗∗∗ (0.001)∗∗∗ (0.002)∗∗∗ (0.001)∗∗∗ (0.002)∗∗∗ (0.002)∗∗∗

Splitting equation only variables

EU-bid knowledge 4.6e− 05 −0.081 0.081 0.006 −0.071 0.065

(1.3e− 04) (0.017)∗∗∗ (0.017)∗∗∗ (0.013) (0.018)∗∗∗ (0.016)∗∗∗

True EU knowledge 1.5e− 05 −0.025 0.025 −0.001 −0.022 0.024

(3.9e− 05) (0.003)∗∗∗ (0.003)∗∗∗ (0.002) (0.003)∗∗∗ (0.003)∗∗∗

Media 5.2e− 06 −0.009 0.009 −0.005 −0.005 0.011

(1.5e− 05) (0.005)∗ (0.005)∗ (0.003) (0.005) (0.005)∗∗

aStandard errors in parentheses.∗∗∗, ∗∗ and ∗ denote significance at 1%, 5%, and 10%, respectively.
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Table E.4: Summary probabilities from the MIOP and GMIOP models; EU data

Independent errors Correlated errors
Overall Purged Overall Purged

Outcome Sample MIOP GMIOP MIOP GMIOP MIOPC GMIOPC MIOPC GMIOPC
j = 0 0.108 0.108 0.108 0.128 0.189 0.108 0.108 0.109 0.145

(0.003)∗∗∗ (0.003)∗∗∗ (0.004)∗∗∗ (0.028)∗∗∗ (0.003)∗∗∗ (0.003)∗∗∗ (0.003)∗∗∗ (0.015)∗∗∗

j = 1 0.331 0.331 0.331 0.222 0.155 0.331 0.331 0.190 0.153
(0.005)∗∗∗ (0.005)∗∗∗ (0.015)∗∗∗ (0.040)∗∗∗ (0.005)∗∗∗ (0.005)∗∗∗ (0.018)∗∗∗ (0.021)∗∗∗

j = 2 0.561 0.561 0.561 0.650 0.656 0.561 0.561 0.701 0.702
(0.005)∗∗∗ (0.005)∗∗∗ (0.013)∗∗∗ (0.022)∗∗∗ (0.005)∗∗∗ (0.005)∗∗∗ (0.018)∗∗∗ (0.021)∗∗∗

MIOP GMIOP MIOPC GMIOPC
Amount (Middle-inflation) 0.109 0.176 0.141 0.176

(0.014)∗∗∗ (0.040)∗∗∗ (0.018)∗∗∗ (0.021)∗∗∗

Amount(%) 32.83% 53.14% 42.59% 53.67%
aStandard errors in parentheses.∗∗∗, ∗∗ and ∗ denote significance at 1%, 5%, and 10%, respectively.
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Table E.5: In-sample and out-of-sample hit-and-miss tables for MIOP applicationsa

Predicted (ŷi): In-sample
Specification OP MIOP MIOPC GMIOP GMIOPC
Actual (yi) 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 Total
0 2 318 667 14 290 683 10 307 670 6 328 653 8 311 668 987
1 2 640 2372 18 803 2193 9 832 2173 5 916 2093 6 860 2148 3014
2 2 470 4640 11 544 4557 3 574 4535 3 633 4476 4 589 4519 5112
Total 6 1428 7679 43 1637 7433 22 1713 7378 14 1877 7222 18 1760 7335 9113
CP 0.5796 0.5897 0.5900 0.5923 0.5911
CP∗ 0.0610 0.0860 0.0867 0.0928 0.0887

Predicted (ŷi): Out-of-sample — 10% ‘hold-out’ sample
Actual (yi) 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 Total
0 0 35 75 1 33 76 1 33 76 0 32 78 1 30 79 110
1 0 59 221 2 71 207 1 78 201 0 86 194 0 75 205 280
2 0 48 487 1 60 474 0 64 471 0 69 466 0 61 474 535
Total 0 142 783 4 164 757 2 175 748 0 187 738 1 166 758 925
CP 0.5903 0.5903 0.5946 0.5968 0.5946
CP∗ 0.0605 0.0743 0.0840 0.0891 0.0815

aSee notes to Table 5.
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